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ABSTRACT

This brief paper examines the implementation aspects of anew distributed arithmetic VLSI
architecture for Discrete Fourier Transform (DFT) processor. The new DFT hardware
architecture is achieved by exploiting the symmetry and periodicity features of the
transform kemmel. The approach then leads to distributed arithmetic computation.

INTRODUCTION

In an effort to improve the speed, hardware cost and design complexity of discrete Fourier
transform processors, many authors'-® have investigated different innovative fast Fourier
transform implementations. The advent of digital VLSI technology, however, demands a

reappraisal of most suitable algorithm and architecture for very high speed systolic
implementation of discrete Fourier transform.

This paper offers a new alternative’ to fast Fourier transform-based hardware architectures
for VLSl implementation of discrete Fourier transform processor, This new DFT hardware
architecture is based on a new approach to exploiting the symmetry and periodicity of the
transform kernel and the use of distributed arithmetic computation®.
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SET SYMMETRY OF DFT COEFFICIENTS

The DFT and the inverse DFT is given by,

-1 nk
x(k)=L X(n) Wy, W =e®m @
M-1 -nk
X(n) = I!'NE“H kYW, (1)
Considering the coefficient vectors in equation (1); for k=0,1, 2, ..., N-1 with

n=0,1,2,... N-1foreach k, we have N-coefficient vector sets (one set for each value
of k) with N coefficient vectors in each set .

These coefficient vector sets (N-coefficient vectors for each value of k) display a set
symmetry as shown in Figure 1. 5(k) is the set of N-coefficient vectors for any particular
k. Same height for S(k) in Figure 1 indicates equal sets. For example, if N=16,
SMM=83@3=85B)=8MN=85@=5@=53(11)=5013)=5(15,5@=3 (12},
5(2)=58(6)=58(10) =5 (14). 5(0)is the unitary set and S (8) is the central set. § (0) and
S (8) are unequal to each other and also unequal to any other set. Coefficient vectors in
equal sets are not necessarily indexed in the same order.

Also it is noted that (e.g., for N = 8) coefficient set for k =0 | S(0) | consists of & rotations
of a 1-point DFT coefficient. Similarly, coefficient set for k=4 { 5(4) | consist of
4 rotations of a 2-point DFT coefficient vector formation. Proceeding further, coefficient
sets for k=2, 6 consist of 2 rotations of a 4-point DFT coefficient vector formation.
Finally, coefficient sets for k = 1, 3, 5, 7 consist of a single 8-point DFT formation. The
order of the coefficients is ignored but only the geometrical formation is considered.
Figure 2 explains the above statement.

The above analysis can be formalized as follows:-
AnN-Point (N =2, visan integer) DFT has only log,N+1 different coefficient vector sets,
consisting of 2¢, 2', 2%, .. ., N rotations of N/2°, N/2', N/2%, . . ., 1 point DFT coefficient

vector geometric formation respectively, disregarding the order of the coeffcient vectors.

An analytical proof of the above theorem has also been obtained using number theoretic
deductions as follows:
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FIGURE 1. SET SYMMETRY OF DFT COEFFICIENT VECTORS
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FIGURE 1. GEOMETRIC FORMATIONS OF THE DFT COEFFICIENT
VECTORS FOR AN E-POINT DFT
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nk
Lets us examine the DFT transform kernel W in equation (I) where k and n vary
respectively in the range

0< nk< (N-1)

Now all the odd k indices can be written as
k = (2r-1)

where
r= Lk o NE

nk
then the kernel W . is given by,

.. E—jﬂi'x.lﬂnir.-l]
o =

W (la)
In this case, (2r- 1) forr=1,2,.. ., N/2 are odd numbers and N = 2" where v is an integer.
Hence, N and (2r- 1) are relatively prime. Therefore for any r, n(2r- 1) mod N,
n=01,2,...,(N-1) isapermutation of the set0, 1, 2, 3, .. .. (N - 1) (Reference 9).

Equation (1a) will then generate a single (2%)rotation of N-point DFT coefficients vector set
with angular separation equal to a factor of 2T/N.

Meaxt, all the even k indices can be written as

wherer= 0, 1,2,.. ., (N/2-1). Then the kernel for all even indices can be written as,

e — i

In this case, equation (1b) is a kernel of an N/2 point DFT. Now all the odd r indices can
be written as

r= (25,-1)
wherer=1.2,.. N/d4. Then the kernel in equation ( 1b) for odd indices can be written as

W' = g NN 1) (2a)

N
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Similarly, (2r- 1) forr,=1, 2,.. ., N/4 are odd numbers and Nf2 = 2*,where v is an
integer. Hence N/2 and (2r.- 1) are relatively prime and therefore for any r,, n{2r- 1)
mod Nf2,n=0,1,..,(N -1)is adouble (two) permutation of the set 0, 1, 2, ..., (N/2- 1)
(Reference 97.

Equation (2a) now, will generate 2' rotations of N/2 point DFT coefficient vector set with
angular separation 27U/(N/2).

Similarly all the even r,indices in equation (1b) can be written as

wherer,= 0, 1,...,(N/4 - 1). Then the kernel for the even indices in equation (1b) would
be given by

nk o
W e - HERANZIOE) o - KERAN)) o, (2b)

Here, equation (2b) is a kernel of a N/4 point DFT. Following in the above manner,
decimating the even and odd indices after completing log,N steps (resulting in log,N
equations), we will be left with

W= o SR e [(log,N)+1]

Since in the final case, =0 only. Therefore, forn=0, 1,...,(n- 1), equation {({log N)+1}
will generate N rotations of a 1-point DFT coefficient vector with angular
separation = 0 = 27.

Hence the Proof.

DIRECT DISTRIBUTED ARITHMETIC COMPUTATION

In this section we present a new direct distributed arithmetic of each DFT point. In this
direct distributed arithmetic computation of each transform point, if we shuffle orexchange
input data in order to account for the different ordering of DFT coefficients in equal sets the
following advantages can be exploited:

(i) we only need storage area in the order of (log,N)+| instead of in the order of N due
to the set of symmetry of DFT.



110 A New Distrituned Arithmeric VISI Architecture for
Discrete Fourter Transform Processor

(i1} also, by partitioning the distributed arithmetic computation into groups of four
(found optimal’), then the memory requirements are further reduced.

In carrying out the sum of product for each transform point, N input samples of wordlength
b (say) is processed as follows:

ak Ml b nk

Nl
x(k) =n§| X)W = “E_D E’ u(rx(n2) W

bl N1

or x(k) = 5, Emu{r}x(n‘r}iz*}w;l

and this can written as

-9 3 nk T nk M1 nk
x(k) =2 w29 | Zxnn) W+ E x(un) W h.+ T xine W, | (1)

where -
X(n)= 5} u(ryx(n,ri(27)

0
x(n.r) = | !

un=1;¥Yrz#0

u(0)y=-1

ADDITIVE AND MULTIPLICATIVE INVERSE FIELD

When each element in a vector set possesses an additive and a multiplicative inverse
within the set, so that the sum of all the elements in the set are equal to zero, and the
product of all the elements are equal to one, we define such a set to form an additive and
multiplicative inverse field,

Each of the log, N different coefficient vector sets form an additive and multiplicative
inverse field. Hence the groups of four in the direct distributed arithmetic computation of
DFT in equation (I1T) can be chosen so as to form an additive and multiplicative inverse
field. This reduces the memory requirements even further,
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MASTER QUAD-SLICE DFT PROCESSOR ARCHITECTURE

The above new approach to DFT computation and the exploitation of the symmetry and
periodicity of DFT leads to a new VLSI architecture and design concept named “Master
Quad-slice DFT Processor™.

Each four product groups summation in equation (I11) is the basic computation in this new
DFT processor architecture, The hardware slice that performs this basic computation by
exploiting the SET SYMMETRY and ADDITIVE & MULTIPLICATIVE INVERSE
FIELD properties of DFT is named the Master Quad-slice. Each Quad-slice (Figure 3)
contains very simple and regular digital logic with no large RAM/ROM or multiplier, and
hence, is much simpler than the butterfly building block and FFT. The quad-slice in
Figure 3 has a shuffler for direct distributed arithmetic shuffle/exchange implementation.
It has log,N+1 memory stages for storing the fixed coefficients, logic for Sign detection,
logic for Zero detection, memory decode logic, a 12-bit adder and registers.

Programming the Master Quad-slice

The Master quad-slice has downward compatibility, in that, a master quad-slice designed
for N-point transform can be used to perform N/2, N/4, N/8. . . . . | point transforms
(N = 2%, v is an integer).

DFT Quad-slice Pipeline

Using multiple Master Quad-slices, the DFT computation shown in equation (I11) can be

performed in a systolic pipeline arrangement. For an N-point b-wordlength pipeline DFT
processor {M/4) x b Master Quad-slices are required.

Computation Speed

In the DFT pipeline, at every clock period the computation for one transform point
(equation I1I) is complete. The speed of this DFT processor thus depends on the fastest
clock that can be employed, and this is only limited by the time for completion of a b-bit
addition in each Master Quad-slice (Table 1). This is significant improvement compared
to the computation speed achievable by FFT, since in FFT the clocking speed would be
limited by the time of a multiplication or a CORDIC" rotation. Consequently, the same
VLSI technology will provide faster DFT with the Quad-slice processor architecture
compared to FFT pipeline processor architecture'*.
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FIGURE 3. HARDWARE ARCHITECTURE OF A MASTER QUAD-SLICE
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TABLE 1

113

COMPARISON OF QUAD-SLICE DFT PROCESSOR WITH

FFT PIPELINE PROCESSOR

PARAMETER QUAD-SLICE DFT FFT PIFELINE

Speed Limited only by time of Limited by the time of a
an addition. multiplication.
e.g.. 50 ns for a 16-bit e.g., 240 ns for a 16-hit
addition using 2 micron multiplication using the
CMOS rechnology. same 2 micron CMOS

wechnology

Testability Mre suitable for structured Less suitable for structured
VLSI testability, VLSI testabality.

On-Line Autormatic fault detection It is not possible to perform

Fault and faull recovery can be on-line fault detection without

Detection achieved without replicating replicating the whole system,
the whole system.

Testability and Reliability

The structured and hierarchical nature of the Quad-slice DFT processor and its lower logic
complexity makes it more easily tested compared to FFT processor (Table 1). Also, simple
reliability analysis shows that the Quad-slice processor has higher reliability than FFT
processor for the same amount of applied redundancy.

On-line Testability
The Quad-slice DFT processor can be tested on-line, and, automatic fault detection and

fault recovery can be achieved (Table 1). On the other hand, it is not possible to perform
on-line fault detection in the case of FFT processor without replicating the whole system.
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CONCLUSION

This paper describes a new alternative to fast Fourier transform-based hardware

implementation of discrete Fourier transform. A key conclusion is that based on
comparison of computational speed, modularity of design, on-line testability and
reliability, this architecture is most suitable for VLSI implementation as compared
to FFT processor.
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