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Abstract: In this paper, we present a new scheme to design an adaptive 

controller for uncertain nonlinear systems with unknown backlash, Coulomb 

friction nonlinearity. The control design is achieved by introducing a smooth 

approximate backlash model and certain well defined functions and by using 

backstepping technique. It is shown that the proposed controller can guarantee that 

the system is global asymptotic stable. 
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I. Introduction 

Electrical transmission drives is an important part of a control system, which 

pass the control command from the controller to the objects. Conventionally, for 

convenience in designing the controller, the effects of nonlinear backlash, dead-

zone and friction are usually ignored. However, very often, the mentioned above 

parameters exist in many devices such as gearbox, transmission shaft, valve 

(hydraulic), DC servo motor, and so on. They are nonlinear elements, and can 

change from time to time, causing different limitations of quality of the whole 

system. 

Research on Electrical Transmission Drives, which includes nonlinear 

backlash, dead-zone and friction, is a hot topic. The target is to improve the quality 

of the system based on looking at the useful nonlinear characteristic of the system. 

Current researches on two-mass systems can be referred to in [2]-[18]. 

The researches and estimations about the systems, where exist backlash and 

friction, can be seen in [10], [11], [12], [13]. The controller based on sliding mode 

for two-mass systems is introduced in [2], robust control is used in [3], [5]. Other 

methods based on PI control are shown in [17], PD/PI associated with Fuzzy is 

in[18], Fuzzy based on Takagi-Sugeno model is in [7], [17], Kalman filter is 

shown in [15], accurate linearization is in [4], reference model building with 

parameter adjustment is in [13], linearization is in [14], and backstepping is 

introduced in [9]. 

In [9] and [18], model of the plant is built, taking into consideration the 

parameter resilience, ignoring dead-zone and friction moment. In [14], the 

nonlinear elements, such as dead-zone and friction, are linearized by secants 

method. 

This paper shows the study of common nonlinear class, as in [8]. Backlash 

and friction are in two differential equations of the system. The existence of 

backlash and friction causes difficulties for the development of the controller. A 

new model which smoothes backlash is chosen, and the controller is built based on 



recursive backstepping design. Nonlinear parameters are smoothed, continued and 

can be differentiated. In this paper, instead of concerning the effects of nonlinear 

backlash, resilience and friction as limited noises (as in [10], [11], [12], [13]), they 

are included in controller design. 

Research on system, which includes nonlinear parameters, improves the quality 

and stability of the system. The backstepping controller, which is designed with 

two adapt laws for unknown parameters, is shown and it guarantees that the system 

is global asymptotic stable. 

 

 2. Model of Nonlinear Electrical Transmission Drives 
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Fig.1. A schematic diagram of the nonlinear electrical transmission drives 

with PID controller 
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  In equation (1), 1 2( )yM C q q  is elastic moment [ ]Nm , when elastic 

connection is without backlash; sT  is elastic moment[ ]Nm , with backlash 2 [ ]rad  

in elastic connection and is nonlinear function (undifferentiable), which have the 

following form: 
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                                                                  (2) 

Where, 1 2, ( )q q rad   are angular of shaft motor and load; 

1 1
q  , 2 2[ / ]q rad s   are the motor and load angular speeds; 2

1 2, [ ]J J kgm  are the 

motor and load moments of inertia; [ / ]C Nm rad is the spring constant; [ ]mM Nm  is 

the motor torque, [ / ]ek Vs rad is the motor’s torque constant; mk is constant; [ ]R  is 



the armature coil resistance; ,p dK K  are proportional and derivative gains; [ ]pu V is 

output voltage of proportional controller; [ ]au V is output voltage of derivative 

controller; [ ]ru V  is the motor armature voltage; [ ]rI A is the armature current; 

[ ]ref rad is reference angular; 0 [ ]pu u V is signal control which follows reference 

program (for speed loop, it is output signal of positional controller); [ ]fM Nm – 

Coulomb friction, from [8], we obtain:  

2( )fM sign                                                                                         (3) 

  - positive constant; (.)sign – sign function of (.).  

We can rewrite (2) in form as:  
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Fig 2a. Model of backlash and smooth approximation   
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Fig 2b. Model of Coulomb friction and smooth approximation 



Set: 

2 1 2x q q                                                                                               (5) 

We obtain: 
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In [3] and [4], we can approximate (6) by smooth function as: 

 2 2tanh( )sT C x ax                                                                             (7)   

In [6] and [8], we can approximate (3) as: 

2 2( ) tanh( )msM sign b                                                                      (8) 

In (7) and (8), ,a b  are positive numbers, which can be chosen when  

designing (in figure 2a, choose 1,25a  ; in figure 2b, choose 9b  ). 

Set 1 2 2 1 2 3 1 2; ;x x q q x       , we can rewrite (1) as: 
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Set: 1 2 2 3 4 1
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, 

we obtain: 

1 2 3 4; ; ;a a a a  are known parameters (can be measured); unknown 

parameters are: 1  - width of backlash, 2  - including Coulomb friction. 

We can rewrite (9) as: 
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For system described by (10), we can design adaptive backstepping 

controller for system (1) based on theory introduced in [1]. 

 

3. Design of  Adaptive Backstepping Controller:  

Step 1: 

   Set the system’s final output 1 2y x   , because this speed can not be 

measured directly when variation of elastic is included, name its asymptotic value 

is dy , adjusting error 1z  can be calculated as: 

1 1d dz y y x y                                                                                        (11) 

Assume that 0dy  , we obtain:  1 1 1 2 1 2 2 1tanh( ) tanh( )z x a x ax bx     . 



Because 1 2,   are unknown parameters, we denote their corresponding 

estimated parameters are 1 2
ˆ ˆ,  , tracking errors are: 

 1 1 1
ˆ     or 1 1 1

ˆ                                                                               (12)                                                                                    

 2 2 2
ˆ     or 2 2 2

ˆ                                                                             (13) 

We choose Lyapunov function for 1z is: 2 2 2

1 1 1 2

1

1 1 1

2 2 2
V z

a
 

 
   .   

Where, ,   are adaptation gains.                                                                              

Differentiating of 1V  as: 
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We choose the first virtual control 1  is: 

1 1 1 1 2 2 1

1

1ˆ ˆtanh( ) tanh( )c z ax bx
a

                                                          (14) 
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1 1 1 1 2 1 1 2 1 2 1 2

1
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z
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                 (15) 

Step  2: 

2

2 1 2

1

2
V V z       or 

2 1
2 1 2 2 1 1 2 1 2 1 1 2 1 2 1 2

1

1 1ˆ ˆ( ) tanh( ) tanh( )
z

V V z z c z z z z z ax bx
a

   
 

  
           

   
 (16) 

 

Expanding the 1 2( )z z  term: 

1 2 1 2 1 1 1 2 2 1 3 1 1 1 2 2
ˆ ˆ ˆ ˆ( , , , , ) ( , , , , )d d dz z z x y x y x z x x y x                        (17)   

 

From (14), we can write: 

1 1 1 1 2 2 1 1 1 1 1 2 2 1

1 1

1 1ˆ ˆ ˆ ˆtanh( ) tanh( ) tanh( ) tanh( )dc z ax bx c x c y ax bx
a a

               (18) 
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              (23)  

Substituting (19)-(23) into equation (17), we obtain: 

2 2

1 2 1 3 2 2 1 2 1 2 1 1 2

1 1

2 2
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1 1
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b
z z z x c bx ax bx a ax

a a

b
z z c bx ax bx a ax

a a

   

  

                 

               

 

We choose: 

2 2

2 2 2 1 1 2 1 2 1 1 2

1 1
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b

c z z c bx ax bx a ax
a a

  
 

                
 

  (24) 

2 2 1
2 1 2 2 1 1 2 2 2 3 1 1 2 1 2 1 2

1

1 1ˆ ˆtanh( ) tanh( )
z

V V z z c z c z z z z ax bx
a

   
 

  
           

   
   (25)    

Step  3: 

2
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Again expanding the 2 3( )z z term: 
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 (30) 

We calculate the partial derivatives of 2 : 
2

2 2 22 2
1 2 2 1 2 1 1 1

1 1 1 1

2ˆ ˆ1 tanh ( ) 1 tanh( ) 1 tanh ( ) 1 tanh ( )
bc b b

c c bx bx bx bx
x a a a


 


                 

 (31)  

2 0
dy





                                                                                                 (32) 

2 2 2 22
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Substituting (31)-(35) into equation (27), we obtain: 

2 3 2 2 2 1 1 2 2 2 1 3 1 3 4 2 1 1 2 2
ˆ ˆ ˆ ˆ( ) tanh( ) ( ) tanh( ) ( ) ( , , , , )a dz z z a x ax bx a x x a u x y x                 

 

2 2 2 2 1 2 2 1 2 2 1 2 1 3 1 3 4
ˆ ˆtanh( ) tanh( ) tanh( ) tanh( ) ( ) az a x a ax a ax bx bx a x x a u             

2
2 2 22

1 2 2 1 2 1 1 1

1 1 1

2ˆ ˆ1 tanh ( ) 1 tanh( ) 1 tanh ( ) 1 tanh ( )
bc b b

c c bx bx bx bx
a a a

                    

2 2 2 2

2 2 1 2 2 1 2 2
ˆ ˆ1 tanh ( ) 1 tanh ( ) 2 tanh( ) 1 tanh ( )c c a ax a ax a ax ax                   

2 22
2 2 2 1 1

1 1

tanh( ) 1 tanh ( ) tanh( ) 1 tanh ( )
c b

c ax a ax bx bx
a a

                              (36) 

Choose: 

4 3 3 2 2 2 2 1 2 2 1 3 1 3
ˆ ˆtanh( ) tanh( ) ( )aa u c z z a x a ax bx a x x          

2
2 2 22

1 2 2 1 2 1 1 1

1 1 1

2 2ˆ ˆ1 tanh ( ) 1 tanh( ) 1 tanh ( ) 1 tanh ( )
bc b b

c c bx bx bx bx
a a a

                    

   2 2 2 2

2 2 1 2 2 1 2 2
ˆ ˆ1 tanh ( ) 2 1 tanh ( ) 2 tanh( ) 1 tanh ( )c c a ax a ax a ax ax                   

2
2 2 1

1

tanh( ) tanh( )
c

c ax bx
a


  


                                                                       (37) 

 3 3 2 2 2 2 1 2 2 1 3 1 3

4

1 ˆ ˆtanh( ) tanh( ) ( )au c z z a x a ax bx a x x
a

                            

2
2 2 22

1 2 2 1 2 1 1 1

1 1 1

2 2ˆ ˆ1 tanh ( ) 1 tanh( ) 1 tanh ( ) 1 tanh ( )
bc b b

c c bx bx bx bx
a a a

                    

   2 2 2 2

2 2 1 2 2 1 2 2
ˆ ˆ1 tanh ( ) 2 1 tanh ( ) 2 tanh( ) 1 tanh ( )c c a ax a ax a ax ax                   

2
2 2 1

1

tanh( ) tanh( )
c

c ax bx
a


  


                                                                      (38) 

Substituting (38) into (36), then (36) into (26), we obtain: 

 2 2

3 1 1 2 2 3 3 3 2 1 2 2 1

1
1 1 2 1 2 1 2

1

tanh( ) tanh( )

1 1ˆ ˆtanh( ) tanh( )

V c z c z z c z a ax bx

z
z ax bx

a

 

   
 

      

  
     

   

                            (39) 

2 2 2

3 1 1 2 2 3 3

1
1 3 2 2 1 2 1 2 3 1 1 2

1

1 1ˆ ˆtanh( ) tanh( ) tanh( ) tanh( )

V c z c z c z

z
z a ax z ax z bx bx

a
   

 

   

  
        

   

 (40) 

1 3 2 2 1 2

1
2 3 1 1

1

ˆ tanh( ) tanh( )

ˆ tanh( ) tanh( )

z a ax z ax

z
z bx bx

a

  


 

  

 
                                                         (41) 

2 2 2

3 1 1 2 2 3 3 0V c z c z c z      with 1 2 30, 0, 0c c c   . 



To conclude, when 1 2 30, 0, 0c c c   , with control law (38) and adaptive 

law (41), system (1) becomes GAS. 

 

4. Simulation: 

a) Simulation in Matlab-Simulink: 
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Fig 3a. Simulating in Matlab-Simulink backstepping control (38) and adaptive law 

(41) for nonlinear electrical transmission drives (1) 
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Fig 3b. Adaptive backstepping controller (38) 
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Fig 3c. Speed of motor Fig 3d. Position of load 

 

b) Simulation on real model in lab: 

 

 
Fig 4a. Experimental model of nonlinear electrical transmission drives 

1- DC motor, 2- Velocity sensor  1 , 3- Pulse width modulation (PWM) and 

power amplifier, 4- Torsion spring connecting between two masses, 5- The first 

mass, 6- The second mass, 7- Position sensor,  

8- Card PCI 1711 Advantech, 9- Embedded computer, 10- Controling 

software in Matlab-Simulink. 
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Fig 4b. Speed of motor in model 4a 
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Fig 4c. Position of load in model 4a 

Looking on the figures 3c, 3d, 4b, 4c, during the first 50 seconds, the 

velocity signal is driven by the PID control, this value is fluctuated. During the 

next 50s, the speed is driven by the adaptive backstepping control, the speed signal 

is steady and the speed of motor and load follows the reference command 

accurately. 

The comparison of the simulating results in Matlab-Simulink and on real 

model can conclude about the truth of the designed control algorithm. 

  

5. Conclusion: 

   In fact, backlash, elastic and friction always exist in electro-mechanic 

systems. Backlash and Coulomb friction are typical nonlinear elements. They 

cause bad effects on system’s operation quality. This can not be overcome by using 

the traditional controllers. By using adaptive backstepping technique, the bad 

effects from backlash, elastic and friction are solved. The controller has designed 

for the electro-mechanic object class, which includes two nonlinear masses. The 

controller drives the system in a “calmer” operation, also gains “good” nonlinear 

characteristics. Especially, it always keeps the system in global asymptote stability. 
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