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Abstract: Torsional problems commonly arise in frame structural members subjected to unsym-
metrical loading. Saint-Venant proposed a semi inverse method to develop the exact theory of 
torsional bars of general cross sections. However, the solution to the problem using an analytical 
method for a complicated cross section is cumbersome. This paper presents the adoption of the 
Saint-Venant theory to develop a simple finite element program based on the displacement and 
stress function approaches using the standard linear and quadratic triangular elements. The 
displacement based approach is capable of evaluating torsional rigidity and shear stress 
distribution of homogeneous and nonhomogeneous; isotropic, orthotropic, and anisotropic 
materials; in singly and multiply-connected sections.  On the other hand, applications of the 
stress function approach are limited to the case of singly-connected isotropic sections only, due to 
the complexity on the boundary conditions. The results show that both approaches converge to 
exact solutions with high degree of accuracy. 
 
Keywords: Saint-Venant torsion; multiply-connected section; torsional rigidity; homogeneous 
section; nonhomogeneous section. 
  

 
 

Introduction   
 

Torsional problems commonly arise in three dimen-
sional structural members subjected to unsymme-
trical loading or internal twisting moment exerted to 
satisfy local equilibrium in members’ connections [1]. 
The twisting moment causes rotational deformation 
of cross section; which values are highly attributed to 
the resistance of cross section against twisting i.e. 
torsional rigidity. In many cases in steel and rein-
forced concrete designs, torsion, if presents, can be 
the governing design factors among others. There-
fore, it is essential to correctly evaluate the torsional 
rigidity of any cross sections, such that the design 
conforms to torsional strength requirements. 
 
Torsional rigidity of elastic circular sections can be 
evaluated using conventional mechanics and elasti-
city since the sections along member’s length remain 
plain and undistorted [2,3]. However, in a noncircu-
lar cross sectional member, the sections along its 
length warp due to various twisting. Applying the 
torsion theory for circular to non-circular sections 
results in violation of the equilibrium equations and 
boundary conditions. Saint-Venant proposed a semi-
inverse approach to solve torsional problems by 
assuming the unknown displacements to fulfill the 
equilibrium equations and boundary conditions.  
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Nevertheless, evaluating the torsional rigidity of 

noncircular cross section using analytical methods is 

very cumbersome due to complex boundary con-

ditions. The complexity of boundary conditions is 

found either in complex singly-connected cross sec-

tion’s shape or multiply-connected cross section. A 

singly-connected cross section means that the region 

of the cross section is bounded by a closed, piecewise 

smooth curve. A multiply-connected cross section is 

bounded by several closed, piecewise smooth curves, 

such as a section with several holes. The finite 

element method (FEM) can be used to approximate 

the torsional rigidity of arbitrary cross sections due 

to its flexibility to discretize the domain, i.e. the cross 

section, and thus reduces the complexities of boun-

dary conditions. Moreover, accurate FEM results can 

be obtained by refining the mesh or introducing 

higher degree of element’s shape functions [4,5]. 

Numerous available approaches such as displace-

ment, stress, hybrid, and mix formulations have 

been employed in FEM-based analysis, including for 

torsional problems. 

 

This research aims to develop a simple FEM-based 

program in MATLAB to deal with elastic torsional 

problems of noncircular cross sections, which for-

mulation is based on the displacement and stress 

approaches. Various material types, including isotro-

pic, orthotropic, and anisotropic, are considered in 

the model. Furthermore, the model also considers 

both singly and multiply-connected cross sections.  

The main outputs of the model involve torsional 

rigidity and shear stress contour. The outputs are 

further compared to the results available in litera-

ture [2,6,7]. 
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Saint-Venant Torsion Theory 
 

Suppose a cantilever bar of the length h with general 

cross section is fixed on one end and is subjected to a 

twisting moment on the other free end as depicted in 

Figure 1. Saint-Venant suggested that the deforma-

tions consist of rotation and warping [2,6]. Further-

more, the cross section rotates as a rigid body motion 

when twisted so that no in-plane strain presents. 

The warping is assumed to be constant along the bar 

axis so that normal stresses also vanish. Hence, the 

remaining strains are γxz and γyz, which are 

respectively the shear strains of the xz-plane and yz-

plane and thus leaving the bar under pure shear. 

 

 
(a) Bar subjected to torsion    (b) Cross section of bar 

 

 
(c) Angle of twist θ 

Figure 1. Assumption of Saint-Venant Torsion Problems [6] 

 

Displacement Function Approach 

 

According to Saint-Venant torsion theory [6], the 

displacement fields in the bar (Figure 1), can be 

expressed as: 

θzyu  , θzxv  , ),( yxθw   (1) 

 

Here, variables u, v, and w denote displacement 

components in the x, y, and z-directions, respectively 

(Figure 1 (a)), θ denotes the twist angle per unit 

length (Figure 1 (c)), x, y, and z are the coordinate of 

the material points under consideration, and ψ(x, y) 

represents the displacement function.  
 

Following the small strain theory of elasticity, the 

non-zero stress components at a generic point in the 

bar cross section can be written as  

     G  (2) 
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In these equations, τxz and τyz are the torsional shear 

stress components, whereas γxz and γyz are the 

corresponding shear strain components (Figure 1 

(b)). Matrix [G] represents constitutive material 

matrix, the values of which depends on the type of 

materials, namely, isotropic, orthotropic, or anisotro-

pic. For example, for an isotropic material G11 = G22 = 

G, that is, the shear modulus, and G12 = G21 = 0. The 

equilibrium equation of an elemental cube in the z 

direction is given as 

0
yzxz

x y

 
 

 
 (4) 

The governing differential equation for the Saint-

Venant torsion in the domain Ω of a cross section can 

be obtained by substituting Equation (2) and (3) into 

Equation. (4). For the case of a bar made from homo-

geneous and isotropic material, the governing equa-

tion becomes [6] 
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Meanwhile, the boundary conditions at the peri-

meter of cross section, Γ, is given as [6] 
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where s is the boundary curve parameter (Figure 1 

(b)). The total potential energy of the bar, neglecting 

the twisting at the member’s end, can be written as 

[6]  

    
2

T

p

A

h
G dA     (7) 

where h is the bar length. The unknown displace-

ment function, ψ, can be obtained by employing the 

principle of minimum potential energy, by setting 

the first variation of Πp with respect to ψ equal to 

zero. 

 

Stress Function Approach 

 

An alternative approach to solve the Saint-Venant 

torsional problem is to introduce a stress function, φ. 

In this approach, the shear stress components are 

expressed in terms of the stress function as in 

Equation (8) [6]. Accordingly, the governing equation 

within the domain Ω and the corresponding boun-

dary conditions at the surface, Γ, can be written as in 

Equation (9). Identical to the displacement approach, 

the problem can be solved by targeting the first 

variation of the complementary potential energy, 

Equation (10), equal to zero [6]. In the present 

research, this approach is applicable only to singly-

connected section with isotropic material due to 

limitation of boundary conditions. 
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Finite Element Formulation 
 

Displacement Function Approach 

 

The assumed displacement function, ψ, is approxi-

mated as given in Equation (11). Matrix [N] in 

Equation (12) is the matrix of element shape func-

tions, {qψ} is the vector of displacement function 

values at the finite element nodes, and n is the 

number of finite element nodes. The standard linear 

three-node (n = 3) and quadratic six-node (n = 6) 

triangular elements are employed in the present 

research. 

   qNNNNyx nn  ...),( 2211  (11) 

   nNNNN ...21 , 

   Tnq  ...21  (12) 

 

The assumed displacement function, ψ, is further 

partially differentiated with respect to x and y to 

obtain the strain-warping transformation matrix [B] 

as defined in Equation (13). This equation is then 

substituted into Equation (3) to obtain Equation (14). 

Finally, substituting Equation (14) into Equation (7) 

and employing the Rayleigh-Ritz method, the ele-

ment stiffness-displacement-load vector relationship 

is obtained as given in Equations (15) and (16). Here, 

[kψ] denotes the element stiffness matrix, [qψ] 

denotes the nodal displacement vector, and [Qψ] 

denotes the nodal load vector.  
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The relationship between the twisting moment Mt 

and torsional constant is given in Equation (17), 

where J is torsional constant and D is torsional 

rigidity. Furthermore, twisting moment Mt can be 

generally expressed in the integral form as in 

Equation (18). Substituting Equation (3) into Equa-

tion (18), the torsional constant can be calculated via 

Equation (19). Similarly, the torsional rigidity can be 

evaluated through Equation (20).  
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Stress Function Approach 
 

Similar to the formulation of the displacement 

approach, the assumed stress function, , can be 

approximated as given in Equation (21). The 

assumed stress function is further differentiated 

with respect to x and y to obtain the relationship in 

Equation (22). Substituting Equation (22) into Equa-

tion (10) and applying the principle of minimum 

complementary energy field Equations (23) and (24), 

where [kφ] denotes the element stiffness, [qφ] denotes 

the vector of nodal stress function values, and [Qφ] 

denotes nodal load vector. 
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Applying similar process as in the displacement 

function approach based on Equations (17) and (18), 

the torsional constant J and torsional rigidity D 

based on stress function approach can be evaluated 

using Equation (25) and (26), respectively. 
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A FEM program has been developed based on the 

displacement and stress function approach to deal 

with Saint-Venant torsional problems on various 

cross sections. The program was verified and tested 

using several numerical test presented in the follow-

ing section.  

 

Results and Discussions 
 

The results in terms of torsional rigidity as well as 

shear stress distribution are presented based on the 
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types of material used, i.e. homogeneous and non-

homogeneous. Homogeneous material covers isotro-

pic rectangular section, orthotropic elliptical section, 

anisotropic elliptical section, and isotropic multiply-

connected section. Meanwhile, for nonhomogeneous 

material, the results of a square section are pre-

sented. Furthermore, an evaluation of torsional 

constant of wide flange steel section is also consi-

dered. To evaluate the convergence characteristics of 

the developed finite elements, five levels of meshes, 

i.e. coarse, medium-coarse, medium, medium-fine, 

and fine, are used in each problem. The first gene-

rated mesh via MATLAB PDE Toolbox is referred to 

as coarse mesh. Subsequent meshes are referred to 

as medium-coarse, medium, medium-fine, and fine 

meshes. 

 

Problem 1: Homogeneous Isotropic Square 

Section  

 

Table 1 shows the torsional rigidity of homogeneous 

isotropic square section having 2 by 2-unit length. In 

the problem, the shear modulus G and the angle of 

twist θ were assumed to be unity. It can be observed 

that the results converge faster when higher order 

elements are used. To obtain under 1% accuracy, the 

displacement function needs medium and medium-

coarse mesh when using linear and quadratic ele-

ments, respectively. Meanwhile, the stress function 

needs medium-fine and medium-coarse mesh 

employing linear and quadratic elements, respec-

tively. It is important to note that the results are 

better when compared to the previous research [8]. 

By comparing the error introduced by displacement 

function approach to stress function approach, it is 

notable that the rate of convergence of the preceding 

approach is 2.67 time faster than the later approach 

when linear elements are occupied. However, when 

the quadratic elements are adopted, the rate of 

convergence of the stress function increases drama-

tically to 0.75 times the rate of displacement func-

tion. Overall, the results obtained using both 

approaches converge well to the exact solution when 

the mesh is refined. Meanwhile, Figure 2 shows the 

typical shear stress distribution on xz-plane and yz-

plane based on displacement and stress function 

approach. 

   
Shear stress XZ (Cart)                                      Shear stress YZ (Cart) 

(a) Linear elements, displacement function 

 

   
Shear stress XZ (Cart)  Shear stress YZ (Cart) 

(b) Linear elements, stress function 

 

Figure 2. Shear Stress Contour of a Homogeneous Iso-

tropic Square Section 
 

 

Problem 2: Homogeneous Orthotropic Elliptical 

Section 

 

A homogeneous orthotropic elliptic bar with semi-

major axis of 20-unit length and semi-minor axis of 

10-unit length under unity end twisting moment 

was analyzed. The property of orthotropic material is 

taken from literature [7], that is, G11 = 1 and G22 = 8. 

The analysis was done using only displacement 

function approach because in the present formula-

tion of the stress function approach is only applicable 

for the cases of cross sections made from homo-

geneous material. 

 

The distribution of shear stress across the section on 

yz-plane is depicted in Figure 3, which shows that 

there is an abrupt change in shear stress distri-

bution along yz-plane when linear elements are 

used. However, this phenomenon vanishes as higher 

order elements are adopted. 

 

The resulting torsional rigidity is presented in Table 

2. It can be seen that the linear elements give the 

upper bound solution, while the quadratic elements 

result in lower bound value [6]. It also shows that the 

Table 1. Torsional Rigidity of Homogeneous Isotropic Square Section 

 Displacement function Stress function 
Elements Linear e (%) Quadratic e (%) Linear e (%) Quadratic e (%) 

16 2.4167 7.45 2.3333 3.74 1.8438 18.03 2.1333 5.15 
64 2.2981 2.17 2.2576 0.37 2.1391 4.90 2.2387 0.47 
256 2.2621 0.57 2.2499 0.03 2.2210 1.26 2.2484 0.04 
1024 2.2525 0.15 2.2493 0.00 2.2421 0.32 2.2492 0.00 
4096 2.2500 0.03 2.2492 0.00 2.2474 0.08 2.2492 0.00 

Exact solution = 2.24923 [6], e = error 
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medium-fine mesh is needed for the linear element 

to achieve the accuracy under 1%, while the medium 

mesh is already sufficient when the quadratic 

element is employed. Regardless the stress distri-

bution, the results stably converge to the exact 

solution. 
 

 

 
Shear stress YZ (Cart) 

(a) linear elements, displacement function 

 
Shear stress YZ (Cart) 

(b) quadratic elements, displacement function 

Figure 3. Shear Stress Contour of Homogeneous Ortho-

tropic Elliptic Section 

 
Table 2. Torsional Rigidity of Homogeneous Orthotropic 

Elliptic Section 

 Displacement function (x104) 

Elements Linear e (%) Quadratic e (%) 

18 8.5811 40.84 5.4829 10.01 

72 6.8162 11.87 5.9433 2.46 

288 6.2910 3.25 6.0554 0.62 

1152 6.1441 0.84 6.0834 0.16 

4608 6.1058 0.21 6.0905 0.04 

Benchmark solution = 6.0930x104 [7], e = error 

 

Problem 3: Homogeneous Anisotropic Elliptical 

Section 

 

The identical elliptic section as in the previous 

problem but using a homogeneous anisotropic mate-

rial is analyzed using the displacement function 

approach. The anisotropic material property is given 

as G11 = 1, G12 = G21 = 2, and G22 = 8 [7]. Figure 4 

shows the shear stress contour across the section, 

which displays an unsmooth contour transition for 

yz-plane when linear elements are used. Proper 

shear stress distribution can be achieved when 

higher order elements are used. Similar pheno-

menon occurs for shear stress distribution for xz-

plane. Furthermore, obtaining highly accurate result 

using linear elements requires high demand in 

computational resources because 1% accuracy can be 

obtained only if fine mesh is used, as indicated in 

Table 4. In contrast, quadratic elements can yield 

such accuracy using only the medium mesh. 

However, even the stress contour shows discontinue-

ties, the results show stable convergence as the 

meshes are refined. 

 

 
Shear stress YZ (Cart) 

(a) linear elements, displacement function 

 

 
Shear stress YZ (Cart) 

(b) quadratic elements, displacement function 

Figure 4. Shear Stress Contour of Homogeneous Aniso-

tropic Elliptical Section 

 
Table 3. Torsional Rigidity of Homogeneous Anisotropic 

Elliptical Section 

 Displacement function (x104) 

Elements Linear e (%) Quadratic e (%) 

18 5.8447 91.88 2.8522 6.36 

72 3.9306 29.04 2.9810 2.13 

288 3.3006 8.36 3.0290 0.56 

1152 3.1142 2.24 3.0419 0.13 

4608 3.0638 0.58 3.0453 0.02 
Benchmark solution = 3.046x104 [7], e = error 

 

Problem 4: Homogeneous Isotropic Multiply-

connected Section 

 

Figure 5 shows the shear stress distribution of 

homogeneous isotropic multiply-connected section 

having inner radius of 1-unit length and outer radius 
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of 3-unit length in polar coordinate. The shear 

modulus (G) and the angle of twist (θ) are assumed 

to be unity [7]. It can be observed that the shear 

stress distribution is in agreement with the theo-

retical result.  

 

 
Shear stress TZ (Polar) 

Figure 5. Shear Stress Contour of Homogeneous Isotropic 

Multiply-connected Section 

 
Table 4 demonstrates the high accuracy of the finite 
element results, that is, an accuracy below 1% can be 

achieved using medium-coarse meshing. The results 
also indicate that the program is able to yield a good 
convergence. Another notable finding is that the 
results’ convergence is highly affected by the number 

of elements rather than the order of elements. This 
can be caused by the presence of inner hole, which 
constraints the meshing to keep the quality of ele-
ments. Furthermore, for multiply-connected section, 

only displacement function approach is considered. 

The stress function approach is currently not con-
sidered because the complexity on boundary con-
ditions. 

 
Table 4. Torsional Rigidity of Homogeneous Isotropic 

Multiply-connected Section 

 Displacement function 

Elements Linear e (%) Quadratic e (%) 

138 124.2882 1.09 124.4008 1.00 

552 125.3232 0.27 125.3371 0.26 

2208 125.5788 0.07 125.5805 0.07 
8832 125.6425 0.02 125.6427 0.02 

35328 125.6584 0.00 125.6584 0.00 

Exact solution = 125.6637 [2], e = error 

Benchmark solution = 122.8 (2.28%) [9], 125.6 (0.05%) [7] 

 

Problem 5: Nonhomogeneous Square Section 

 
Figure 6 shows the shear stress distribution of 2 by 
2-unit length nonhomogeneous square section. The 

compound section is composed of two materials with 
relative ratio of shear modulus equals to 2.0, i.e. G1 = 
1 and G2 = 2 for the right-half and the left-half of the 

section, respectively. The angle of twist is assumed to 
be unity. Observing the shear stress distribution, it 
is notable that the shear stress at the left perimeter 
is higher than at the right, which in agreement to 

the results in literature [10]. Another key finding is 

the stress jump at the boundary of two distinct 
materials. Furthermore, Table 7 reveals that the 

results stably converge to the benchmark solution. 
 

 
Shear stress YZ (Cart) 

(a) quadratic elements, displacement function 
 

 
Shear stress YZ (Cart) 

(b) quadratic elements, stress function 

Figure 6. Shear Stress Contour of Nonhomogeneous 
Square Section (SSCNH) 
 

Application to Steel Profiles W36x256 
 

Table 6 shows the torsional constant of W36x256 
steel section, which was obtained using displacement 
and stress function approach. Shear modulus G = 
29,000 ksi and twisting moment M = 150 lb-in were 
used in the analysis. The results reveal that the 
torsional constant converge to 49.8 in4, which differs 
to the benchmark solution, i.e. 53.3 in4. This can be 
because the model neglects the radial areas around 
the web-flange corners, which definitely reduces the 
torsional constant. 
 

Meshing Requirements 
 

Table 7 shows the mesh density rating to achieve 
results of 1% accuracy compared to the benchmark 
solutions. It is seen that to achieve such accuracy, 
the displacement function approach needs medium 
to medium-fine mesh when linear elements are used. 
Whilst, medium to medium-coarse mesh is sufficient 
when quadratic elements are used. The result’s 
accuracy obtained from the stress function approach 
introduces notable error when linear elements are 
used. Nevertheless, the approach shows significant 
improve when quadratic elements are adopted. 
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Conclusions 

 

A FEM program based on the displacement and 

stress function approaches has been developed to 

solve the Saint-Venant torsion problems. Both 

approaches were found to be reliable to solve 

torsional problems on various geometries and mate-

rial types. The results show that both approaches 

yield stable numerical results in the sense that the 

use of a finer mesh as well as a higher order element 

will give a smaller error. Nonetheless, unlike the 

displacement approach, the stress function approach 

is currently limited to evaluate singly-connected 

isotropic section only due to the complexity on the 

boundary conditions. Furthermore, the use of linear 

elements in the displacement and stress function 

approaches require medium to medium-fine and 

medium-fine mesh size, respectively. Meanwhile, 

when quadratic elements are used, the stress 

function approach outperforms the displacement 

function approach by requiring only medium-coarse 

mesh size compared to medium to medium-coarse 

mesh size of the displacement’s. Furthermore, the 

use of linear elements in orthotropic and anisotropic 

material causes shear stress contour jump. The 

phenomenon vanishes when higher degree of ele-

ments is employed. Another shear stress jump 

occurs at the connection of two distinct materials. 

Special treatment must be made to eliminate the 

discrepancy. Further research can be conducted to 

develop the program such that it can deal with 

multiply-connected sections using stress function 

approach as well as further development based on 

hybrid approach. 
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