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Abstract  

A zirconium metal-organic framework (MOF) of DUT-52 (DUT: Dresden University of Technology) was 

synthesized herein by reacting zirconium tetrachloride (ZrCl4) and 2,6-naphthalenedicarboxylic acid 

(H2NDC) in DMF under microwave heating at 115 oC for 25 min. This synthetic procedure was more ef-

ficient than a solvothermal method, by which a long thermal exposure (24 h) of 100-150 oC was re-

quired to produce the same MOF. The MOF has a thermal stability of 560 °C, prior to partial loss of in-

terconnected 2,6-naphthalenedicarboxylate (NDC) linkers at some structure building units (SBU). 

Crystallinity of this DUT-52 was ca. 77 %, which was the same as one synthesized solvothermally.  Dif-

fuse Reflectance UV-Vis spectra revealed an absorption at λex of 287 nm, which was equivalent to a 

bandgap energy of 4.32 eV.  Electron excitations of this DUT-52 at 275 and 300 nm gave emission 

wavelength of 433 nm (a purple region),  indicating a prospective use of DUT-52 as a photoluminescent 

material. Copyright © 2018 BCREC Group. All rights reserved 
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1. Introduction 

Physical properties of MOFs, such as surface 

areas, pore sizes and topologies, may be affected 

by types of metal clusters, organic linkers and 

syntheses methods [1]. An appropriate synthe-

sis method may result in MOFs with solid 

structures, high crystallinity, and high thermal 

stability. MOFs have been widely used in het-

erogeneous catalyses [2-5], drug deliveries [6,7], 

gas storages [8,9], photocatalysis [10-12], gas 

sensors [13,14], and separations [15]. An im-

provement in synthetic procedures is of highly 

importance in producing MOFs with high en-

ergy efficiency. Microwave-assisted syntheses of 

MOFs recently are used because polar rotations 

of organic linkers and solvents may heat reac-

tion systems evenly and rapidly [16]. A micro-

wave heating may also result in homogeneous 

nucleations and thus, reduces crystallization 

time compared to a solvothermal method [17].  

MOF with SBUs of oxohydroxozirconium(IV), 

[Zr6O4(OH)4]12+, and linkers of NDC was first 
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synthesized by Zhong and co-workers [18] us-

ing a solvothermal method in DMF in the pres-

ence of HCl. The group studied the MOF for 

sensing small molecules [18]. Kaskel and co-

workers synthesized the same MOF and other 

Zr (or Hf)-NDC MOFs solvothermally in the 

same year, with a slight modification, i.e. em-

ployment of acetic acid with different concen-

trations as a structural modulator and named 

them DUT-52 (Zr), DUT-53 (Hf) and DUT-84 

(Zr) [19]. The synthesis was conducted by   

heating reaction mixtures in an oven at 120 oC 

for 24 h (72 h for DUT-53) [18,19]. An SBU in 

DUT-52 is connected to 12 NDC ligands, which 

is isoreticular to UiO-66 [19,20], a Zr MOF with 

1,4-benzenedicarboxylate (BDC) linkers. The 

reported DUT-52 was thermally stable up to 

500 oC, with BET surface area (SBET) of 1399 

m2.g-1 [19]. This SBET was greater than that of 

UiO-66 [21]. A direct interaction of microwave 

radiation and polar reactants is possible to oc-

cur in a microwave-assisted synthesis. Thus, it 

offers high heating rates and possible homoge-

neous heating throughout the sample to feasi-

bly complete the reaction in a very short time 

[1]. An example of a microwave-assisted MOF 

synthesis was the synthesis of MOF-5 (Zn). The 

MOF was synthesized using microwave irradia-

tion for 10 to 60 min with a power up to 1 kW 

at 105 oC [16,17,22]. Another example was     

Co-MOF-74, which was synthesized under mi-

crowave heating at 130 oC and the power of 300 

W for 1 h [9]. The use of microwave heating in 

Zr-MOF synthesis was recently reported by Re-

insch group. They reported the use of            

2,5-furandicarboxylate (FDC) as linkers to gen-

erate Zr-CAU-28 (CAU: Christian-Albrechts-

University), at which the SBU was connected 

to 8 FDC linkers [26]. We reported herein the 

first example of a microwave-assisted synthesis 

of DUT-52 in a relatively short time (25 min) 

and described its photoluminescent properties. 

Photoluminescent properties of MOFs may 

have applications in biomedical imaging, dis-

plays, electroluminescent devices, fluorescent 

sensors, nonlinear optics, and photocatalyses 

[14]. An example of MOF employment in photo-

catalysis was MOF-5, as reported by Llabrѐs et 

al.  The MOF was used in phenol degradation 

using UV irradiation [11]. This MOF-5 was 

synthesized solvothermally from zinc salt and 

terephthalic acid as linkers. A photocatalyst 

material from Zr MOF of UiO-66 was reported 

by Shen et al. [23]. The MOF was used in 

Cr(VI) reduction under simulated sunlight with 

a reduction activity up to 35 % after 3 hour-

irradiation. UiO-66 has an absorption band in a 

UV region (320 nm) which was correlated to a 

bandgap energy of 3.9 eV [23]. Other NDC 

MOFs, such as DUT-53 and DUT-84 [19] were 

also synthesized with a long heating solvother-

mally. Therefore, an investigation of a more ef-

ficient synthesis method of DUT-52 and the 

study of its photoluminescent properties are 

important to evaluate the MOF as future 

photoluminescent materials. 

 

2. Materials and Methods 

2.1 Synthesis and Activation  

All reagents, i.e. H2NDC (Sigma Aldrich, 99 

%), chloroform (Merck), HCl (Merck, 37 %), 

N,N-dimethylformamide (Merck, 99.8 %), and 

ZrCl4 (Merck, 99 %), were of analytical grade 

and used without further purification. The syn-

thesis of DUT-52 was performed by dissolving 

ZrCl4 (175 mg, 0.75 mmol) and  H2NDC; 162 

mg, 0.75 mmol) in DMF (20 mL) at room tem-

perature (28 °C).  Hydrochloric acid of 0.5 mL 

(12 M) was added to the mixture to initiate the 

grow of crystal nucleus [18] and the mixture 

was sonicated for 60 min. The mixture was 

capped tightly and kept in a microwave 

(SINEO Microwave Synthesis Workstation 

MAS-II). The synthesis was carried out at 110 

°C, power of 800 W for 25 min. The crude prod-

uct was cooled to room temperature and kept 

for 10 min to give white precipitates. The white 

product was filtered off, and rinsed within 3 

days with DMF (once) and chloroform (twice). 

The product was finally dried under vacuum at 

120 °C for 8 h. 

 

2.2 Characterization 

Powder XRD analysis was carried out using 

D8 Advance Bruker diffractometer with Cu-Kα 

radiation (λ = 0.15406 nm). FTIR analysis was 

carried out using a Bruker Alpha instrument 

(ZnSe beamsplitter) by dispersing the sample 

into a potassium bromide pellet. The spectrum 

was collected from 16 scans with a spectrum 

resolution of 2 cm-1. A thermogravimetric ana-

lyzer was used to get information of thermal 

stability of the material using NETZSCH TGA 

Thermoanalyzer STA 449 F3 Jupiter. Heating 

rate of the TGA was 40 °C/min, started at room 

temperature (28 °C) and increased up to 900 °C 

under argon atmosphere. Percentage of reflec-

tance (%R) was taken using a diffuse reflec-

tance spectrophotometer (DRS) of Thermo Sci-

entific Evolution 220. Value of n equals 1/2 was 

selected in this measurement, because the na-

ture of this sample transition was a direct al-

lowed transition. The obtained diffuse reflec-

tance spectra were converted to a Kubelka-
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Munk function. A vertical axis was converted to 

F(R∞) value, which was proportional to an ab-

sorption coefficient. The α in a Tauc equation

[24] was substituted with F(R∞). The value of 

(hυF(R∞))2 was plotted against hυ (described in 

eV) according to a Kubelka-Munk equation 

[24]. A tangent line was drawn to a point of in-

flection of the curve and the hυ. The bandgap 

energy (Eg) value was derived from a point of 

intersection between the tangent line and the 

horizontal line of hυ. Barium sulfate was used 

as a reflectance coating in our DRS measure-

ment. Photoluminescent (PL) properties of 

DUT-52 were measured in a solid phase at 

room temperature using F-7000 fluorescence 

spectrometer, with a xenon lamp as an excita-

tion source. 

 

3. Results and Discussion  

3.1 Microwave Assisted-synthesis of DUT-52  

We reported herein a facile and fast synthe-

sis of DUT-52 using a microwave method. The 

reaction was completed in 25 min, significantly 

shorter than the one with a solvothermal 

method (24 h) [18,19]. PXRD patterns of the 

synthesized DUT-52 (Figure 1) revealed char-

acteristic diffraction patterns of DUT-52 [18,19] 

at 2θ of 6.47°, corresponding to a d111 reflection 

and at 7.45°, corresponding to a d200 reflection 

[19]. Coordinated NDC ligands to Zr in             

[Zr6O4(OH)4]12+ clusters were observed by a 

slight shift of carbonyl groups at NDC from 

1687 cm-1 in a free H2NDC ligand to 1651 cm-1 

in the MOF (Figure 2), describing a weakened 

carbonyl vibration after metalation.  

Average crystallites size of this DUT-52 was 

42 nm, which was smaller than that of UiO-66 

(150-200 nm) [21]. In contrast to a long crystal 

growing of a solvothermal method, the short 

heating by microwave was able to generate a 

relatively good crystal quality of DUT-52. In 

fact, the crystallinity of this MOF was rela-

tively the same as a solvothermally prepared 

DUT-52 (70 %) [27].  

Thermogravimetric analysis of as-

synthesized DUT-52 showed three weight-loss 

steps between 25 and 600 oC (Figure 3). The 

first weight-loss (25 to 120 °C) of 13 % was at-

tributed to the water removal. The second loss 

(150 to 400 °C) of 16.5 % was the removal of 

solvents (DMF). The framework started decom-

posing (22.5 %) in third weight-loss at 560 °C, 

attributed to the loss of NDC partially. This is 

likely the maximum thermal stability of DUT-

52 before partial loss of the linker. DUT-52 was 

reported to have 12 interconnected-NDC at its 

SBU [19]. Partial loss of NDC might give a re-

duced number of interconnected-NDC at some 

SBUs. Kaskel has reported a reduction of SBU 

connectivity from 12-NDC (DUT-52) to 8-NDC 

(DUT-53) and to 6-NDC (DUT-84) by increas-

ing concentrations of acetic acid in the reaction

[19]. Here, the MOF thermally unchanged from 

600 °C up to our final TGA observation of 900  

°C (Figure 3). Zhong [18] and Kaskel [19] re-

ported a slightly lower thermal stability of 

their solvothermally synthesized DUT-52, indi-

cated by the earlier framework decomposition 

at ca. 500 °C and significantly continued after-

wards. Thus, we observed a relatively higher 

thermal stability of DUT-52 which was pre-

pared by a microwave heating, compared to the 

one prepared solvothermally. 

 

3.2 Luminescence Character  

Optical absorption of this DUT-52 was de-

scribed in diffuse reflectance UV-Vis spectra 

Figure 1. PXRD patterns of DUT-52 reference 

(a) [18] and DUT-52 (as synthesized) (b)  

Figure 2. FTIR spectra of (a) H2NDC and (b) 

DUT-52 (as-synthesized)  
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(Figure 4). The percentage of reflectance (%R) 

was used to calculate the bandgap energy of 

the MOF using a Kubelka-Munk equation and 

Tauc Plot [24]. The bandgap energy (Eg) of as-

synthesized DUT-52 was 4.32 eV, which might 

be classified as a semiconductor material [25]. 

The presence of aromatics groups in DUT-52 

linkers might affect optical properties of the 

material. The main absorption band of DUT-52 

was at 287 nm. This likely described an elec-

tron transition from the linker to Zr(IV). The 

MOF thus might demonstrate a photolumines-

cence under a light exposure with a wavelength 

higher than 287 nm. 

To observe the luminescence behavior, this 

DUT-52 was analyzed by a solid-state photolu-

minescence (PL) spectroscopy. PL analysis de-

scribed an emission wavelength of this MOF at 

433 nm in response to its electrons excitations 

at 275 and 300 nm (Figure 5). Zhong reported 

that a free NDC ligand gave a lower emission 

wavelength (356 nm) [18], indicating a redshift 

behavior of DUT-52 crystals to a visible region. 

The emission intensity was reported to be 5 

times higher in the MOF [18], and thus con-

firmed the benefit of a MOF structure in the 

luminescence. It was also observed that higher 

energy given for an excitation (λex of 275 nm) 

resulted in higher intensity of the resulted em-

mision (Figure 5). This might describe a way to 

tune brightness of the luminescence. The lumi-

nescence itself could be rationalized by a strong 

electronic coupling between NDC linkers 

through [Zr6O4(OH)4]12+ cluster and π-π* tran-

sitions of the linker [18]. 

  

4. Conclusions 

A good crystalline DUT-52 with MOF crys-

tallinity up to 77 % was successfully synthe-

sized by a microwave heating in only 25 min.  

The MOF has a relatively higher thermal sta-

bility compared to the one prepared solvother-

mally.  Diffuse reflectance UV-Vis spectra re-

vealed an absorption at λex 287 nm which were 

identical to a bandgap energy of 4.32 eV. Elec-

trons excitations at 275 and 300 nm gave an 

emission at 433 nm and thus indicated a possi-

ble application of this MOF to work as a photo-

luminescence material in a visible region. 

Figure 4. Band gap energy of DUT-52 (as-

synthesized)  

Figure 5. Photoluminescence spectra of DUT-

52 (as-synthesized) at λex of 275 nm (blue) and 

300 nm (orange)  

Figure 3. TGA thermogram of DUT-52 (as-

synthesized)  
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