
 1

Mixed-mode Operating System for Real-time Performance

Hasan M. M., Sultana S., and Foo C.K.

Dept. of Computer Science

Faculty of Science

University Brunei Darussalam

Jalan Tungku Link

Gadong, BE 1410

Brunei Darussalam

Email: mdmahmud@fos.ubd.edu.bn

 2

Mixed-mode Operating System for Real-time Performance

Abstract: The purpose of the mixed-mode system research is to handle devices with the

accuracy of real-time systems and at the same time, having all the benefits and facilities

of a matured Graphic User Interface (GUI) operating system which is typically non-

real-time. This mixed-mode operating system comprising of a real-time portion and a

non-real-time portion was studied and implemented to identify the feasibilities and

performances in practical applications (in the context of scheduled the real-time events).

In this research an i8751 microcontroller-based hardware was used to measure the

performance of the system in real-time-only as well as non-real-time-only configurations.

The real-time portion is an 486DX-40 IBM PC system running under DOS-based real-

time kernel and the non-real-time portion is a Pentium III based system running under

Windows NT. It was found that mixed-mode systems performed as good as a typical real-

time system and in fact, gave many additional benefits such as simplified/modular

programming and load tolerance.

1. Introduction

In the past, there has been a lot of research into real-time systems and non-real-

time systems, with the clear distinction between them. Mostly, research on them were

done on a separate basis. This research aims at combining these two systems to form a

“mixed-mode Operating system”. Studies will be carried out on this combination to

determine its performance as well as feasibility in implementation, particularly in the

context of scheduled real-time events. The benefit will be the real-time performance at

the same time full benefits of a mature and conventional GUI based non-real-time

system’s facilities. The end result of the research is a working model that simulates a

probable mixed-mode configuration and performs measurements of the system

performance. One of the greatest strengths of this system is its ability to handle devices

with the accuracy of real-time systems and at the same time, have all the benefits and

facilities of a matured GUI operating system which is typically non-real-time. Most direct

application of this system is to serving the needs in the controlling of electronic video

devices such as digital VTRs (Video Tape Recorders), computer-based digital recording

systems, video switchers, and many other countless devices in the video broadcasting and

editing industry. Other possible applications may be in the sports events to measure

participant's times, and even managing photo finishes (for example, in Olympic 100

meters dash) and/or in the manufacturing industry whereby timings of certain predefined

operations are important, such as the production of certain time-sensitive chemical by

reaction (photo-production), and others.

A basic conventional system consists of basically a program to carry out the tasks,

and an operating system (OS) to supply the basic low-level services needed for programs

such as memory management, file management, and communication [1]. Typically, such

systems have no strict timing requirements and tasks can be carried out at the

 3

convenience of the system, and having lateness in performing a particular job will not

result in system errors. Most popular operating systems in the market, such as Windows

XP/NT, MacOS, Linux, OS/2 as well as BeOS are not real-time [2]. Such operating

systems are usually built on the layering model, whereby higher-level code is built on

low-level code. This makes the operating system modular, but causes heavy penalty hits.

In simple terms, real-time systems are defined as systems that are capable of responding

to events within a predefined amount of time, which is usually very small. Such systems

are most often custom-made to the needs of a particular application. For a real-time

system to work, the time taken to process the incoming information should be less than

the rate at which the information is obtained. However, real-time does not merely mean

that the system must be able to complete a task within a certain time limit. It must also be

able to execute the task at precise moments and must never execute a certain operation

too early or too late. An example is a robot arm that picks up objects from a moving

conveyor belt. If the robot arm tries to pick up an object too early, there is a possibility

that the object is not there. And if the robot arm tries to pick up the object too late, it

would have missed the object altogether. Both conditions result in system failures.

2. Mixed-mode System

Mixed-Mode Systems, a term created for use in this research, consists of a

combination of Real-Time System and a Non-Real-Time System. This combination

exists so that a particular application is able to control and respond to hardware devices in

real-time whilst having all the facilities of a mature OS such as Windows NT which is

well suited for real-time operations. However, such systems are rarely suited for

immediate response to external events since the round trip from the device to the Real-

Time System to the Non-Real-Time System and back takes up too much time. Mixed-

mode systems are usually used for scheduled real-time events, or when the real-time

system is able to handle some of the immediate responses without conferring to the non-

real-time system. Performance measurements on such systems usually focus on the

performance between the real-time portion with the hardware itself. Less emphasis is put

on the performance between the real-time portion and the non-real-time portion.

3. Methodology

The system setup basically consists of three units, which are the Scheduler Unit

(to generate schedule of events), the Executor Unit (to execute events in real-time), and

the Profiler Unit (whose task is to generate a common time base as well as measure

performance), as shown in the Figure 1. The Scheduler is a Windows NT based machine,

the Executor runs on MS-DOS with a RTK (Real-Time Kernel) to emulate a RTOS

(Real-Time Operating System), and The Profiler is a microcontroller-based unit based on

the i87C51 chip.

 4

Asynchronous serial connections based on RS-232 communication is used for

Executor-Scheduler and Profiler-Scheduler communication as such communication is

more predictable based on the line baudrate setting than using the protocols based TCP/IP

sockets. The Profiler generates timecodes which are 8-bit binary numbers. These

numbers are sent to both Executor and Scheduler as a common time base to which event

are scheduled. To ensure the lowest possible latency, reading of these binary values are

done using a special Digital I/O expansion card called a GPI card.

3.1 Study Method

Having the Profiler as a uniform method of measuring latency (performance), the

first task is to verify that the Executor portion is truly real-time. This is done by having

the Executor schedule and execute to its own set of events, while the Profiler measures

the latency. Latency of 1ms or below is considered sufficiently real-time for this research

project.

In the next step, comparison needs to be done against a mixed-mode system and a

conventional system. Therefore, the first part of the study experiments would be

conducting latency measurements on the conventional system model which schedules and

executes its own events.

Finally, the mixed-mode configuration is tested, and the results are compared to

that of the previous two tests. In this test, each unit performs their respective function. It

is expected that the mean measured latency of the mixed-mode system will be

significantly lower than the measured latency of the conventional system by several

folds, and in fact, having (or at least, approaching) real-time performance.

4. Schedular Unit

The Scheduler in this research is used mainly to create and schedule events to be

executed on the Executor. It also “executes” events (which is the task of the Executor),

Figure 1 - Mixed-Mode System Architecture

 5

purely for comparison purposes. The Scheduler is a PC-based system running Windows

NT, a non-real-time operating system by Microsoft.

4.1 Hardware Architecture

The Scheduler is a Pentium-III based system equipped with 1GB SDRAM with

two built-in 9-pin serial ports, both free for use. One of these serial ports is connected to

the Executor, while the other is connected to the Profiler, via null-modem cable [3]. All

communication via serial ports are done at 9600bps, no parity, 8 data bits, 1 stop bit.

Besides that, an 8-bit ISA GPI card is installed inside the system to enable it to directly

read the 8-bit timecodes from the Profiler [4].

4.2 Software Architecture

The Scheduler was written using a combination of Visual Basic 5.0 and Visual

C++ 5.0. Visual Basic was used for its Rapid Application Development (RAD)

properties [5]. Visual C++ was used for interfacing. A DLL (Dynamic Link Library),

callable from Visual Basic, was made. This DLL contained all these low-level features

which Visual Basic lacked, such as a timecode-extension thread (to extend 8-bit

timecodes to 32-bit by monitoring for wraparounds) and I/O port access [6]. The

Schedular Software Architecture respect to component and task has been shown in the

Table 1. And the Figure 2 and 3 shows the Scheduler Software Architecture and

Scheduler Screenshot respectively.

Component Task

Event Schedule

List

Hold the list of scheduled events, as well as their

measurement results.

Timecode Timer Update timecode display as well as “execute” events

in “Normal mode” operation.

Scheduling Timer Periodically create event schedule.

Serial

Communication

Perform RS232 messaging with Executor & Profiler.

Direct I/O unit Give the VB program access to I/O ports

Timecode Thread Extend the 8-bit timecode into more usable 32-bit

values

Table 1 - The Schedular unit’s Software Architecture respect to component and task.

 6

Figure 2 - Scheduler Software Architecture

Figure 3 - Scheduler Screenshot

Test

start/stop
control

Mode of

operation

selection

Event

scheduling

setup

Event schedule list

and numerical results

Normal

Mode
setup

Graph area for visual

representation of results

 7

There are two basic modes of operation for the Scheduler. Firstly is the “Mixed

Mode” operation. This is the main mode of interest in this research. In this mode, each of

the 3 units of the system (Profiler, Executor and Scheduler) performs their respective

task. Secondly is the “Normal mode” of operation. In this mode, the system does away

with the need for the Executor, and instead, responds to events directly. This mode is

present for comparison purposes against the “Mixed Mode” operation. Results can be

viewed on screen as well as saved to disk in Comma Separated Values (CSV) format

(loadable from Excel). The “Schedule Distance” slider determines “how far ahead” the

event’s scheduled timecode should be. The “Schedule Rate” slider determines how much

time will elapse between two events that are scheduled. “Randomize Event ID” checkbox

determines whether events should be scheduled in sequential order or randomized order.

“Accuracy” slider works in normal mode by determining how much processor power

should be dedicated to event execution.

5. Executor Unit

The Executor is the real-time portion of this system. Its task is basically to

“execute” scheduled events accurately in real-time. Schedule of events are obtained from

the Scheduler unit. The Executor comprises of the following components

 An IBM PC-AT compatible machine (AMD 80486DX 40MHz).

 A GPI card to read in time counter and send out signals for the events to the

Profiler.

 A 9-pin serial port to receive schedule of events from Scheduler.

 A Real-Time-Kernel (RTK) written in Assembly & C (as a simple RTOS

replacement).

 An “Executor” program to handle the events, running on top of the RTOS and

written using C++.

5.1 Hardware Architecture

A 80486 system at 40MHz, equipped with 8MB of SIMM RAM was used. It runs

MS-DOS as its primary operating system. It has one built-in 9-pin serial port free for use.

This serial port is connected to the Scheduler via null-modem cable to receive event

schedules from it [7]. All communication via serial ports are done at 9600bps, no parity,

8 data bits, 1 stop bit. A 486-based system was chosen because it relatively cheap and

easy to source. Furthermore, hardware and software support for this “scheduled based

real-time event” architecture is aplenty. An 8-bit ISA GPI card is installed inside the

system to enable it to directly read time-code from the Profiler as well as output

“responses” to the Profiler unit.

5.2 Software Architecture

Being a study of mixed-mode system, a RTOS was naturally required for this

research. A small real-time multitasking kernel (RTK) was written using a combination

of assembly language and C++. This kernel runs on top of MS-DOS and gives the system

 8

prioritized multithreading capability. It must be noted, however, that RTK is merely a

real-time multitasking kernel, not an OS by itself. It relies on MS-DOS to perform basic

functionalities such as file access and memory management (QNX Software Systems)

[8]. However, MS-DOS is not designed to be multi-threaded, therefore, there are certain

limitations to what can be done with it [9]. The Table 2 and Figure 4 shows the Executor

software architecture.

Component Task

Event Schedule

List

Hold the list of scheduled events, as well as their

measurement results.

GPI interface Perform I/O access with the GPI card.

Timecode Thread Extend the 8-bit timecodes into 32-bit ones as well

as execute events. Runs at highest priority.

Serial

Communication

Thread

Perform the reception of the event from Scheduler.

Serial

Communication

Library

Perform direct I/O serial communication with the

Scheduler.

Table 2 - The Executor unit’s Software Architecture respect to component and task.

Figure 4 - Executor Software Architecture

The application itself is a GUI-based application (shown in the Figure 5) . The top

portion of the screen contains large “LEDs” to display the events the Executor is

Executor Main Application

Event

Schedule

List

Serial

Communication

Library

Serial Communication

Thread

Timecode

Thread (high-speed)

GPI Interface

Profiler

Scheduler

 9

executing. The blue window on the left is the event schedule list, whereas the blue

window on the right (partially covered) is the results of the measurements. Test

parameters can be modified by changing the input fields in the gray color window.

There are two basic modes of operation for the Executor. The first is the Real-

Time Verification mode. In this mode, the performance of the Executor is verified to be

real-time or not. In this mode, the Executor schedules and executes its own set of events.

Results can be saved in CSV format (loadable under Excel). The second mode is the

actual mixed-mode configuration. In this mode, the Executor does not create events.

Instead, the Scheduler will be having this task, and the Executor will merely Execute the

scheduled events at precise moments in time.

6. Profiler Unit

The Profiler is a microcontroller-based system developed for the specific purpose

of measuring the latency of the mixed-mode system in this system, which relates to the

overall system performance, as well as to generate a common time base for all event

schedules [10]. Being a unit of its own independent of both Executor and Scheduler,

performance measurements are accurate and unbiased [11].

6.1 Hardware Architecture

The Profiler is powered by an Intel 87C51 microcontroller with 4KB EPROM and

128 bytes of RAM, and runs at 11.0592MHz clock rate. A quartz crystal of this frequency

was chosen because it gave the best settings for 9600bps serial communication shown in

the Figure 6.

Figure 5 - Executor Screenshot

LED display

Event Schedule Results

Scheduling Setup

 10

The 87C51 was chosen because it contained built-in USART capability, many I/O

ports, as well as built-in high-precision timers useful for performance measurement. An

ICL232 serial transceiver was used to convert TTL voltages to RS-232 voltage levels

(vice versa). This IC is essentially pin compatible with the more popular MAX232 by

Maxim. A 10-segment BAR LED was also used as a simple display to ascertain the

workings of the microcontroller. Of the10, only 8 of the LEDs were used, with each LED

corresponding to one event ID (or one “virtual device”). An 8-bit octal buffer (74HC244)

is used to drive these LEDs.

Port 1 is used for timecode output. The output of this port is an 8-bit binary up

counter which increments at a rate of 14.0625 times per second (derived by dividing

clock rate of 11.0592MHz by 12 and by 65536), which is the 16-bit timer overflow rate.

Executor’s response is received from Port 0, whereby the lower 3-bits of the port denotes

the event ID. Port 2 is used for LED outputs to light up the LED corresponding to the

event being executed by the Executor. Serial communication within the Profiler performs

no flow control whatsoever as there are only two pins available (Rx and Tx) for serial

communication.

6.2 Software Architecture

The Profiler software can be broken up into foreground and background tasks.

The foreground task polls Port 0 to monitor for any changes (execution of events) to

measure latency. For the background tasks outputs timecodes (14.0625 times per second)

and also performs the serial I/O communication. The Figure 7 shows the Profiler

architecture.

Event schedules are stored in a 16-byte buffer, each element being 2-bytes

scheduled timecode. The measurement results are stored in a 32-byte circular buffer

which the serial interrupt clears upon transmission. During startup, the Profiler performs a

Figure 6 - Profiler Hardware Architecture

8751

Serial

Line

Driver

Latch

Serial data

to Scheduler

Time counter to

Executor &

Profiler

Response from

Executor

LED

Display

Port 1

Port 2

Port 0

 11

simple LED POST (Power-On Self Test) that runs through all the LEDs one by one before

initializing the microcontroller.

7. RESULT & DISCUSSION

7.1 RTK performance

Full context switch takes 14.245 s, which is a pretty good number, and in fact,

on par, if not, higher than QNX’s performance. Removing FPU context switching (useful

when not more than a single thread uses floating-point code), RTK managed to perform

context switch took in only 6.41 s. Interrupt latency was not measured for the system,

as RTK does not implement soft interrupts and all interrupts are as fast as the hardware

permits.

7.2 Executor-Only Performance (Real-Time Performance Verification)

Result shows in the Figure 8,

that it is impossible for the Executor to

respond to immediate events (as

expected). This holds true for any

similar real-time systems and cannot be

avoided. However, system performs

well above expectation of 1ms when

handling scheduled events. Average

latency is 0.0391ms with variance of

0.004809.

Spikes are due to execution of

GUI threads which may temporarily

lock up system. (This is not a good

thread to have in actual applications).

Figure 7 – Profiler Architecture

Figure 8 – Executor performance,

immediate event (0 tick ahead)

Executor-Only Performance

(0 Prep Ticks, 100ms Schedule Rate)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0

2
9

4
2

5
8

7
2

9
0

1
0

3

1
1

9

1
3

2

1
5

0

1
6

8

1
8

2

1
9

8

2
1

3

2
2

5

2
4

1

2
6

3

2
7

9

Timecode

L
a

te
n

c
y

 (
m

s
)

Profiler Application

Event

Schedule

List

Serial ISR

Foreground Task

Timer Overflow

ISR

Executor

Scheduler

Measurement

Results

(Serial Byte

Queue)

8-bit

Timecode

Response

 12

7.3 Scheduler-Only Performance (Conventional System Test)

As can be seen, the scheduler

performs badly with scheduled events.

The average latency is 14.465ms with a

large variance of 36.52 ms. This is

clearly unacceptable for this system’s

deterministic 1ms requirement. The

results are the same if events are

scheduled further ahead (> 1 tick), as

shown in the Figure 9.

7.4 Mixed-Mode Performance

It is expected that mixed-mode

system’s performance should be quite

good. However, with events scheduled 1

tick ahead, the results are quite

unacceptable even though half of the

readings were below 1ms as shown in the

Figure 10. This is due to the propagation

delay of messages from the Scheduler to

the Executor and Profiler (as this delay

itself is sometimes over 71ms long).

Extending the schedule-ahead

time to 2 ticks (Figure 11) yield much

better real-time results well within the

system’s requirements. Occasional spikes

still exists. Mean latency is 0.0430ms and

variance is 0.000378.

7.5 Impact of Non-Real-Time System

on Overall Performance

Under heavy load on Scheduler,

the mixed-mode system configuration

performs still exceptionally well, as

shown in the Figure 12. Mean latency is

0.04703ms with variance of 0.001035.

Heavy loads were simulated by running

many applications concurrently, as well

as performing background disk access.

Figure 9 – Scheduler performance,

Scheduled event (1 tick ahead)

Figure 10 – Mixed-mode performance, 1

tick ahead

Figure 11 – Mixed-mode performance, 2

ticks ahead

Scheduler-Only Performance

(1 Prep Ticks, High Accuracy)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

5
4

5

5
7

5

6
0

4

6
3

4

6
6

3

6
9

3

7
2

3

7
5

2

7
8

6

8
1

6

8
4

5

8
7

5

9
0

4

9
3

4

9
6

3

9
9

3

1
0

2
6

1
0

5
6

Timecode

L
a

te
n

c
y

 (
m

s
)

Mixed-Mode Performance

(1 Prep Ticks)

0.00

5.00

10.00

15.00

20.00

25.00

3
8

6
9

9
9

1
3

0

1
6

1

1
9

1

2
2

2

2
6

5

2
9

5

3
2

6

3
5

7

3
8

7

4
1

8

4
4

8

4
7

9

5
1

8

5
4

8

5
7

9

Timecode

L
a

te
n

c
y

 (
m

s
)

Mixed-Mode Performance

(2 Prep Ticks)

0.00

0.05

0.10

0.15

0.20

0.25

8
1

1
1

1

1
4

2

1
7

2

2
0

3

2
3

3

2
7

2

3
0

3

3
3

3

3
6

4

3
9

4

4
2

5

4
5

6

4
8

6

5
3

0

5
6

0

5
9

1

6
2

1

Timecode

L
a

te
n

c
y

 (
m

s
)

 13

Figure 12 - Mixed-mode performance,

with heavy load on Scheduler

7.6 Significance of Schedule Time on the Mixed-Mode Performance

Having a mixed-mode system

involves a “middle-man” in managing the

actual hardware introduces message

propogation delay. Therefore, to be truly

effective, the mixed-mode system should

not handle immediate events, but rather,

only scheduled events. The value of the

propagation delay depends on the

transmission medium. With baudrate 9600

bps (line baudrate) the RS-232 gives pretty

much deterministic values.

7.7 Advantages of Mixed-Mode Systems

Firstly, real-time performance is guaranteed from the mixed-mode system, even

during heavy loads on the main application. Secondly, it is probably cheaper to have two

normal machines to handle specific tasks rather than one fast super-machine to handle

everything. Thirdly, the system, being broken up into two distinct applications with well-

defined tasks makes the code easier to write.

8. Conclusion

Mixed-Mode operating system should be used more widely since it gives more

benefits than limitations. It observed that a well-designed mixed mode system is capable

to delivery in the real-time performance with all the benefits and facilities of a matured

Graphic User Interface (GUI) operating system. Which is an unique advantage of this

system. Most of the measurement results in the system can be, in fact, improved. It is

found that mixed-mode system provides one of the best balance of real-time performance

and OS features. It also makes programming simpler and easier to manage as the system

is broken down and separated into distinct functional groups. The executor / RTK may

undergo the following changes to further improve its performance.

 Implement soft-interrupts (so that spikes would not exist)

 Increase scheduling rate

 Use an optimizing compiler

 Avoid unnecessary threads

 Use a faster processor

Mixed-Mode Performance

(2 Prep Ticks, Heavy Load on Scheduler)

0.00

0.05

0.10

0.15

0.20

0.25

2
1

8

2
4

8

2
9

1

3
2

2

3
5

2

3
8

3

4
1

4

4
4

4

4
7

5

5
0

5

5
4

9

5
7

9

6
1

0

6
4

0

6
7

1

7
0

1

7
3

2

7
6

2

Timecode

L
a

te
n

c
y

 (
m

s
)

 14

Refferences

[1] CAXTON C. FOSTER (1981), Real Time Programming - Neglected Topics,

Addison-Wesley Publishing Company.

[2] CMX COMPANY (1998), CMX 80x86 RTOS Performance Sheet,

http://www.cmx.com/trget27.htm

[3] HARRY GARLAND (1979), Introduction to Microprocessor System Design,

McGraw-Hill Book Company.

[4] INTEL CORPORATION (1983), Embedded Applications Volume 1, Intel

Literature, ISBN 1-55512-242-6

[5] DAVE WILLIAMS (1993), The Programmer Technical Reference For MS-DOS

And IBM PC, Tech Publications Pte Ltd.

[6] PETER NORTON AND HAROLD AND PHYLLIS DAVIS (1995), Peter

Norton’s Guide To Visual Basic 4 For Windows 95, Sams Publishing.

[7] JAMES L. ANTONAKOS (1990), The 68000 Microprocessor - Hardware and

Software Principles and Applications, Merril Pubslishing Company.

[8] QNX SOFTWARE SYSTEMS LTD. (1998), QNX News, Vol. 11 No. 3.

[9] S.T. ALLWORTH AND R.N. ZOBEL (1988) Introduction to Real-time Software

Design (2
nd

 Ed.), Macmillan Education.

[10] LEO CHIN SIM, HEIKO SCHRODER and GRAHAM LEEDHAM, “MIND-

SIMD hybrid system – towards a new law cost parallel system”, Parallel

Computing 29, 2003, 21-36, Elsevier.

[11] A. SINGH, K. JEFFAY, “Co-Scheduling Variable Execution Time Requirement

Real-time Tasks and Non-Real-Time Task”, Proceedings of the 19th Euromicro

Conference on Real-Time Systems, Pisa, Italy, July 2007, pages 191-200.

http://www.cmx.com/trget27.htm

