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Abstract. The Upper Citarum River Basin is the main catchment area of the 

Saguling Dam, the most upstream of three cascade dams in the Citarum River 

Basin. During the last 30 years, rapid economic development has led to an 

increase of water extraction and land conversion from green area to developed 

area. Also, evidence of climate change can clearly be seen from the 

climatological records of a number of climatology stations in this basin over the 

last few decades. In this study, the effect of anthropogenic and climate change in 

the Upper Citarum River Basin river discharge was simulated using the 
Sacramento Catchment Model. Historical river discharge, rainfall, climatology, 

and land cover from 1995 to 2009 were used for model calibration and 

verification. The multi-model mean monthly rainfall and the temperature 

projection taken from Coupled Model Intercomparison Project 5 (CMIP5) for the 

RCP6 and RCP8.5 climate change scenarios were statistically downscaled and 

used as input for a simulation of future river discharge from 2030 to 2050. The 

result showed that the combination of anthropogenic and climate change may 

result in a significant decrease of low flow in the Upper Citarum River Basin. 

This study underlines the importance of land cover and climate change factors 

for future infrastructure planning and management in the Upper Citarum River 

Basin. 

Keywords: Citarum River Basin; climate change; CMIP5; land cover change; river 

discharge; Sacramento Catchment Model. 

1 Introduction 

The Citarum River Basin (CRB) is one of the most important river basins for 
West Java Province and the Special Region of Jakarta. To have a reliable water 

supply for domestic, agriculture, and energy use in the surrounding area, three 

cascade dams have been built along the main Citarum river: Saguling, Cirata, 

and Jatiluhur. About 240 thousand hectares of irrigation area rely on water 
supply from Jatiluhur Dam. Yet, the area downstream of the cascade dams still 

experiences floods in extremely wet years (for example in 2010) and droughts 

in extremely dry years (for example in 2015).  
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The Upper CRB is the main catchment area of the Saguling Dam, the most 

upstream dam of the three cascade dams. The Upper CRB covers a number of 

districts, including Bandung city, where floods occur almost annually. High 

sedimentation and riverbank acquisition, mostly for settlement, have reduced 
channel capacity to convey flood discharge. Furthermore, the flat topographical 

conditions in the middle of the Upper CRB results in relatively long periods of 

inundation during flooding [1].  

During the last 30 years, this basin has experienced rapid economic 

development, which has led to an increase of water extraction and land 

conversion from green or conservation area to open or developed area. Water 

demand has increased because of high population growth in more densely 
populated areas, economic development, and a higher life standard, leading to 

increased extraction of surface water and ground water [2-4]. Prolonged 

droughts, as affected by climate change, may disturb agricultural production in 
Indonesia, including in the CRB area. Water scarcity during the dry season 

could result in more severe conflicts and competition among water users [5].  

Indonesia is influenced by the Indian Ocean Dipole (IOD) and El-Niño 
Southern Oscillation (ENSO). The Western part of Indonesia is affected mostly 

by IOD, while the Eastern part is mostly affected by IOD. Being located 

between two oceans, climate variability has a significant impact on the 

Indonesian climate. The Upper CRB is located on Java Island in the middle of 
the Indonesia archipelago and therefore climate variability in the Indian and 

Pacific Ocean have a significant impact on river discharge in the Upper CRB 

[6,7].  

Historical records of river discharge in the Upper CRB for the last decades 

show that although the annual average discharge is relatively constant, the 

average river discharge in the wet season shows an increasing trend, while the 

average river discharge in the dry season shows a decreasing trend. Historical 
records of monthly rainfall display a similar pattern: although the annual 

average rainfall is relatively constant, the average monthly rainfall in the wet 

season shows an increasing trend, while the average monthly rainfall in the dry 
season shows a decreasing trend. Both river discharge and rainfall data records 

indicate that human activities and climate change could contribute to more 

intense floods and droughts in the future [1].  

The water resource problem in the Upper CRB is an example of a case where 

flood and drought cannot be solved only by infrastructure development. Good 

land use and water resources management, adequate infrastructure maintenance 

and operations, climate prediction, hazard mitigation and information 
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dissemination are necessary to minimize the impact of water-related hazards in 

the future [8].  

2 Materials and Method 

2.1 Location of Study Area, Historical Rainfall, Land Cover 

Change 

The Upper CRB is located between 107°10’ and 108°00’ East and between 

6°40’ and 7°20’ South, covering an area of about 1700 km
2
. Administratively, it 

covers the area of West Bandung Regency, Bandung Regency, Bandung city, 

Cimahi city, and Sumedang Regency. The Upper CRB consists of 13 river sub-
catchments: Citarum Hulu, Citarik, Cikeruh, Cikapundung, Cisangkuy, 

Cipamokolan, Cidurian, Cicadas, Citepus, Cisangkuy, Cibolerang, Ciwidey and 

Cibereum rivers, which flow toward the main stream of the Citarum river in the 
middle of the Upper CRB. The Nanjung River Discharge Station is located 

downstream of the CRB, before the Citarum river flows into the Saguling Dam. 

In this study, Nanjung Station delineates the downstream boundary of the Upper 
CRB catchment. The location of the Upper CRB is shown in Figure 1. 

 
Figure 1 Location of study area. 
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A Thiessen polygon was used to compute the catchment rainfall average in the 

Upper CRB for 26 rainfall stations (see Figure 1). Based on computation using 

the Thiessen method, the average rainfall in the Upper CRB from 1980 to 2009 

was 1892 mm/year, varying from a minimum of 1356 mm/year in 1982 to a 
maximum of 2523 mm/year in 1986. Average monthly rainfall in the rainy 

season (October-March) and the dry season (April-September) was 77 

mm/month and 243 mm/month, respectively.  

A time series of Google Earth images of the Upper CRB, dated 1985, 1995, 

2005 and 2015, shows the trend of increasing developed area and moderately 

vegetated area and decreasing highly vegetated area. A rough projection of land 

cover change based on these images shows that within 30 years highly 
vegetated area will decrease from 37.1% to 19.4% coverage, moderately 

vegetated area will increase from 52.4% to 57.5% coverage, while the total of 

moderately and highly developed area will increase from 10.5% to 23.1%. An 
indication of land cover change in the Upper CRB is shown in Figure 2. 

Figure 2 shows that the trend of land cover change is relatively linear, especially 

for moderately developed area (r
2
 = 0.994). Therefore, a linear trend of land 

cover change was assumed in making a projection of future land cover.  

 

Figure 2 Trend of land cover change in the Upper CRB. 

2.2 Future Climate Projection 

The World Climate Research Program (WCRP) Working Group on Coupled 
Modelling (WGCM) started promoting the fifth phase of the Coupled Model 

Inter-comparison Project (CMIP5) in 2008. The objective of CMIP5 is to 
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provide a framework for coordinated climate change experiments for 

assessment within the scope of AR5 and beyond.  

Average monthly rainfall and temperature from the multi-model mean of 

CMIP5 results for climate change scenarios RCP6 and RPC8.5 were used as 
data input in a rainfall-runoff model for projecting the future discharge in the 

Upper CRB. The CMIP5 dataset covers the result of 39 scenario runs from 

different models. The data were downloaded from KNMI Climate Explorer 
website [9] (https://climexp.knmi.nl).  

2.3 Statistical Downscaling of Future Rainfall Projection 

Downscaling is a method for obtaining high-resolution climate information 
from relatively coarse global climate models (GCMs). The spatial resolution of 

the CMIP5 datasets is about 2.5° x 2.5° (275 x 275 km near the equator), which 

is far greater than the area of the Upper CRB, which is only about 50 x 40 km. 
Therefore, a downscaling method was applied to correct the large-grid CMIP5 

dataset for the smaller grid of the Upper CRB.  

Many studies have used statistical downscaling techniques for basin scale 

hydrology analysis. For example, [10] used four statistical downscaling 
methods to get 12-km grid resolution data from the original NCEP/NCAR 

Reanalysis grid size, to simulate wet-day fraction, extreme events, and weather 

patterns in the United States. Reference [11] used three statistical downscaling 
methods for simulating trends of wet spell, dry spell, and rainfall inter-annual 

variability in the Yellow River Region. Reference [12] used fifteen different 

RCP models and several statistical downscaling methods to simulate extreme 
river flows in 11 catchments in the European region. Reference [13] used 

statistically downscaled GCM output to simulate river discharge in the Upper 

Hanjiang Basin, China. Reference [14] used a statistical bias correction method 

for extreme rainfall, normal rainfall and frequency of dry days. Bias correction 
of heavy rainfall was conducted by using generalized Pareto distribution (GPD), 

while bias correction of normal rainfall was conducted by using monthly 

correction and frequency based on gamma distribution.  

Since the output of CMIP5 is in the form of a monthly series, a stochastic 

approach is needed to generate daily precipitation series from the monthly data. 

Similar approaches have been used in other studies. For example, [15] 

generated correlated daily rainfall by using a diagonal band copula with a single 
parameter to generate lag-1 correlated random numbers for application in case 

studies of Parafield, South Australia and Mesing, Malaysia. Reference [16] used 

a 10-state first-order Markov chain and a non-parametric rainfall model, 
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adopting a doubly-stochastic transition-matrix, for application in a case study of 

the Torne River Catchment, Northern-Sweden/Western-Finland. 

The present study combines the concept of statistical downscaling used by [14] 

and the stochastic method used by [15] to generate daily rainfall series for 
future scenarios based on monthly rainfall projections from CMIP5. 

Computation steps for this analysis were as follows: 1) develop correction 

functions for CMIP5 rainfall data for the historical time series (1980-2009); 2) 
apply the correction functions from step 1 to CMIP5 future rainfall projections 

(2030-2050); 3) generate daily rainfall series from the corrected monthly data in 

step 2 based on the daily rainfall probability curve for 5 monthly rainfall 

categories: dry, normal-dry, normal, normal-wet, and wet.  

In the first step, historical monthly rainfall records from 1980 to 2009 were 

plotted together with the CMIP5 multi-model mean for the same period. 

Correction functions were applied to match the multi-model mean rainfall 
probability distribution curve with historical rainfall distribution in the Upper 

CRB. The rainfall data correction functions that gave the smallest error 

compared to the historical dataset were in Eqs. (1) and (2):  

 C1 = -0.1273 ln (P) + 0.6726 {0<P<0.6}  (1) 

 C2 = -1.7844 (P) + 1.8099 {P>0.6}  (2) 

where C1 and C2 are CMIP5 rainfall data correction factors, and P is probability 

of occurrence. The plot of historical rainfall data, CMIP5 mean rainfall data, 
and the corrected CMIP5 data are shown in Figure 3. 

 

In the second step, a stochastic approach was used to generate daily rainfall 
series from the corrected CMIP5 monthly data as in Eqs. (3) to (7) as follow:  

 ��������	 = ���
�
����

 (3) 

 � = �����0 − 1� (4) 

 ������� = �� !�", $, ��; &�� � < ��������	
0; &�� � ≥ ��������	

 (5) 

 ��������	′ = ∑ �������
����
�,!  (6) 

 ������� ′ = �������
-�.�/0�12
-�.�/0�123 (7) 

where:  

probmonth is the probability of occurrence of rainfall in a month, x is a random 

number between 0 and 1, nrain is the average number of rain days in a month, 
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nday is the number of days in a month, -1
(,,x) is the inverse gamma 

distribution of daily rainfall in the Upper CRB: rainmonth’ is the sum of daily 
rainfall, rainday is the daily rainfall computed from Eq. (5), rainday’ is the 

normalized daily rainfall, and rainmonth is the actual monthly rainfall. 

 

Figure 3 Historical, CMIP5, and corrected CMIP5 rainfall data for the Upper 

CRB. 

Two approaches were used to represent the daily rainfall distribution function: 

1) using two categories of monthly rainfall, i.e. below average months 
(R < R50%) and above average months (R > R50%); 2) using five categories of 

monthly rainfall, i.e. dry months (R < R80%); dry-normal months 

(R80% < R < R60%); normal months (R60% < R < R40%); wet-normal months 
(R40% < R < R20%); and wet months (R > R20%). 

The values of  and  in gamma distribution for each rainfall category are 
shown in Table 1.  

Table 1 Values of  and  in Gamma distribution for monthly rainfall series. 

Category of monthly rainfall   

Below average (R < R50%) 0.636 5.674 

Above average (R > R50%) 1.348 6.405 

Wet (R < R20%) 1.549 6.801 

Normal-wet (R20% < R < R40%) 1.273 5.689 

Normal (R40% < R < R60%) 0.869 5.785 

Normal-dry (R60% < R < R80%) 0.465 5.399 

Dry (R < R80%) 0.119 5.501 
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2.3.1 Catchment Average Temperature 

Data from four climatology stations in West Java (Bandung, Citeko, Darmaga, 

and Jatiwangi) were used to correct the CMIP5 multi-model mean average 
temperature data for the Upper CRB catchment. The average temperature was 

assumed to be correlated linearly to ground elevation. The average temperature 

data from the above stations are shown in Figure 4. The trend line for obtaining 

the average temperature from the given ground elevation is as in Eq. (8). 

 

Figure 4 Average temperature data for West Java. 

 T = 27.34 - 0.006H (8) 

where T is the average temperature, and H is the ground elevation from mean 

sea level (m). 

For daily rainfall-runoff simulation, linear interpolation was used to generate a 

daily temperature series from the monthly data by assuming that the average 

monthly temperature occurs in the middle of each month.  

2.3.2 Catchment Average Evapotranspiration 

The Thornthwaite method was used to estimate the average evapotranspiration 

for the Upper CRB. While other evapotranspiration calculation methods use 
several climatology parameters, such as wind speed, humidity and sunshine 

duration, Thornthwaite’s method only uses temperature data, which are 

available in most GCM datasets, including CMIP5.  
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2.3.3 Rainfall-runoff Model 

This study used the Sacramento Catchment Model to simulate river discharge 

from rainfall and evapotranspiration input. The Sacramento Catchment Model 
was developed in the 1970s for the California-Nevada River Forecast System to 

provide an effective technique for streamflow forecasting. This model uses 

precipitation, evapotranspiration, and a number of catchment characteristics as 

input for the discharge computation by considering hydrological processes such 
as soil moisture, water balance, direct runoff, surface runoff, interflow, and base 

flow [17,18]. After more than 40 years, this model is still widely used in 

hydrological research all over the world. For example, [19] used the Sacramento 
model together with two other rainfall runoff models to simulate current and 

future discharge in the Upper Niger Basin; [20] used the Sacramento model 

together with four other rainfall runoff models to simulate streamflow in the 
Molawin and Eastern Dampalit Watershed in the Philippines; [21] coupled the 

Snow-17 model with the Sacramento model to simulate hydrological response 

in 671 river basins in the United States. 

To include the effect of land cover change in the rainfall-runoff model, 
historical river discharge, rainfall, and temperature data from 1995 to 1999 were 

used for model calibration for the early years of catchment condition, while 

historical data from 2005 to 2009 were used for model calibration in later years 
of catchment condition. Nash Sutcliffe Efficiency (NSE) and Correlation 

Coefficient (r
2
) were used as statistical indicators of goodness-of-fit between the 

model and the data.  

For the future scenario, the corrected CMIP5 multi-model mean of the rainfall 

and temperature datasets from 2030 to 2050 was used as input for the rainfall-

runoff model. Two scenarios of future change were applied: the first by 

assuming the same impervious land cover in 2030-2050 as indicated by the land 
cover map from 2015; the second by assuming a linear trend of increase of 

impervious land cover in the future based on land cover change from 1980 to 

2015. 

3 Results and Discussion 

3.1 Rainfall-runoff Model Calibration  

Calibration was conducted by adjusting several main parameters that represent 

hydrological characteristics in the Sacramento Catchment Model. The used 

values based on calibration from 1995-1999 and 2005-2009 are shown in 

Table 2. The calibration result is shown in a time series and flow duration curve 
between historical and simulated discharge in Figure 5. 
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Table 2 Calibrated parameters for rainfall-runoff simulation. 

Parameters Unit Description Value 

UZTWM mm Upper zone tension water maximum 75 

UZFWM mm Upper zone free water maximum 100 

LZTWM mm Lower zone tension water maximum 100 

LZFSM mm 
Lower zone secondary free water 

maximum 
5 

LZFPM mm Lower zone primary free water maximum 5 

UZK - Upper zone coefficient 0.03 or 0.1 

LZSK - Lower zone secondary coefficient 0.03 

LZPK - Lower zone primary coefficient 0.03 

ZPERC - Coefficient of percolation rate increase 1 

REXP - Exponent of percolation rate 3.0 

PFREE - Portion of percolated free water 0.2 
PCTIM - Portion of impervious land area 0.17-0.3* 

* PCTIM value for simulation of 1995-1999 = 0.29, and for 2005-2009 = 0.34 

The NSE value ranges from -∞ to 1, where an NSE value of 1 represents a 
perfectly fitting model [22]. In general, a model with NSE > 0.5 is considered 

good. From the calibration process, it was found that UZK is the most sensitive 

parameter determining discharge fluctuation.  

Two calibration sets were used by applying different values of UZK. 

Calibration 1 used a UZK value of 0.03, while Calibration 2 used a UZK value 

of 0.1. The result shows that Calibration 1 gave a relatively close result for low 
flow but underestimated high flow. Calibration 2 gave a relatively close result 

for high flow but underestimated low flow. Calibration 2 also gave a flat trend 

for low flow below Q80%. The calibration results for both sets are shown in 

Table 3. 

Table 3 Calibrated parameters for rainfall-runoff simulation. 

Year UZK NSE 

1995-1999 0.03 0.87 

1995-1999 0.10 0.46 

2005-2009 0.03 0.84 

2005-2009 0.10 0.84 

Compared to the goodness-of-fit criteria of NSE, both calibration results 

showed an acceptable to good result. Since the main purpose of this study was 
to analyze the trend of low flow, a UZK value of 0.3 was selected. The 

calibrated parameters were used to simulate river discharge trends by using 

climatological projection data as input under assumption of future land cover 

change.  
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Figure 5 Simulated vs. observed river discharge data for the Upper CRB.  

3.2 Reliability of Stochastic Analysis for Daily Rainfall Generator 

As previously described in Section 2.1.5, two approaches were used in the 

stochastic analysis for the daily rainfall generator: 1) using two categories of 
monthly rainfall, i.e. below average months (R < R50%) and above average 

months (R > R50%); 2) using five categories of monthly rainfall, i.e. dry months 

(R < R80%); dry-normal months (R80% < R < R60%); normal months 
(R60% < R < R40%); wet-normal months (R40% < R < R20%); and wet months 

(R > R20%). The rainfall probability curve of the historical rainfall data (1980-

2009) while the stochastic data are shown in Figure 6. 
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Figure 6 Simulated vs. observed river discharge data for the Upper CRB.  

Figure 6 shows that the use of five monthly rainfall categories for developing 

five gamma distribution functions gave relatively better results for the stochastic 
daily rainfall data. Meanwhile, the use of two gamma distribution functions 

gave overestimated results, the use of five gamma distribution function gave 

slightly underestimated results but they were closer to the data trend, especially 
at low flow. A comparison between the daily rainfall data and the stochastic 

data is shown in Table 4. From the comparison, the average deviation of the 

generated daily rainfall by using 5 functions compared with the historical data at 

extremely high rainfall (R > R20%) was about 0.2mm, while for extreme low 
rainfall (R < R80%) it was about 0.1 mm.  

Table 4 Calibrated parameters for rainfall-runoff simulation. 

Rainfall 

category 

Average Rainfall 

Data  

(1980-2009) 

Average of  

2 Stochastic  

Functions 

Average of  

5 Stochastic  

Functions 

R > R20% 17.6+6.8 mm 20.3+8.0 17.4+7.0 

R40% < R < R20% 8.2+1.3 mm 9.4+1.6 7.7+1.4 

R60% < R < R40% 4.5+0.8 mm 5.2+0.9 4.1+0.8 

R80% < R < R60% 2.1+0.6 mm 2.5+0.6 1.9+0.5 
R < R80% 0.6+0.3 mm 0.7+0.5 0.5+0.3 

The Kolmogorov-Smirnov (K-S) test was applied to test the reliability of the 

generated daily data compared to the historical data. By using  = 0.05 for 199 

samples, the maximum allowable deviation (Dn

) was 0.096. The maximum 

deviation for 2 and 5 stochastic functions was 0.048 and 0.032 respectively. The 

above analysis shows that the generated daily rainfall data were within the 

acceptable limit of error and could be used for further simulation. 
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3.3 Simulation of Future River Discharge Trends 

For simulation of future river discharge trends, two scenarios were used: 1) 

considering climate change only; 2) considering climate change and land use 
change. For the first scenario, rainfall and temperature data from the corrected 

CMIP5 datasets were used and the proportion of impervious land cover in 2030-

2050 was assumed to be similar with the proportion of impervious land cover in 

2005. For the second scenario, the corrected climate change projection scenario 
data were used together with the assumption of a linear increase of the 

proportion of impervious land cover in 2030-2050. Estimation of impervious 

land cover was conducted by using the concept of composite runoff coefficient 
with the rational method. The assumed runoff coefficients for each land cover 

type and projection of impervious land cover in the Upper CRB are shown in 

Table 5. 

Table 5 Calibrated parameters for rainfall-runoff simulation. 

Year 
HV MV MD HD C-composite 

C = 0.1 C = 0.3 C = 0.75 C = 0.9 (impervious cover) 

1985 37.1% 52.4% 9.9% 0.6% 0.274 

1995 35.8% 50.5% 12.9% 0.8% 0.292 

2005 26.3% 54.5% 18.5% 0.7% 0.335 

2015 19.4% 57.5% 22.2% 0.9% 0.366 

2045 2.2% 62.5% 34.7% 1.2% 0.460 

Notes: HV = highly vegetated area; MV = moderately vegetated area; MD = moderately 
developed area; HD = highly developed area 

Therefore, for Scenario 1, the proportion of impervious cover was about 0.34, 

i.e. the C-composite value in 2005. For Scenario 2, the proportion of impervious 

cover was about 0.46, which is the projection of C-composite in 2045. The 

simulation results of the above scenarios are shown in Figure 7. 

Figure 7 shows that simulation with a land use change scenario tended to have 

higher high flow, which represents flood discharge, and lower low flow, which 

represents base flow during the dry season. The simulation result tended to be 
overestimated at very low flow (below Q90%). The historical data show a low 

flow decrease with a steeper trend, up to near-zero discharge, while the 

simulation result shows a milder trend, with minimum discharge about 5-6 m
3
/s. 

Based on this comparison, the simulation result seems relatively valid up to 

Q80%. Therefore, analysis of the low flow trend was conducted by comparing the 

average low flow discharge with 80% probability of occurrence (Q80%).  
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Figure 7 Simulated river discharge data in the Upper CRB (2045-2050). 

Q80% for 1977-1988 was about 17.5m
3
/s, while it was about 11.2m

3
/s for 1990-

2009. The above comparison shows that within about 30 years, the historical 

data show a trend of Q80% decreasing in the Upper CRB by about 36%. For 

‘without land use change’ in the RCP6 scenario, the projected Q80% discharge in 
2030-2050 is about 11.5 m

3
/s. For ‘with land use change scenario’ in the 

RCP8.5 scenario, the projected Q80% discharge in 2030-2050 is about 9.6m
3
/s. 

The Q80% decrease for the RCP6 simulation compared to the period of 1997-

1988 is 34.2% for the scenario without land use change and 45.1% for the 
scenario with land use change. For ‘without land use change’ in the RCP8.5 

scenario, the projected Q80% discharge for 2030-2050 is about 9.4 m
3
/s, while 

for ‘with land use change’ in scenario RCP8.5, the projected Q80% discharge in 
2030-2050 is about 7.2m

3
/s. The Q80% decrease for the RCP8.5 simulation 

compared to the period 1997-1988 is 46.3% without land use change and 58.9% 

with land use change.  

The above simulations show that climate change leading to a decreasing trend 
of low flow in the Upper CRB is significant, even if land use change from 

pervious to impervious land cover is controlled or restrained to remain constant. 

From the historical land cover map of the Upper CRB it is likely that land use 
change to more impervious land cover will continue. It is very likely that the 

combination of climate change and land use change in the Upper CRB will 

result in more severe droughts in the future as well as more intense flooding. 
Therefore, an updated standard design for flood infrastructure, which covers the 

increasing trend of hydrological extremes, needs to be promoted in the future. 
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Population increase and economic growth will generate higher water demand. 

In the future, it is very likely that the water resources supply system in the 

Upper CRB will experience higher pressure due to the decreasing water 

availability as affected by climate change and land use change, and increasing 
water demand as affected by population increase and economic growth. 

Application of rainwater harvesting and water conservation by the community 

need to be promoted and disseminated to reduce the pressure on the existing 
public water supply system. 

4 Conclusions 

Historical data and simulation results on the Upper CRB show that the average 
low flow discharge (Q80%) tended to decrease from about 17.5m

3
/s in 1977-1988 

to about 11.2m
3
/s in 1990-2009. Our simulation result for 2030-2050 shows that 

the low flow trend may continue to decrease in the future. Simulation by using 
the output of the multi-model mean of CMIP5 for RCP6 and RCP8.5 shows that 

Q80% in 2030-2050 may continue to decrease to about 11.5-9.4m
3
/s, i.e. a 

decrease of 34.3-46.3% compared to the condition in 1977-1988. If the trend of 

land use change is included, Q80% in 2030-2050 could be even lower at about 
9.6-7.2m

3
/s, i.e. a decrease of about 45.1-58.9%.  

Combination of statistical downscaling and stochastic analysis to generate daily 

series data together with a lump rainfall-runoff model can be used to simulate 
river discharge trends. However, the result may be unreliable for simulating 

extreme events. As shown in this study, the simulation result for very low flow 

tends to be overestimated, while the simulation result for average low flow or 
high flow for long time series may still produce a good result. Therefore, this 

type of analysis is suitable for projection of future water availability but not for 

extreme weather events. 

The above analysis shows that the effect of climate change on river water 
discharge in the Upper CRB is clear. Therefore, the Upper CRB needs an 

appropriate land use policy, which restrains the increasing trend of land use 

change together with developing more alternatives for increasing the capacity of 
the water supply system and good flood management. Otherwise, more intense 

water resource problems will continue to emerge in the Upper CRB. 
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