ASEAN J. Sci.Technol. Develop. Bi2i(1991) 53—T6

THE DESIGN AND IMPLEMENTATION OF A PC-BASED
SOFTWARE DESIGN TOOL

MASHKURI YAACOB”®

Department of Electrical Engineering,

OW SIEW HOCK

Computer Cenire,

University of Malaya, Kuala Lumpur, Malaysia.

{Received 19 lune 1990)

ABSTRACT

The current software industry is facing numerous problems, As such,
continuing emphasis has been given in finding ways to solve these problems
with the main focus on improving software development productivity. This
can be achieved by the application of computer aided software engineering
(CASE) tools during the development process. This paper describes the
development of a PC-based low cost CASE prototype software design tool
to assist software designers and programmers in designing their software systems
and programs. The tool is in C and shell commands and is developed on the
PC/AT microcomputer running under XENIX System V, a derivative of the
UNIX Operating System. The useful features, utilitics and file system structure
of the XENIX Operating System are fully made wse of in the development
of the tool.

INTRODUCTION

The importance of software engineering has been acknowledged since
the late 1960's'. Research has shown that the amount of cost involved in the
development of computer software is increasing tremendously. Figures from
the United States for the year 1989 illustrate that approximately US$ 150 bil-
lion was spent on computer systems and that figure is projected to be US§ 230
billion by 1992. Out of these figures, § 23.7 billion was spent on computer
software and this is expected to grow to $37.5 billion by 1992°. Further,
there has been a noticeable tremendous growth in software needs during the
past two decades’. It is predicted that the demand for software will grow at
a higher proportion in the next decade. In the same light, problems do exist
and more often than not, most of the software products are being completed
late, perform unsatisfactorily, require major changes during the implementation
stage and are incompatible with the rapidly changing computer technology’.
Despite all these, the software industry must meet the growing demands for
more software”.

54 The Design and Implemeniation of a PC-Based Software Design Tool

Software engineering methodologies which incorporate systematic
approaches to software developmsnt are now advocated as one of the tangible
means to overcome the many varied problems of developing good software.
A combination of these techniques and tools, now betier known as CASE
15 seen as the wviable means to supporl and facilitate the software development
process. Some of these tools are diagramming tools, code generators, docu-
mentation generators and reverse engineering tools”. Examples of CASE tools
which are currently widely available on PC's and workstations include Exceler-
ator’, Information Engineering Workbench/Workstation (IEW/WS)’, and Inter-
active Developments (IDE)’, which are developed based on the more advanced
computer technology and thus they are expensive (by Asian Standards) CASE
tools. For instance. Excelerator costs USH 9,500 while IEW/WS costs more
than LSS 4.500.

This paper describes the development of a prototype interactive soft-
ware design tool (ISDT) on a PC. The developmént of the tool is based on
simple and appropriate software engineering techniques and tools. The paper
aims to illustrate the design and implementation of a tool for designing struc-
ture charts (SC)"" and data flow diagrams (DFD)""". The SC and DFD
tools were then used to design further supportive tools. The experience in
developing ISDT around the XENIX operating systems", i.e. harnessing the
shell commands to good effect, is also highlighted. It can be claimed that a
useful tool such as that offered by ISDT can be built with a modest hardware
set-up offering moderately powerful features to the software developer. The
paper also aims to highlight the experience in developing a large PC-based
software for the benefit of researchers in the region. The design and imple-
mentation of the tool took advantage of existing facilities of XENIX and illus-
trates the incorporation of the modules in the tool. It is hoped that this paper
will stimulate further work in the development of PC-based software to
enhance further existing facilities already made available by the vendors at
very high expenses.

FEATURES OF THE TOOL

Basically, ISDT consists of five main separate and independent
modules. These five modules are collectively known as ISDT-Commands,
Data-Flow, Structure-Chart, Help and Miscellanea. These modules are
controlled by wsh (visual shell) of the XENIX Operating System" which
invokes and executes them when a user selects certain functions performed
by these modules. The memo of the vsh'" is customised to suit the various
functions performed by ISDT. This vsh is invoked by a main program at
the XENIX command level which acts as an entrance point into the visual shell.

The Design and Implementation of @ PC-Based Software Design Tool 55

The five major modules of the organization structure of ISDT are
repetitively decomposed into their smallest manageable sizes so that the coding
process for these modules can be developed easily within a short period of
time. The five main modules of ISDT are independent from each other, as
shown mn Figure 1. The breaking down of each of the five main modules into
its smallest manageable modules are also as independent from each other as
possible so that low coupling is achieved. Each of the smallest modules is
designed to perform one single task which is a criterion of cohesion. The
breaking down of these modules into their individual smallest modules are
illustrated by the hierarchical block diagrams of Figures 2.3.6 and 7 respectively.

ISDT
ISDT- Structure— ;
Commands | |Data—Flow Chart Help Miscellanea
Fig. 1 The Organisational Structure of ISDT
ISDT-
Commands
Text & y
Editﬂr JOmmances
Enter Edit

Fig. 2 The ISDT-Commands Module

56 The Design and Implementation af a PC-Based Sofiware Design Tool

Functional Description of Modules

The ISDT-Commands Module is for the ISDT user to develop or edit
the DFD or structure chart of a mew or an existing project. It provides the
user with all the commands that are necessary for the development process
of a DFD, structure chart, hierarchical block diagram or Hierarchy-Process-
Input-Output (HIPO) diagram™". The command used to label the Jackson’s
Structured Programming (JSP) symbols is also included in this module™""™.

This main module consists of two submodules, namely Text Editor and
Commands. The Text Editor submodule handles the entering or editing of
labels. In other words, the Text Editor is used to handle the Enter and Edit
command. On the other hand, the Commands submodule deals with the other
ISDT commands. The Commands submodule can be broken down further into
still smaller submodules. These smallest submodules are illustrated in Figure 3.

Commands

MNew Delete Merge Verification

Add Insert MNumbering JSP_symbaol

Fig. 3 The Commands Submodule

These commands include New, Add, Delete, Insert, Merge, Numbering, Verifi-
cation and JSP_symbol. All these commands can be performed by the XENIX
system commands in a combination of sequence, selection and iteration
manner of execution, These ISDT commands are thus developed using the
shell programming technique. The New, Add, Delete and Insert commands,
as their names imply, are provided for the creation, addition, deletion and
insertion of diagrammatic notations to DFD, structure charts or hierarchical
block diagrams.

The Merge Module is to allow a user to merge two different structure
charts or hierarchical block diagrams to become one single structure chart or

The Design and Implementation of a PC-Based Software Design Tool 57

hierarchical block diagram. This module provides to the user two choices of
merging. The first choice is to allow the user to merge a structure chart or
hierarchical block diagram to the lgfi side of a box or block of another struc-
ture chart or hierarchical block diagram. The second choice is to allow the
user to merge a structure chart or hierarchical block diagram to the end of
a box or block of another structure chart or hierarchical block diagram. The
user is allowed to perform the two choices of merging at any level. These
two choices of merging are illustrated in Figure 4.

Before Merging

Al Al
I | |
Bl Cl1 D1 B2 C2
El
Structure Chart 1 Structure Chart 2
After Merging
Al Al
|
l [| I
Bl C1 A2 D1 Bl €1 D1
El B2 cC2 El A2
B2 cz2
a. Merge to the left side of node D1 b. Merge to the end of node D1

Fig. 4 The Merging Process

5H The Design and Implementation of a PC-Based Software Design Toal

The Numbering Module is designed to enable a user to number the
structure chart or hierarchical block diagram. The numbering system is in
accordance with the level numbers. For instance, at the first level, the only
box or block s numbered as 1. At the second level. the boxes or blocks are
numbered as 1.1. 1.2, 1.3 etc. Similarly. at the third level. the boxes or blocks
extended from the boxes or blocks of 1.1. 1.2 or 1.3 are numbered as 1.1.1,
1.1.2, L13 ete, 1.2.1, 1232, 123 etc or 1.3.1, 1.3.2, 1.3.3 etc. An example
of this numbering system is illustrated in Figure 3.

The user is also allowed to unnumber the boxes or blocks when the
numbers are no longer needed. The main purpose of this numbering system
is to enable a user to trace and analyze the structure chart or hierarchical
block diagram easily.

1 1.2 1.3 fate

[
Lt | | La@| | Eia 130 | | 132 | 133
l

Fig. 5 The Numbering System

The Verification Module is to provide the checking facility on the
duplicates of labels of a structure chart or hierarchical block diagram. The user
will be informed of the verification result if duplicates of labels occurred in
the structure chart or the hierarchical block diagram. A print out which shows
the names and levels of the particular boxes or blocks having the same labels
can be obtained instantaneously when requested by the user. The user can
then edit the labels by referring to this hardcopy and selecting the Edir command.

The JSP_symbol Module is to enable the user to design his programs
using Jackson's Structured Programming technique. In this technique, three
types of symbols are used. They are the sequence (notation : none). selection

The Design and Tmplermentation of @ PC-Based Software Design Tool 50

(notation : o), and @erarion (notation : *). As there is no notation used to
denote the sequence, it is not necessary to implement the symbol for sequence
and thus only the selection and feraion notations are provided by this module,
The user can label and edit these two/three notations easily. This is the
module which is designed to support the program design process.

Data—
Flow
I]
Screen User Text
Handler Interface Handler

Fig. 6 The Data-Flow Module

Structure-
Chart
l
I | I I
Screen Keyhoard Text Print
Handler Handler Handler Handler

Fig. 7 The Structure-Chart Module

The Data-Flow Module is designed to handle the display of DFD on
the terminal screen. It also enables a user to save the screen display to a file
and to obtain a print out of the screen display instantaneously. This module
consists of three submodules. They are the Screen Handler, User Interface and
the Text Handler. The Screen Handler manipulates the display of DFD on the
terminal screen ; the User Interface manipulates the functions to be performed
after receiving a response from the user ; and the Text Handler manipulates
the display of text within the DFD symbols. This module is developed using
a combination of C programming and shell programming techniques.

The Structure-Chart Module is designed to enable a user to view the
developed structure chart or hierarchical block diagram on the terminal screen.
A user is allowed to view these diagrams a portion at a time by pressing the
appropriate up, down, leff and right arrow keys, and the end and page down
keys. In addition, a user is also permitted to view these diagrams by choosing
any one of the three sizes of diagrams; small, medium or large to be displayed.
A print out can be obtained instantaneously if it is requested by the user.

60 The Design and Implementation of a PC-Based Sofiware Design Tool

The submodules of this main module thus consist of the Sereen Hand-
ler which handles the screen display of the boxes or blocks in three sizes:
Keyboard Handler which handles the functions to be performed when the user
presses a specific key from the keyboard; Text Handler which handles the
display of the text within the structure chart or hierarchical block diagram: and
Print Handler which manipulates the prnting of the structure chart of hierar-
chical block diagram. This module is also developed using a combination of
C and shell programming techniques.

Data Flow Diagrams and Structure Charts of 1SDT

In this section, sample data flow diagrams are drawn to illustrate the
data flows of the modules of ISDT. They are the Data-Flow and Structure-
Chart modules as shown in Figures 8 and 9 respectively. The corresponding
structure charts are as shown in Figures 10 and 11 respectively.

Project Maode File DFD
Name [WVerify Number Names | Display
Project J DFD
e b
User Travel Temporary File
Request MNode —————t
Message DFD
Process

Message
Temporary File File
- & Paper

Fig. 8 The DFD of the Data- Flow Module

When a user makes a request to display a DFD, firstly a Project Name
must be selected. This Project Name is then verified by the processing node
Verify Project. Each of the Node Number under this project is passed to the
processing node called Travel Nede. These nodes are then travelled once so
that information can be obtained from the File Names which are associated
with each of the Node Number. This information is then passed to the
processing node Display DFD which will display it in the form of DFD on
the screen and at the same time save it in a Temporary File. A Message is

The Design and Implementation of @ PC-Based Sofrware Design Teol 61

then output to the screen and is manipulated by the processing node called
Process Message. The DFD displayed on the screen is then saved in a File
defined by the user andfor printed on paper if a print out is requested by
the user.

Project Message Diagram Label
Name,| Verify Size | Display |[& Chart
“| Project ‘1 Diagram
b -
e Interface v
Request P
Key Key Labels
Mess: P
e > Interface = \L > Screen
Sereen Process
Key
Print Label
Out | Process & Chart
1 Message
T g
User Message File
Request I & Paper
Screen

Fig. 9 The DFD of the Structure - Chart Module

When a request is made by a user to display a structure chart, a
Project Name needs to be input and verified by the processing node Verify
Project. A Message is then output to the screen and processed by the pro-
cessing node called [nierface so that the Diagram Size selected by the user
can be passed to the processing node called Display Diagram. This processing
node will display the Label & Chart on the Screen and at the same time
Key Message is displayed and processed by the [nterface processing node,
When a key s pressed, it is manipulated by the processing node called
Process Key. This processing node will update the display of the Labels of the

62 The Design and Implementation of a PC-Based Software Design Tool

boxes on the Screen. If the user requests for a Prinr our of the diagram, a
printing and saving Message will be displayed on the screen and then processed
by Process Message to produce the Label & Chart which are then saved in a

File and printed on Paper.
Data-Flow
Module

Project File
Name ? Mame
MNode
+ Number
Verify Travel Save
Project Mode DFD
File
MNames
p
Draw
DFD
Draw Draw Draw Draw Draw Displ
Data Data Data Data Process- ey
Source Sink Store Flow ing Node Label

Fig. 10 The Structure Chart of the Data-Flow Module

The Data-Flow Module calls the Verify Project module and sends the
information Project Name to this module. After the Project Name is being
verified, each of the Node Number under this project is then sent to the
Travel Node module to travel all these nodes. During the travelling node
process, the information File Mames associated with the nodes are sent to the
Draw DFD module in which a DFD is drawn on the screen by calling the
Draw Data Source, Draw Data Sink, Draw Data Store, Draw Data Flow,
Draw Processing Node and Display Label module. A File Name defined by
the user is sent to the Save DFD module when it is called to save the
DFD drawn on the screen.

The Design and Implementation of o PC-Based Software Design Tool

Structure-
Chart
Module
Project File
Name Name
o g

63

Verify Draw Manipulate Sﬁ:}i t&
Project Diagram Key Pressed Diagram
r“ ;
Diraw Draw ;
Hornzontal] | Vertical Draw Draw Display
Yiie Line Box Arrow Text
Manipulate
Key
Pressed
Left Right Up Down End Pg Down
Key Key Key Key Key Key

Fig. 11 The Structure Chart of the Structure-Chart Module

(e The Design and Implementation of @ PC-Based Software Design Tool

The Structure-Chart Module sends the information Project Name to the
Verify Project module to verify that this Project Name is created for the
construction of a structure chart. The Diagram Size selected by the user is then
sent to the called module Draw Diagram. A structure chart drawn according
to this Diagram Size is thus displayed on the screen. This is done by calling
the Draw Horizontal Line, Draw Vertical Line, Draw Box, Draw Arrow and
Display Text modules. The user can press any one of the amow keys to browse
the structure chart if its size is larger than the screen size. The information
Key Pressed is sent to the called module Manipulate Key Pressed which will
process the Key Pressed and update the screen display accordingly. The
updating of the screen display is performed by calling any onc of the called
modules Left Key, Right Key, Up Key, Down Key, End Key or Pg Down Key.
The complete structure chart can be saved in a file as well as printed on
paper. The saving and printing process are performed by calling the Save &
Print Diagram module in which a File Name defined by the user is sent to
this module for the saving process.

DATA STRUCTURES AND FILES

A data structure is required to store information on the components
of the DFD., structure chart. and the association of the components with
each other. This data structure is also to be used to support the functions
provided by ISDT. A hierarchical tree structure is employed for the represen-
ttion of DFD, or structure chart. dunng the design and construction processes
of these diagrams. It is a structure which can exhibit and offer an understandable
and effective representation of the state of the application of ISDT. Further,
the construction process of a DFD or structure chart requires a number of
files to be created in order to store the labels for these diagrams. Some of
these files are assigned unique extension names to denote the symbols associ-
ated with each of the labels. The following sections deseribe the type of files
used and the representations of the different diagrams and charts using the
hicrarchicul tree structure,

The Files Used
To construct @ DFD. a number of files need to be created. The
names and functions of these liles are listed in Table 1.

Project Result Result
Name Verily Print
Label l Result

Temporary File

Fig. 12 The DFD of the Verification Module

The Design and Implementation of @ PC-Based Software Design Tool 65

TABLE 1
THE LIST OF FILES CREATED FOR THE CONSTRUCTION OF A DFD

File Function

text. LA to store the label (description) of a DFD.
text.54) to store the label for data source svmbal.
text.S1 to store the label for duta sink symbuol.
text.5T to store the label for duta store symbuol.

text. NG to store the label for processing node symbol,
text.FL to store the label for data flow symbol.

However, the construction process of the structure chart, hierarchical
block diagram or HIPO diagram only consists of the file named fext which is
created at ecach level for cach box or block. It is used to store the lubel of
the box or block. Besides these files, there are two other files which need to
be created for the construction processes of DFD. structure chart, hierarchical
block diagram of HIPO diagram. These two files are named . type and .next _som :

TABLE 2
THE FILES CREATED FOR THE CONSTRUCTION OF DFD
AND STRUCTURE CHART

File Function

Aype Lo store the type of charts developed, that is, DFD or structure
charts (SC): the contents of this file is either DFD or SC.

next_son to keep track of the number of nodes and text files in each
lower levels.

The Representations of the Diagrams and Charts

The construction of a DFD. structure chart. hierarchical block diagram
or HIPO diagram is fully based on the hierarchical tree structure. The DFD
of Figure 12, for instance, is developed using the strategy illustrated in Figure 13,

The Design and Implementation of a PC-Based Software Design Tool

Level
number
|[VERIFY]
1
I | T !
] Aype nexi_son 1 text. LA
|
I I 1
| MEXLson 1] text. SO
|
[[1
2 . nexison [1] text. FL
l
| I 1
3 nexLson (1) text. MO
r I |
4 nexi_son 1] text. FL
I F |
5 MNexson 1] text.5T
1
[1 1
iy .Aexi_son 1] text.FL
|
I | 1
7 JexLson [text. MO
1
I | 1
B MCXI_son [1] text.FL
|
T I
9 Jnext_son text. Sl
Fig. 13 The Representation of o DFD (Figure 12 Using Hicrarchical Tree

Structure)

The symbol |] is used to denote a directory or node. The text within
the [] symbol is a Project Name. In this case, the Project Name is VERIFY.
The sub-directories created below this level are considered as modes. Each node
is assigned @ number. The node number is in ascending order when there are
more than one node created at a level. The contents of the files created are
summarised as follows (This summary should be compared with the DFD of
Figure 12):

The Design and Implementation of a PC-Based Software Design Tool 67

TABLE 3
THE CONTENTS OF THE FILES LISTED IN FIGURE 13

Level no. Filename Contents

i Aype DFD

_next_son 2

text. LA Fig. 12 : The DFD of the Verification Module
| _next_son 2

text. 50 User Requesl
2 MEeX_son 3

text. FL Project Name
3 nexLson 2

text.NO Verify Label
4 Mext_son 2

text. FL Result
3 JIEXE_S0n 2

text. 5T Temporary File
6 Jexson 2

text. FL Result
7 nexl_son 2

text.NO Print Result
b1 .next_son 2

text.FL Resuli
Y next_son |

text. 5] Puper

At each level (except level 9). there is a corresponding text file of
extension (LA SO FL, or ST and a node [f]. As such. the contents in the
file .mexi_sont ol each level is 2, As there is only one text file of extension 5/
at level Y, the contents of the file .next_son is thus 1. The contents in the file
.type is DFD to denote that the nodes created under this project are used
for the construction of a DFD.

IMPLEMENTATION DETAILS

The development process of ISDT is based on the top-down imple-
mentation of the Main Module downwards. The coding process can thus be
done separately, and each module tested individually. After being tested for
logic errors, they are then integrated and tested again. The purpose of this
unit testing of the smaller modules 0 solation is to avoid the occurrence of
inevitable defects which may show up duning the fnfegration festing stage when
i large collection of untested modules are linked together”.

(i) The Design and Implementation of a PC-Based Software Design Tool

Main Module and ISDT-Commands Module

The major function performed by the Main Module is to create a
project subdirectory and invoke the vsh which will display a selection menu
to enable a designer or programmer to choose a particular function to be
executed by one of the modules mentioned above. Since the algorithms and
pscudocodes for the Main Module and some of the ISDT-Commands Module
are simple and tivial, they are not discussed here, In this paper. only selected
examples are included to illustrate some of the implementation features.

The Merge Module
The processes involved in the merging of two projects can be classified
into the following three tasks :

Task I :
The first task is concerned with the tree traversal : inorder, preorder,
postorder (Figure 14) of the project that will be merged to another project”.

/\
AN

inorder : abecdefg
preorder : dbacfeg
postorder : acbegfd

Fig. 14 Tree Traversal (Inorder, Preorder, Postorder)

The type of tree traversal chose the postorder method which is more
suitable than the other two methods because the merging process also involves
copying and deletion of files and sub-directories. The files and sub-directories
of the tree structure can only be deleted when the travelling of the tree has
returned to the parent level. During the postorder travelling process, the tree

structure of the first project is also being created in the second tree structure
of the project to be merged to,

The Design and Implementation of a PC-Based Software Design Tool 69

Task 2 :

When the travelling of the tree has reached the leaves, all the files
in that node are then copied to the corresponding node (sub-directory) that
has just been created during task [. On completion of the copying task, the
process will return to the parent node,

Task 3 :

Task 3 is merely the deletion of all the files andfor sub-directones in
the nodes that have all been copied over to the project to be merged to.
This deletion task is executed by the shell command rm. The processes of
task 1, task 2 and task 3 take place alternately until all the nodes have been
travelled. The process of merging is then accomplished.

The Numbering Module
The processes involved in the Numbering Module can be classified
into the following three tasks :

Task I :
Task 1 is similar to the first task of the Merge Module. The main
purpose of this task is to obtain the pathnames of all the nodes.

Task 2 :

When the travelling of the tree has reached the leaves, the shell
command pwd is used to get the current path, This pathname is then
converted to a number which is then used to number the particular box at
that level. The conversion process is as follows :

If the pathname is /ISDT/project/Proj_name/1/2/2/3, firstly the string
ASDT/project/ is removed from the pathname by a simple and general C
program and the pathname now becomes Proj_name/l/2/2/3. Then this string
is converted to the form 1/1/2/2/3, using a simple C program. Finally, this
string is then converted by another simple C program to the number 1.1.2.2.3
which is then used to number the box at that level.

Task 3 :

When the number for the box at that particular level has been
obtained, it 15 copied to a temporary file. The contents in the original fext
file are then concatenated to the temporary file using the shell command
cat. This original text file is then renamed as a back up file text.bak using
the shell command mv. The temporary file is then renamed as the rext file.

The processes of unnumbering the boxes only involved task 1 of the
Numbering Module and the renaming of the back up file rext.bak to the
original text file.

70 The Design and Implementation of a PC-Based Software Design Tool

The Verification Module
The processes involved consist of the following two tasks :

Task 1 :

Task 1 deals with the tree traversal in postorder in order to obtain
the pathnames of all the nodes under the specific project selected by the user
and store them in a temporary file.

Task 2 :

After all the pathnames have been obtained, the labels stored in the
text files associated with these pathnames are then compared two at a time.
This is done using the emp shell command. For instance, if there are five
labels which are stored in fext files of different pathnames, they are compared
in the following sequence :

(Let the five labels be stored in fext! fexe2 rexed rextd, and rexi5)

Comparison Process :

text]l is compared with @ text2, text3, textd and textS
text? is compared with : texi3, textd and text5s

textd is compared with : text4 and text5

textd is compared with : texts

The number of comparisons required is 10 (i.e. 4+3+2+1). Generally,
if there are n text files, the number of comparisons required will be (n—1)+
(n=2)+(n=3)+...+1. This shows that the time taken to complete the
verification process is dependent on the size of the project.

Data-Flow Module

There are two main processes performed by this module : the display
of a DFD on the screen and the printing on paper. The display of a DFD
is handled by the two submodules, namely Screen Handler and Text Handler
of the Data-Flow Module discussed in Section 2. The printing process is
handled by the submodules User Interface. Basically, the processes performed
by these submodules can be classified into the following five tasks:

Task I :

This task deals with the travelling of the tree structure in postorder
to obtain the particular DFD text file associated with the tree structure so
that a complete DFD can be displayed on the screen.

Task 2 :

When the travelling of the tree structure has reached the leaves, the
type of DFD text file and level number are obtained so that the type of
DFD to be drawn can be determined and then drawn based on the extension

The Design and Implementation of @ PC-Based Software Design Tool 71

of the filename. The possible DFD symbols allowed to be drawn in a full-
screen display are as shown in Figure 15. The possible DFD symbols allowed
to be drawn for each level are listed in Table 4.

Data Store 3 Data
source 6
Data | Data
Flow 3 Data Flow 9 Data
Flow 7 Sink 2
Data Data Data Data
Flow | Process |Flow 4 Flow §| Process | Flow 8 Data
Node | Node 2 | sink |
T \ T
Data Data Store 4 Data
Dat: ;
Source | Fl (m,d-, — . F?m Flow 10 Data
s "1 Sink 3
Data Data Store 5
Source 2

Fig. 15 A Fullscreen Display of Possible DFD Symbaols

TABLE 4
POSSIBLE DFD SYMBOLS FOR EACH LEVEL

Level No. Possible DFD Symbols

Data Source, Data Store

Data Flow

Processing Node

Data Flow

Data Source, Data Store, Data Sink, Processing Node
Data Flow

Processing Node, Data Sink

Data Flow

Data Store, Data Sink

=T - - R .

72 The Design and ITmplementation of @ PC-Based Software Design Tool

As there is a possibility that there might be more than one DFD
symbol being displayed for a particular level, it is crucial that these DFD
symbols should not overlap each other. A strategy adopted is to assign a
unique drawing position to each of the symbols determined using a set of
decision tables"". When the DFD symbol is being displayed on the screen,
it is also at the same time being saved to an array. This task is then followed
by task 3.

Task 3 :

After the DFD symbol has been drawn, the Text Handler will display
the text at the proper position associated with the DFD symbol which is
determined from the information obtained from task 2. Similarly, the text
displayed is also being saved to the same amay. Then, the tavelling is retumed
to the parent node.

until all the nodes have been travelled. The complete DFD s now fully drawn
on the screen.

Task 4 :

The array which contains all the DFD symbols and text are saved
to a temporary file which will be renamed by the user when prompted. The
file is then moved to the sub-directory/ISDT/DA_Dir created 1o store all DED
files so that they can be manipulated later by the miscellanea functions of ISDT.

Task 5 :

Finally, the user can obtain a print out of the DFD by sending the
file to the printer. The printing process is performed by the shell command
pr. If the user has not requested for the file to be saved, the temporary file
is then deleted.

Structure-Chart Module

The major processes performed by this module is to enable a user to
browse at the whole structure chart with three boxes being displayed at a time
and to obtain a print out of the structure chart. The screen display is divided
into three portions. The first portion is the display of the boxes with the
labels within them and the corresponding joining of vertical lines. horizontal
lines and arrows, The second portion is the display of information concerning
the boxes displayed in the first portion. The information displayed includes the
fevel mumbers, the cwrremt node mombers and the towd member of nodes atteched
to the nodes currently being displaved. Besides such information, the boxes
displayed in the first portion are represented using **'s and the nodes attached
to these hoxes are represented using ‘o’s. The third portion of the screen is
the display of messages. These messages inform the user concerning the valid

The Design and Implementation of a PC-Based Software Design Toal 73

arrow keys to press when browsing the other portions of the diagram. These
three portions of the screen display are manipulated by the three submodules
of the Structure-Chart Module, namely Screen Handler, Keyboard Handler and
Text Handler, discussed in FEATURES OF THE TOOL section. These
three portions of the screen display as illustrated in Figure 16 are updated
whenever a valid key from the numeric/arrow key pad is pressed. However,
if an invalid key is pressed, it is ignored and the screen display remains
unchanged.

Note :

The current boxes displayed are node | of level 1 and node 1 and 2
of level 2. Level 2 has a maximum of 6 nodes. Node 1 of level 2 conasts of 7
nodes while node 2 consists of 2 nodes in their lower levels respectively.
The nodes below level 3 are not displayed due to limited screen size.

[
El 6 |

— e Label A

o077 0 0 [

l I

1.1 1.2
Lebel B Label C

| |

e

Level Mo : 1 MNode No:
Level No : 2 MNode No :
MNode No

g = =

PgDn key : Browse lower right node
End key : Browse lower left node

Right arrow key : Browse right
q : quit

Fig. 16 A Sample Screen Display

The processes involved in the printing of the structure chart can be
classified into the following five tasks:

Task 1 :

This task deals with the travelling of the tree structure in postorder.
During the travelling process, the pathnames of all the nodes are stored in
a temporary file. This temporary file is then manipulated by task 2.

Task 2 :

Task 2 is to remove the string /ASDT/from the pathnames by a simple
C program. These pathnames are then split into different levels based on
their path lengths, performed by another simple C program. If there are more

74 The Design and Implementation of a PC-Based Sofrware Design Tool

than eight pathnames in the file. this file is then split up into two or more
files with a maximum of eight pathnames in a file. This breaking down of
file contents is also performed by a simple and general C program. The main
purpose of this splitting of pathnames is to ensure that the boxes or blocks
of these associated pathnames can be displayed within the screen size and
thus they will be printed within the paper size.

Task 3 :

Task 3 is the drawing of the boxes or blocks with vertical and hori-
zontal lines, arrows (if requested) and the labels associated with those path-
names displayed on the screen. When these diagrams are being drawn on the
screen, they are also being saved in an array of the screen size. The pathname
file is then deleted. The contents of the screen array is then written to a
temporary file and re-initialized. This drawing process is repeated for the
other pathname files. The saving of the screen array of these pathname files
are appended to the temporary file one at a time.

Task 4 :

When the drawing process is completed, the user is prompted with
a message to confirm the saving of the diagram. If saving is needed. the user
is asked to enter a filename. The temporary file is then renamed with this
filename and it is then moved to the sub-directory [ISDT/Sc_Dir created to
store all the structure charts, hierarchical block diagrams or HIPO diagrams
constructed by the user. so that these diagrams can be manipulated later by
the miscellanca functions of 1ISDT.

Task 5 :

This task performs the printing of the structure chart by sending the
file which contains the complete diagram to a printer when a print out is
requested by the user. If the user has not requested for a saving of the
diagram. the temporary file will be deleted.

CONCLUSION

In this paper, a functional description of the different modules of ISDT
has been given. This description is then followed by an explanation on the
various tvpes of files used. A discussion on the implementation of ISDT is
then covered in detail. The different implementation approaches, tools and
techniques as well as the developments of selected modules in terms of algo
rithms and pseudocodes have been clearly explained. Unlike the CASE tools
mentioned in the Introduction section, which are developed on fairly advanced
current microcomputer technology. ISDT was developed based on the hierar
chical file system of the Xemx OS5 on the cheapest PC configuration. Concep-
tually, therefore. the development of ISDT can be seen as an exercise in using
modern and established techniques of software development using moderately

The Design and Implementation of @ PC-Based Software Design Tool 75

priced technology while producing highly powerful features for the ordinary
programmer. The differences between ISDT and existing similar tools can be
viewed from the different aspects such as the hardware and software require-
ments, and the major facilitics provided by these tools. The existing CASE
tools discussed in the INTRODUCTION section are developed based on the work-
station technology. These tools can only maximize productivity and efficiency
if they are run on workstations eguipped with expensive high quality input
and output devices. These CASE tools are also developed by a team of
experienced software engincers, system analysts and programmers, thus requir-
ing a large amount of investment in manpower and expenditure. As such,
the tools are much more directed towards the corporate institutions. The high
cost of these tools does not make it easier for the smaller companies who
actually need these tools badly.

From the point of view of facilities provided by Excelerator, IEW/WS
and IDE, they are very similar to each other. For instance, they provide
editors for drawing data flow diagrams, structure charts, and other types of
graphs and charts. ISDT in this case is very different from these tools since
it only allows users to construct hierarchical block diagrams. data flow diagrams
and structure charts. Therefore, the facilities provided by ISDT is unable to
compete with these powerful tools although the simple concept being advo-
cated in the development of ISDT can certainly be extended to produce
equally useful facilities for ISDT at a later stage. ISDT, however, does have
a few similarities with these existing tools. For instance, it provides a facility
for numbering the charts which is also a feature in the Excelerator. It also
provides a facility for checking the labels of the charts which is similar to
these existing CASE tools. Unlike these existing tools, ISDT allows users to
enter labels of their own without any restrictions and limitations on the terms
used. This is a flexibility which is not provided in these more expensive and
sophisticated CASE tools.

An important fact to be mentioned is that these existing tools are
rather large software packages, therefore requiring a sizable amount of disk
storage. A user who is unfamiliar with these software packages and the more
advanced hardware technology will require more time to familiarise with these
software packages. These drawbacks are not found in ISDT because I1SDT
provides facilities that are being wsed more often rather than having too many
complicated things but not used fully. The approach is to offer simple but
effective facilities rather than a comprehensive set of facilities which requires
detailed training. As a research project, it has thus provided a solution to
improve the productivity of a small yet growing team of system developers.
It has also given us a beneficial experience in developing a prototype software
which will prove to be an open example for the newer generation of software
developers.

T6 The Design and Implementation of a PC-Based Software Designe Tool

REFERENCES

[R5]

h

10,

11.

12,

13.

14,

15.

17.

18.
19.

. Ince, D. Software Engineering. The Decade of Change. Peter Peregrinus
Lid.. 1986.

. Shaw, M. Prospects for an Engineering Discipline of Software. [EEE
Software. Nov.. 1990, 7 (6), 15-24.

. Factor, R.M. and Smith. W.B. A Discipline for Improving Software

Productivity. AT & T Tech. J.. A Journal of the AT&T Companies.,
July/August, 1985, 2-9,

. Pressman, R.S. Software Engineering : A Practitioner’'s Approach.,
McGraw—Hill Inc.. 1982,

. Pressman, R.5. Software Engineering : A Practitioner’s Approach.

International Edition Computer Science Series, 2™ ed., McGraw-
Hill Inc., 1987,

Datamation. The Computer-Aided Software Engineering Symposium,
July 1. 1988, p. 58.

. McClure, CL. Review of InTedvy Excelerator, Index Technology Corpora-

tion Computer Consultant, Oct. 1984,
. Information Engineering Workbench/Workstation. KnowledgeWare Inc.,
1986,

. Interactive Development Environments (IDE). Interactive Development

Environments Inc.. January 1987,

Yourdon, E. and Constantine, L.L. Strucmired Design @ Fundamental of a
Discipline of Computer Program and Systems Design, Prentice Hall
Inc.. 1979,

Peters, L.J. Software Design : Methods and Techniques. Yourdon Inc.,
New York, 1981,

Page-Jones, M. The Practical Guide to Structured Svsiemn Design. Yourdon
Press, Prentice Hall Inc._ 1981,

De Marco, T. Structured Analysis and System Specification. Yourdon Inc.,
New York, 1979,

XENIX System V Operating System Release MNotes, Version 2.1.3. Infro-
duction 10 XENIX. The Santa Cruz Operation Inc., 1986.

XENIX System V Operating System Release Motes, Version 2.1.3. User's
Guide, The Santa Cruz Operation Inc., 1986,

. Fairley, R.E. Software Engineering Concepts. McGraw-Hill Inc., 1985.

Wegner, P, Dennis, 1., Hammer, M. and Teichroew. D. Research Direc-
tions in Software Techmnology. The Massachusetts Institute of Techno-
logy, 1979,

Jackson, M. Principles of Program Design. Academic Press Inc., 1975,

Schildt, H. Advanced C. McGraw-Hill Inc., 1987,

	VOL 8 NO 2 1991_Page55
	VOL 8 NO 2 1991_Page56
	VOL 8 NO 2 1991_Page57
	VOL 8 NO 2 1991_Page58
	VOL 8 NO 2 1991_Page59
	VOL 8 NO 2 1991_Page60
	VOL 8 NO 2 1991_Page61
	VOL 8 NO 2 1991_Page62
	VOL 8 NO 2 1991_Page63
	VOL 8 NO 2 1991_Page64
	VOL 8 NO 2 1991_Page65
	VOL 8 NO 2 1991_Page66
	VOL 8 NO 2 1991_Page67
	VOL 8 NO 2 1991_Page68
	VOL 8 NO 2 1991_Page69
	VOL 8 NO 2 1991_Page70
	VOL 8 NO 2 1991_Page71
	VOL 8 NO 2 1991_Page72
	VOL 8 NO 2 1991_Page73
	VOL 8 NO 2 1991_Page74
	VOL 8 NO 2 1991_Page75
	VOL 8 NO 2 1991_Page76
	VOL 8 NO 2 1991_Page77
	VOL 8 NO 2 1991_Page78

