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Abstract

A new calcium(Il) complex was synthesized by one-pot synthesis method from disodium
4-formylbenzene-1,3-disulfonate, isonicotinic acid hydrazide and Ca(ClO4)z2*2H20. The structure of cal-
cium(Il) complex was determined by elemental analysis, IR and single crystal X-ray diffraction. The re-
sults show that the Ca(Il) complex molecules form 3D network structure by the interactions of m-m
stacking and hydrogen bonds. The Ca(II) complex catalyst could efficiently catalyse oxidation of ben-
zylic alcohol with good conversion of benzyl alcohol (78 %) and excellent selectivity of benzaldehyde (98
%). Copyright © 2018 BCREC Group. All rights reserved.
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1. Introduction

The design and synthesis of metal-organic
complex catalytic materials have been one of
the most interesting researches in the materials
chemistry [1-3]. Because they show outstanding
catalytic activities for many organic reactions
such as CO:2 cycloaddition [4,5], CO2 coupling
[6], degradation of organic dyes [7], A3 coupling
reaction [8, 9], iso-selective ring opening [10-
12], cross-aldol condensation [13], knoevenagel
condensation [14-19], tandem reaction [20], and
so on. Benzaldehyde is an important intermedi-
ate of organic synthesis and fine chemical
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products, widely used in medicine, dyes, spices,
resins, and other industries. However, the ben-
zaldehyde was prepared by oxidation of benzyl
alcohol with toxic metal oxides, peroxides,
halides, and so on [21-23]. So, the development
of environmentally friendly catalysts is very
attractive. We have been devoted to the study
on synthesis, structure and catalytic property of
metal complexes [24-27]. In this paper, a new
calcium (IT) complex was synthesized by one-pot
synthesis method from disodium
4-formylbenzene-1,3-disulfonate, isonicotinic ac-
id hydrazide and Ca(ClO4)2-2H20. The Ca(Il)
complex catalyst could efficiently catalyze oxida-
tion of benzylic alcohol with good conversion of
benzyl alcohol and excellent selectivity of ben-
zaldehyde.
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2. Materials and Method
2.1 Materials and Equipments

Disodium 4-formylbenzene-1,3-disulfonate,
isonicotinic acid hydrazide and Ca(ClO4)2-2H20
were supplied by Aldrich. Elemental analysis
was carried out on a Elemental Vario EL-III
elemental analyzer. IR (4000-400 cm-!) was ob-
tained with a Nicolet Nexus 670 FTIR spectro-
photometer. The crystal structure of calcium(II)
complex was analyzed using a Bruker Amart
CCD diffractometer.

2.2 Synthesis of Ca(II) Complex

Disodium 4-formylbenzene-1,3-disulfonate
(0.1551 g, 0.5 mmol), isonicotinic acid
hydrazide (0.6852 g, 0.5 mmol) and
Ca(Cl04)22H20 (0.110 g, 0.5 mmol) were dis-
solved in 15 mL ethanol/water (v:v = 2:1) solu-
tion. The above mixture was heated to 65 °C for
6 h with stirring. After cooled, the solution was
filtered and the colorless block crystals were
obtained by slowly evaporating the filtrate at
room temperature. Yield: 61 %. IR v/cm: 3445
cm! (O-H stretch), 1656 cm-! (C=N), 1227 cm™!
(SOs), and 1165 cm! (SOs). Anal. Calc. for
C26H42Ca2N6026S4: C, 29.35 %; H, 3.95 %; N,
7.90 %. Found: C, 29.08 %; H, 4.26 %; N, 7.75
%. The reaction equation for the formation of
Ca(II) complex is shown in Figure 1.

2.3 Crystal Structure Determination

Single crystal data of Ca(Il) complex was ob-
tained from Bruker Smart Apex-II CCD area
detector diffractometer by using MoKa radia-
tion and ¢@~w scan mode at 293 (2) K. The
structure was solved by direct methods with
SHELXS-97 [28] and refined by full-matrix
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Figure 1. The reaction equation for the for-
mation of Ca(Il) complex
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least-squares techniques on FZwith SHELXL
[29]. The crystallographic data and refinement
details for Ca(Il) complex are listed in Table 1.

2.4 Catalytic Test of Benzyl Alcohol Oxidation

In a typical experiment, benzyl alcohol (0.2
mmol, 0.0216 g), solvent (1.50 g), and catalyst
(0.060 g) were added into a 10 mL stainless
steel autoclave. After the reactor was sealed,
the pure O2 was pumped to replace the atmos-
phere for six times. Then under pressure of 1
MPa, the mixture was kept at 120-140 °C for 6
h with vigorous stirring. After the reaction, the
mixture was centrifuged to remove the cata-
lyst. The conversion of benzyl alcohol and the
selectivity of benzaldehyde were determined by
gas chromatography equipped with a SE-54 ca-
pillary column (GC-1100, 0.25 mm % 0.25 mm X
30 m).

Table 1. Crystallographic data and refinement
details for Ca(IT) complex

C26H42Ca2Ns02654
Formula weight 1063.05
Temperature/K 293(2)

Empirical formula

Crystal system triclinic
Space group P-1
alA 7.1961(14)
blIA 11.972(2)
/A 12.275(3)
al° 89.76(3)
plr° 88.09(3)
yI° 83.21(3)
Volume/As 1049.5(4)
Z 1
Pealemg/mm3 1.682
p/mm-1 0.571
S 1.048
F(000) 552
Index ranges -8<h<9,
-156 <k <15,
-156<1<15
Reflections collected 10314

Independent reflections 4771 [R(int) = 0.0228]
Data/restraints/parameters 4771/0/297
Goodness-of-fit on F2 1.085

Final R indexes [[> 20 (I)] R1=0.0413, wR2=0.1258
Final R indexes [all data]  R:1=0.0452, wR2 =0.1187
Largest diff. peak and hole 0.837 and -0.659 e A
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3. Results and Discussion
3.1 IR Spectra of Ca(II) Complex

The IR spectrum (Figure 2) of Ca(II) com-
plex shows the bands at 3445 cm! (O-H
stretch), 1656 cm-! (C=N), 1227 cm-! (SOs°), and
1165 cm! (SOs3’), respectively. The results of IR
show that the Ca(Il) complex contains H2O
molecules and only the O atoms of SOs groups
take part in coordination with Ca(Il) ion by
comparison with ref. [30]. The results are also
confirmed by crystal structure analysis.

3.2 Structural Description of Ca(I) Complex

The Ca(Il) complex crystallizes in the tri-
clinic space group P-1. The detailed analysis of
the crystal structure indicates that the Ca(Il)
complex 1s made up of two Ca(ll) ions, two
4-formylbenzene-1,3-disulfonate-isonicotinic
acid hydrazone ligands, ten coordinated water
molecules and two lattice water molecules
(Figure 3). Each Ca(Il) ion is coordinated with
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Figure 2. The IR spectrum of Ca(II) complex
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three O atoms of SOz groups from two
dif-ferent 4-formylbenzene-1,3-disulfonate-
isonicotinic acid hydrazone ligands and five O
atoms from five coordinated water molecules to
form a distorted trigonal dodecahedron geome-
try. The dihedral angle between two rings (ring
1: C1-C2-C3-C4-C5-C6, ring 2: C9-C10-C11-N1-
C12-C13) is 8.2¢, indicating that the ligand is
almost coplanar. The complex molecules form
1D chained structure by =x-m interactions
(Figure 4), and further to form a three-
dimensional network structure (Figure 5). The
important bond lengths and angles are given in
Table 2.

3.3 Catalytic Testing Studies

The catalytic performance of the Ca(I) com-
plex was assessed in the oxidation of benzyl al-
cohol. The equation of conversion of benzyl
alcohol oxidation is shown in Figure 6. The re-
sults of the catalytic activity of the Ca(Il) com-
plex are given in Table 3. First, we investiga-
ted the effect of the solvent system on the effi-
ciency and found that 1,4-dioxane is the best
solvent for the benzyl alcohol oxidation reac-
tion. As shown in Table 3, the conversion of
benzyl alcohol and selectivity of benzaldehyde
in 1,4-dioxane are 78 % and 98 % at 130 °C for
6 h, respectively (Table 3, entry 1). Meanwhile,
the corresponding conversion and selectivity in
tetrahydrofuran were 57 % and 61 % at 130 °C
for 6 h, respectively (Table 3, entry 2).
However, the benzyl alcohol conversion and the
benzaldehyde selectivity were 12 %, 10 %, 9 %
and 25 %, 14 %, 14 % when dimethylforma-
mide, acetonitrile, and ethyl acetate was used
as solvent at 130 °C within 6 h, respectively
(Table 3, entry 3-5). In addition, the reaction
temperature was investigated for the impact
on the benzyl alcohol conversion and benzalde-

A
O7A C2A CIA

p Cc6AC7A CI0A (114

34 . N2A @ N1A
A - ‘

D) Y- N3A ) 9CI12A

N3A
7 ¥ CsA T C8A[C9A
06A C4A » CI3A

Figure 3. The molecular structure of Ca(Il) complex
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hyde selectivity of the oxidation reactions. Up-
on increase the reaction temperature from 120
°C to 130 °C in 1,4-dioxane, the conversion of
benzyl alcohol dramatically enhanced (Table 3,
entries 1 and 6). Notably, 98 % selectivity to-
ward benzaldehyde was maintained during the
temperature increasing from 120 °C to 130 °C
(Table 3, entries 1 and 6). The conversion of
benzyl alcohol and the selectivity of benzalde-
hyde were 80 % and 67 % at 140 °C for 6 h
(Table 3, entry 7). The good conversion of ben-
zyl alcohol (78 %) and excellent selectivity of
benzaldehyde (98 %) was achieved when the re-
action was carried out at 130 °C in 1,4-dioxane.
Therefore, it appears that 130 °C is the opti-
mum temperature for the benzyl alcohol oxida-

tion reaction over the complex. Based on the
above results, the optimum conditions of the
benzyl alcohol oxidation reaction over the
Ca(Il) complex catalyst are 130 °C, 1,4-dioxane
as solvent and 6 h (reaction time).

As the structure of Ca(Il) complex (Figure 4
and Figure 5) shows, coordinatively unsatura-
ted calcium is completely exposed to the pore of
the Ca(I) complex. The coordinatively unsatu-
rated calcium could be easily contact with the
reactant (benzyl alcohol and O2) which is bene-
fit to the catalytic reaction. In addition, it can
also promote rapidly removal of the product
(benzaldehyde), and prevent further reaction of
the benzaldehyde. A possible mechanism for
the selective benzyl alcohol oxidation over the

Figure 4. The 1D chained structure of Ca(IT) complex

-

Figure 5. The 3D network structure of Ca(Il) complex

Ca(ll) complex catalyst

CH,OH

1.4-dioxane (solvent), IMPa pure O:

Figure 6. The conversion of benzyl alcohol oxidation
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Table 2. The important bond lengths and angles of Ca(II) complex

Bond Distance (A) Angle ©)
03-Cal 2.691(2) 04-Cal-03 53.47(6)
Cal-04 2.590(19) 05-Cal-03 147.45(6)
Cal-05 2.4302(19) 04-Cal-05 153.35(6)
Cal1-08 2.486(2) 05-Cal-08 78.46(7)
Cal1-09 2.3910(19) 05-Ca1-010 79.85(7)
Cal1-010 2.4481(19) 05-Cal-011 80.70(6)
Cal-012 2.4157(19) 08-Cal1-03 133.92(7)
Cal-011 2.4309(19) 08-Cal-04 82.06(7)
09-Ca1-03 83.81(7)
04-Ca1-09 75.23(7)
09-Cal1-05 115.19(8)
09-Cal1-08 72.48(7)
010-Ca1-09 72.82(7)
09-Cal-012 139.61(7)
09-Ca1-011 140.40(7)
010-Ca1-03 81.34(6)
04-Ca1-010 126.59(6)
010-Ca1-08 125.41(7)
012-Ca1-03 70.07(7)
012-Cal-04 109.42(7)
012-Cal1-05 79.15(7)
08-Cal-012 147.11(7)
012-Ca1-010 73.21(7)
012-Cal-011 76.71(7)
011-Ca1-03 101.68(6)
011-Cal-04 77.09(6)
011-Ca1-08 76.14(7)
011-Ca1-010 146.65(6)

Table 3. Catalytic performance of the Ca(I) complex in the oxidation of benzyl alcohol

Entry  Solvent Temperature (°C) Conversion (%) Selectivity (%)
1 1,4-dioxane 130 78 98
2 tetrahydrofuran 130 57 61
3 dimethylformamide 130 12 25
4 acetonitrile 130 10 14
5 ethyl acetate 130 9 14
6 1,4-dioxane 120 6 98
7 1,4-dioxane 140 80 67
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Ca(Il) coordination polymer catalyst was sup-
posed. First the hydroxyl group in benzyl alco-
hol can coordinate with coordinatively unsatu-
rated calcium sites to obtain the intermediate
calcium-alcoholate species. And the proton in
the hydroxyl group is abstracted to the support
to form surface adsorbed H species and alkox-
ide intermediates. Then the alkoxide interme-
diates undergo a f-hybride elimination to give
the target product benzaldehyde. At the same
time, Ca-hydride species is created that is then
oxidized by the Os, which ultimately regenera-
ted the original Ca(II) coordination polymer
with releasing of H20 and Oa.

4. Conclusions

We have synthesized a new calcium(II) com-
plex by one-pot method. Its structure was de-
termined by elemental analysis, IR and single
crystal X-ray diffraction. The results of cataly-
tic activity show that the calcium (II) complex
exhibits good catalytic activity for oxidation of
benzylic alcohol with the conversion of benzyl
alcohol and selectivity of benzaldehyde in
1,4-dioxane are 78 % and 98 %, respectively.
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