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Abstract

The Bernoulli numbers are a set of numbers that were discovered by Jacob Bernoulli
(1654-1705). This set of numbers holds a deep relationship with the Riemann zeta
function. The Riemann zeta function has been found to have a relationship with prime
numbers. The Bernoulli numbers have also been found to be useful for proofs of a
restricted version of Fermat’s Last theorem. In this paper Bernoulli numbers will be
discussed and the properties of this set of numbers as well as different ways to represent
the set of Bernoulli numbers. The applications of this set of numbers in number theory
will also be discussed such as those in the aforementioned examples.

1 What are Bernoulli Polynomials?

In the 17th century a topic of mathematical interest was finite sums of powers of integers
such as the series 1 + 2 + 3 + ... + (n − 1) or the series 12 + 22 + 32 + ... + (n − 1)2.
The closed form for these finite sums were known, but the sum of the more general series
1k + 2k + 3k + 4k + ... + (n − 1)k was not. It was the mathematician Jacob Bernoulli who
would solve this problem with this equality that will be proven later

1k + 2k + 3k + 4k + ... + (n− 1)k = k!

∫ n

0

Bk(x) dx.

In this equality Bk(x) is the Bernoulli polynomial which we will define next.

Definition 1.1.
A Bernoulli polynomial Bn(x) is a Polynomial that satisfies three properties

(a) B0(x) = 1;

(b) B′
n(x) = Bn−1(x);

(c)
∫ 1

0
Bn(x) dx = 0 for n ≥ 1.

One can prove that these Bernoulli polynomials are unique by using the fundamental
theorem of calculus. The first three Bernoulli polynomials are B0(x) = 1, B1(x) = x − 1

2
,

B2(x) = 1
2
x2 − 1

2
x + 1

12
. From this definition we can derive some interesting properties that

become useful later in this paper. The first theorem is easily proved from the definition.

1



Theorem 1.1. Given a Bernoulli polynomial Bn(x) the following properties are true

(a) Bn(1− x) = (−1)nBn(x).

Proof. Given statement is true n = 1. Assume statement is true for n case.

Bn(1− x) = (−1)nBn(x)⇒
∫

Bn(1− x)dx = (−1)n

∫
Bn(x)dx

⇒ −Bn+1(1− x) = (−1)nBn+1(x) + C

⇒ −
∫ 1

0

Bn+1(1− x)dx = (−1)n

∫ 1

0

(Bn+1(x) + C)dx.

From definition1.1c 0 = 0 + C ⇒ C = 0.

−Bn+1(1− x) = (−1)nBn+1(x)⇒ Bn+1(1− x) = (−1)n+1Bn+1(x).

By induction it is true for all n.

(b) Bn+1(0) = Bn+1(1) for n ≥ 1.

Proof. This proof can be seen in pg.90[2]

0 =

∫ 1

0

Bn(x) dx =

∫ 1

0

B′
n+1(x) dx = Bn+1(1)−Bn+1(0)

⇒ Bn+1(1) = Bn+1(0).

Now we can define Bernoulli numbers from our notion of Bernoulli polynomials.

2 What are Bernoulli Numbers and how are they related to Bernoulli Poly-
nomials?

Bernoulli Numbers are a set of numbers that is created by restricting the Bernoulli polyno-
mials to x = 0 and will formally proceed to define.

Definition 2.1.
A Bernoulli number is a number rational number that satisfies the equality

Bn(0) =
Bn

n!
.

This definition of Bernoulli numbers provides a relationship useful in finding Bernoulli
numbers given a Bernoulli polynomial. Given the Bernoulli numbers one would like to be
able to build Bernoulli polynomials. Given these relationships one can build the Bernoulli
polynomials from Bernoulli Numbers and inversely the Bernoulli numbers from the Polyno-
mials. The following theorem will provide the needed relationship.
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Theorem 2.1. Given the first n Bernoulli numbers the following equality is satisfied:

Bn(x) =
1

n!

n∑
k=0

(
n

k

)
Bkx

n−k.

Proof. Assume statement is true for n case. From Definition 1.1b.

Bn(x) =
1

n!

n∑
k=0

(
n

k

)
Bkx

n−k ⇒
∫

Bn(x)dx =
1

n!

∫ n∑
k=0

(
n

k

)
Bkx

n−kdx

⇒ Bn+1(x) =
1

n!

n∑
k=0

(
n

k

)
Bkx

n+1−k

n + 1− k
+ C.

From Definition 1.1c we find C = 0.

Bn+1(x) =
1

n!

n∑
k=0

n + 1

n + 1

(
n

k

)
Bkx

n+1−k

n + 1− k
=

1

n!(n + 1)

n∑
k=0

n!(n + 1)

k!(n− k)!(n + 1− k)
Bkx

n+1−k

⇒ Bn+1(x) =
1

(n + 1)!

n∑
k=0

(n + 1!)

k!(n + 1− k)!
Bkx

n+1−k.

By induction it is true for all n given it is true for n = 1.

The first 6 Bernoulli numbers are B1 = −1
2
, B2 = 1

6
, B4 = − 1

30
, B3 = B5 = 0 and

B6 = 1
42

. From this we observe the beginning of a pattern in the signs of the even Bernoulli
numbers and the lack of nonzero Bernoulli numbers after n = 1. It is from this suspicion
that we shall prove some of the properties of this set of numbers.

3 Properties of Bernoulli Numbers

From the first 6 Bernoulli numbers we began to see a pattern in the Bernoulli numbers in
the next theorem we shall try to confirm our suspicions.

Theorem 3.1. The set of Bernoulli numbers satisfy the following properties

(i) B2n+1 = 0 for n ≥ 1.

Proof. From Theorem 1.1b and Definition 2.1

B2n+1(1) = B2n+1(0) =
B2n+1

(2n + 1)!
.

From theorem 1.1a setting x = 0

B2n+2(1− x) = (−1)2n+2B2n+2(x)⇒ B2n+2(1− x) = B2n+2(x).

Differentiating and applying Definition1.1b

−B2n+1(1− x) = B2n+1(x)→ 0 = B2n+1(1− x) + B2n+1(x).
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Setting x = 0 and applying Theorem1.1b

0 = 2(B2n+1(0))⇒ B2n+1

(2n + 1)!
= (B2n+1(0)) = 0

⇒ B2n+1 = 0.

(b) B2n and B2n+2 have opposite signs for n ≥ 1.

Proof. From Theorem 1.1a

B2n+2(1− x) = (−1)2n+2B2n+2(x) = B2n+2(x).

Differentiating once using chain rule because B2n+1 = 0

−B2n(1) = (−1)2n+2B2n(0)⇒ B2n(1) = −(−1)2n+2B2n(0) = −B2n(0).

Signs of B2n and B2n+2 differ by −1.

Now that we know what a Bernoulli number is, and some of its properties we can begin
to discuss the Riemann Zeta Function and find its relationship with the Bernoulli numbers
and by doing so perhaps find some more properties of Bernoulli numbers.

4 Riemman’s Zeta Function and using Bernoulli numbers to calculate even
values of the Zeta Function

In the 19th century the famous mathematician Bernhard Riemann was attempting to find
the values of a function that he called the zeta function, which is defined as follows:

Definition 4.1.
The Riemman Zeta Function is a function defined as the following series for the value s.

ζ(s) =
∞∑

n=1

1

ns
.

This function proves to be useful in approximating the distribution of the prime numbers.
It is also found occassionally in physics as well as statistics. In this paper the function when
s is an even integer shall be of particular interest because the Bernoulli Numbers prove to
be particularly useful when calculating the even values of the zeta function. A discussion on
Fourier series is neccessary because it will be useful in proving the theorem that follows the
discussion.

4.1 Fourier Series

Joseph Fourier developed a method to approximate a function by using an infinite series of
sine and cosine terms. The following Theorem which will not be proved will describe this
method of decomposition of a function.
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Theorem 4.1. Given a function f(x) with period T we will define its Fourier expansion to
be the series such that

F (x) =
a0

2
+

∞∑
n=1

an cos(
2nπx

T
) +

∞∑
n=1

bn sin(
2nπx

T
)

where

an =
1

T

∫ T
2

−T
2

f(x) cos(
2nπx

T
)

and

bn =
1

T

∫ T
2

−T
2

f(x) sin(
2nπx

T
)

over the interval [−T
2

, T
2
].

These Fourier expansions turn out to have various properties that become quite useful.

Theorem 4.2. Given a Fourier expansion F(x) =
∑∞

n=1 an cos(2nπx
T

) +
∑∞

n=1 bn sin(2nπx
T

)
for the function f(x) the following properties are satisfied:

(a) If f(x) is such that f(x) = −f(−x) then an = 0;

(b) If f(x) is such that f(x) = f(−x) then bn = 0;

(c)
∫∞
−∞ |f(x)|2dx = 1

T

∫∞
−∞ |F (x)|2dx (Parseval’s Theorem).

Given these properties which will not be proved but instead refer the reader to theorem
8.16 [3] or any fourier analysis text, one can proceed to introduce and prove the following
theorem which can be used to calculate even values of the zeta function.

Theorem 4.3. For a given positive integer k the following equality holds

ζ(2k) =
∞∑

n=1

1

n2k
=

(−1)k−1B2k(2π)2k

2(2k)!
.

Proof. Begin by calculating the Fourier expansion for B1(x) = x− 1
2

in interval [−1
2
, 1

2
]. For

f(x) = x an odd function such that f(x) = −f(−x) the Fourier coefficient is given by a0 = 1
2

bn = 4

∫ 1
2

0

x sin(2πnx) dx = −(−1)n+1

nπ

then for [−1
2
, 1

2
]

x = −
∞∑

n=1

(−1)n+1

nπ
sin(2πnx) +

1

2
.

Translation from [−1
2
, 1

2
] to [0, 1]

x = −
∞∑

n=1

(−1)n+1

nπ
sin(2πn(x− 1

2
)) +

1

2
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For [0, 1]

⇒ B1(x) = x− 1

2
= −

∞∑
n=1

(−1)n+1

nπ
sin(2πn(x− 1

2
)).

From Definition 1.1b and Fundamental Therorem of Calculus∫ x

0

B1(x) dx = B2(x)−B2(0) = 2(
∞∑

n=1

(−1)n+1

(2πn)2
cos(2πn(x− 1

2
))−

∞∑
n=1

(−1)n+1

(2πn)2
cos(−πn))

⇒ B2(x) = 2
∞∑

n=1

(−1)n+1

(2πn)2
cos(2πn(x− 1

2
)).

Integrating two more times gives

B4(x) = −2
∞∑

n=1

(−1)n+1

(2πn)4
cos(2πn(x− 1

2
)).

This implies the general formula

B2k(x) = 2(−1)k+1

∞∑
n=1

(−1)n+1

(2πn)2k
cos(2πn(x− 1

2
))

which, setting x = 0, gives

B2k(0) =
B2k

(2k)!
= 2(−1)k+1

∞∑
n=1

(−1)n+1

(2πn)2k
cos(−nπ) = 2(−1)k+1

∞∑
n=1

1

(2πn)2k
.

⇒ (−1)k+1 (2π)2kB2k

2(2k)!
=

∞∑
n=1

1

n2k
= ζ(2k).

Certain properties for the Bernoulli numbers follow from this Theorem some of which
have already have been proved.

Corollary 4.4. The even Bernoulli numbers are unbounded or equivalently limk→∞B2k =∞.

Proof. The following inequality trivially follows 1 ≤ ζ(2k) for positive k because ζ(2k) begins
with 1 in the series followed by positive fractions . Then from Theorem 5.1,

1 ≤ (2π)2kB2k

2(2k)!
⇒ 2(2k)!

(2π)2k
≤ B2k

since 2(2k)!
(2π)2k is divergent then B2k must be divergent by comparison.

Now we begin to use the preceding theorem to calculate the values of the Riemman zeta
function for even values.

ζ(2) =
∞∑

n=1

1

n2
= (−1)1+1 (2π)2B2

2(2)!
= π2B2
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Recalling B2 = 1
6

gives

ζ(2) =
π2

6

This value of the zeta function was solved for by Euler in the 18th century. The value for
k = 4 was not known at the time Euler solved for k = 1 but the following calculation finds
an exact value for k = 4.

ζ(8) =
∞∑

n=1

1

n8
= (−1)5 (2π)8B8

2(8)!
= − 27

40320
π8B8 = − 128

40320
π8B8 = − 1

315
π8B8.

From B8 = −1/30 gives

ζ(8) = π8 − 1

315
− 1

30
= π8 1

9450
.

From these calculations one sees the power of the previous theorem in calculating values
for the zeta function that would require proving individual cases or a similiar theorem.

5 Further reading on Bernoulli numbers and some final notes on Bernoulli
numbers

A rigorous introduction to Bernoulli numbers is found in Kenneth Ireland’s Number Theory
book [1]. In this book various theorems are presented and proved. It also contains an
alternate proof to Theorem 5.1 that could be of interest to the reader who does not want to
use fourier analysis in proving said theorem. Excursions in Calculus contains the following
corollary that Bernoulli sought to answer the question on the sums of powers.

Corollary 5.1. The sum of the kth powers of the first n-1 integers is given by

1k + 2k + 3k + 4k + ... + (n− 1)k = k!

∫ n

0

Bk(x) dx.

Proof. Assume statement Bn+1(x + 1)−Bn+1(x) = xn

(n)!
is true for n+1;

d

dx
(Bn+2(x + 1)−Bn+2(x)) = Bn+1(x + 1)−Bn+1(x) =

d

dx
(

xn+1

(n + 1)!
) =

xn

(n)!

then combining with finite sum

1k + 2k + 3k + 4k + ... + (n− 1)k = k!
n−1∑
j=0

[Bn+1(j + 1)−Bn+1(j)] = k![Bn+1(N)−Bn+1(0)]

⇒ 1k + 2k + 3k + 4k + ... + (n− 1)k = k!

∫ n

0

Bk(x) dx.
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