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Abstract 

Level density parameter (LDP) calculation is dependent upon shell correction value, which usually is obtained by 
using Strutinsky method. The Strutinsky method is method that uses energy levels from certain potential as main 
input. Therefore for each mass number it strongly needs the energy levels calculation. The energy levels 
computation is time-consuming process; hence, the new application of computation technique is needed to reduce 
computation time. This paper explains the application of neural network in LDP calculation. Based on knowledge 
from box type and harmonic potentials, LDP is predicted by using arbitrary potential 
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1. Introduction 

Level density plays an important role in 
calculating the nuclear reaction model statistically, 
such as in calculating the evaporation model of 
nuclear reaction, spallations reaction measurements, 
and in studies of intermediate-energy of heavy ion 
collision1). Although there are some theoretical 
approaches that have been developed to study the 
level density2–4), one of the parameters that holds very 
important role in the level density calculation is the 
level density parameter (LDP)5). The commonly used 
of level density parameter is the energy dependent 
value6,7). 

The asymptotic value of the LDP is reached at 
the infinite excitation energy8). With this approach, the 
variation of its LDP value is small. This is caused by 
the highly excitation state. This approach is different 
from the shell correction approach, which gives bigger 
value of the variation of the LDP. Shell correction is 
resulted from the difference between nuclear mass 
experiment and semi empirical nuclear mass9).  

In level density study, semi empirical nuclear 
mass is influenced mainly by pair and shell correction. 
In shell correction, fission barrier determines the 
variation value of eigen energy to smooth curve parts. 
To simplify the complexity of the problem, the simple 
potential interaction such as infinite square well or 
harmonic oscillator is usually chosen and the Gauss-
Hermite folding technique is used10).  

The effect of simplifying the complexity results 
in the limitation of the potential interaction, which is 
in contradiction with the real problems in nuclear 
reaction model. In nuclear reaction model, the more 
complicated the potential interaction, the more 
accurate the nuclear data will be resulted. Based on 
this hypothesis, this paper will discuss the advantages 
of using the supervised neural net to calculate LDP. 
The supervised neural net that is chosen is the back 

propagation one. This method is described in details 
in11).  

Basically, back propagation requires a number 
of vector inputs and vector target. Through these 
vectors, the neural network will learn to identify the 
patterns given and predict other patterns having 
similar basic pattern as the ones given. The pattern 
during the LDP calculation is composed of the 
configuration potential parameters, atomic mass, and 
atomic number, while the vector target is determined 
by its shell correction value. Hence, the obtained 
neural network knowledge is the knowledge to 
recognize the relationship among the potential 
parameters, atomic mass, and atomic number against 
the shell correction value. The training method 
discussed in this paper is the conjugate gradient 
algorithm12), while neural architecture used contains 
100 neurons in hidden layer and one neuron in output 
layer.  

The potential parameters used as the attribute 
for the input vectors are the difference between the 
area below the curve of the box potential and the area 
below the curve of the harmonic potential. Its potential 
variation is determined by the difference below these 
two curves. One of interaction potential that will be 
obtained from these parameters is the wood-saxon 
potential type13). 

2. Formulation of Method 

The value of level density is approximated by 
the th following formula14), 
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Parameter a~  is asymptotic value at infinite 
excitation energy U. There are three-semi empirical 
formulas for a~ 14). In this paper, the Ignatyuk formula 
represents the asymptotic parameter has been 
employed. 
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U is the value excitation energy that was 
approximated by the following equation (3)15). 
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and Ct  is the critical temperature 
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As for the semi empirical level density parameter, Ca , 
its calculation has been proposed by Gilbert-
Cameroon2), which can be written as follows. 
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With ( )feg  as a single particle level density at fermi 

level of fe = 33MeV, ( )feg  is calculated by 
formula16) 
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where V(r) in equation (5) is oscillator harmonic 
potential and infinite box potential. Both potentials are 
used to introduce the knowledge of neural network, 
which will be used 
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Because the interaction is not the interaction of of 
non-mean field approximation, coulomb interaction 
used is the interaction of point to sphere technique17) 
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then the interaction depicted by 
( ) ( ) ( )rVrVrV coulnoncoul += , which replace the 

conventional one ( ) ( )∫= 12
3

121 rdrVrV
rrr

. 

The iteration technique is applied to equation 
(1) to get LDP18) 
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δE parameter in equation (9) is called shell correction, 
which is calculated using the formula, 

calcMME −= expδ  (10) 

Nuclear masses experiment expM are taken from 

AME2003 table19) while calcM is calculated using 
binding energy formula 
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in which all coefficients at the equation (11) were 
compiled by Royer20) 
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Where equation (12) and Eshell represent the pair and 
shell correction at binding energy formula, which is 
determined by21) 
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nε  is an eigen energy while ( )nε  is smooth curve that 
it was calculated from22,23) 
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The value of fermi level λ in the equation was 
obtained from the relation 

Nn =)(λ  (16) 

The vector used as the input vector is 
constructed from α, β, A and Z. α is the difference 
between the area constructed by box potential curve 
and the area of harmonic potential curve below zero 
potential value. 

While β is the difference between the area 
constructed by the two potentials above zero value. A 
and Z are atomic mass and atomic number 
respectively. The target vector is composed of values 
that it is obtained from the conventional calculation 
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procedure. The training data are taken from the 
representative of each value A, while testing data are 
taken from isotope in the training data. The training 
algorithm that was implemented was CGA combined 
with the updating formulation. 
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Figure 1. the α area (top) and the β area (bottom) 

3. Results and Discussion 

The testing result on the two potentials is 
displayed in Figure 2 

 

 
Figure 2. Accuracy curves from testing process 
 

Figure 2 shows that the accuracy of both 
trainings is above 70%. The accuracy for Box 
Potential reaches 87% and harmonic potential has the 
accuracy of 97%. The data indicate that the reliability 
of the neural network knowledge is significant. The 
number of Epoch for both the Box Potential and 
Harmonic Potential is 60000. In addition, the learning 
rate of training used is 0.1. The performance curves 
are showed by figure 3. 

Based on the knowledge acquired, the 
prediction for the shell correction value from both 
potentials is made. Figure 4 depicts this predicted shell 
correction 

Figure 4 shows that δE box potential is higher 
than harmonic potential; hence, the predicting value 
δE has the possibility to exist within the range of the 
two potentials.  

 

 
Figure 3. Training performance curves from box 
potential (top) and hrmonic potential (bottom) 
 

 
Figure 4. LDP predicted result from both neural 
knowledge 
 

If the value α for predicting is zero, the 
negative value for its potential is a box shape. 
Normally, the predicting value should be higher than 
the value produced by harmonic potential. 
Considering that the knowledge acquired is from both 
the Box Potential system and the Harmonic Potential 
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system, knowledge for predicting is obtained by 
means of the formula of averaged knowledge. 
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Because the value of shell correction is varied, which 
fluctuates according to its oscillating pattern, β value 
for the vector input was approximated by equation(19) 
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Where lP  is legendre polynomial and 0β  is β  value 
from the training data. Based on this approximation, 
the predicted results δE obtained are shown in figure 
5, 

 
Figure 5. Neural net (filled circle) and LDP shell 
correction result (unfilled box) 
 
By using ignatyuk formula and RIPL-2 iterative 
procedure, LDP for RIPL-2 and neural network 
method is calculated. The calculation results are 
illustrated in figure 6. 

 

 
 
Figure 6. The LDP neural network result (top) and 
RIPL-2 calculation (bottom) 
 

Figure 6 shows clearly that RIPL-2 calculation 
deviates at about A = 170, likewise neural network, in 
which the result has significant discrepancy at A = 
170. Although neural network has a significant 
discrepancy at A = 170, around the area of mass 225, 
the result of neural network is closer to the experiment 
compared with the value of RIPL-2. 

4. Conclusions 

This work have performed a new calculation 
procedures of LDP, with an emphasis on techniques 
that permit to overstepped the eigen value problem 
solving. The calculation proceeds according to four 
steps : 
(a). Calculation of box and harmonic potential 

knowledge; 
(b). Carrying out the accuracies of knowledge; 
(c). Determination of α  and β  functions for 

input vectors; 
(d). Predicting process; 

There are still some answered questions, and 
more work needs to be done before a final assessment 
can be made, but tentatively it appears that the 
overstepping of the eigen value problem in LDP 
calculation here does provide two advantages : 
(a). Reducing computation time and; 
(b). Building arbitrary potential data base that 

suitable in LDP calculation; 
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