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Abstract  

A new calcium(II) complex was synthesized by one-pot synthesis method from disodium                         

4-formylbenzene-1,3-disulfonate, isonicotinic acid hydrazide and Ca(ClO4)2•2H2O. The structure of cal-

cium(II) complex was determined by elemental analysis, IR and single crystal X-ray diffraction. The re-

sults show that the Ca(II) complex molecules form 3D network structure by the interactions of π-π 

stacking and hydrogen bonds. The Ca(II) complex catalyst could efficiently catalyse oxidation of ben-

zylic alcohol with good conversion of benzyl alcohol (78 %) and excellent selectivity of benzaldehyde (98 

%). Copyright © 2018 BCREC Group. All rights reserved. 
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Research Article 

1. Introduction 

The design and synthesis of metal-organic 

complex catalytic materials have been one of 

the most interesting researches in the materials 

chemistry [1-3]. Because they show outstanding 

catalytic activities for many organic reactions 

such as CO2 cycloaddition [4,5], CO2 coupling 

[6], degradation of organic dyes [7], A3 coupling 

reaction [8, 9], iso-selective ring opening [10-

12], cross-aldol condensation [13], knoevenagel 

condensation [14-19], tandem reaction [20], and 

so on. Benzaldehyde is an important intermedi-

ate of organic synthesis and fine chemical   

products, widely used in medicine, dyes, spices, 

resins, and other industries. However, the ben-

zaldehyde was prepared by oxidation of benzyl 

alcohol with toxic metal oxides, peroxides,     

halides, and so on [21-23]. So, the development 

of environmentally friendly catalysts is very   

attractive. We have been devoted to the study 

on synthesis, structure and catalytic property of 

metal complexes [24-27]. In this paper, a new 

calcium (II) complex was synthesized by one-pot 

s y nthe s i s  m e t hod  f r o m d i s o d ium                         

4-formylbenzene-1,3-disulfonate, isonicotinic ac-

id hydrazide and Ca(ClO4)2•2H2O. The Ca(II) 

complex catalyst could efficiently catalyze oxida-

tion of benzylic alcohol with good conversion of 

benzyl alcohol  and excellent selectivity of ben-

zaldehyde. 
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2. Materials and Method 

2.1 Materials and Equipments 

Disodium 4-formylbenzene-1,3-disulfonate, 

isonicotinic acid hydrazide and Ca(ClO4)2•2H2O 

were supplied by Aldrich. Elemental analysis 

was carried out on a Elemental Vario EL-III  

elemental analyzer. IR (4000-400 cm-1) was ob-

tained with a Nicolet Nexus 670 FTIR spectro-

photometer. The crystal structure of calcium(II) 

complex was analyzed using a Bruker Amart 

CCD diffractometer. 

 

2.2 Synthesis of Ca(II) Complex 

Disodium 4-formylbenzene-1,3-disulfonate 

(0.1551 g, 0.5 mmol), isonicotinic acid            

hydrazide  (0.6852 g, 0.5 mmol) and 

Ca(ClO4)2·2H2O (0.110 g, 0.5 mmol) were dis-

solved in 15 mL ethanol/water (v:v = 2:1) solu-

tion. The above mixture was heated to 65 °C for 

6 h with stirring. After cooled, the solution was 

filtered and the colorless block crystals were 

obtained by slowly evaporating the filtrate at 

room temperature. Yield: 61 %. IR υ/cm-1: 3445 

cm-1 (O-H stretch), 1656 cm-1 (C=N), 1227 cm−1 

(SO3
-), and 1165 cm-1 (SO3

-). Anal. Calc. for 

C26H42Ca2N6O26S4: C, 29.35 %; H, 3.95 %; N, 

7.90 %. Found: C, 29.08 %; H, 4.26 %; N, 7.75 

%. The reaction equation for the formation of 

Ca(II) complex is shown in Figure 1. 

 

2.3 Crystal Structure Determination 

Single crystal data of Ca(II) complex was ob-

tained from Bruker Smart Apex-II CCD area 

detector diffractometer by using MoKα radia-

tion and φ~ω scan mode at 293 (2) K. The 

structure was solved by direct methods with 

SHELXS-97 [28] and refined by full-matrix 

least-squares techniques on F2 with SHELXL 

[29]. The crystallographic data and refinement 

details for Ca(II) complex are listed in Table 1. 

 

2.4 Catalytic Test of Benzyl Alcohol Oxidation 

In a typical experiment, benzyl alcohol (0.2 

mmol, 0.0216 g), solvent (1.50 g), and catalyst 

(0.060 g) were added into a 10 mL stainless 

steel autoclave. After the reactor was sealed, 

the pure O2 was pumped to replace the atmos-

phere for six times. Then under pressure of 1 

MPa, the mixture was kept at 120-140 °C for 6 

h with vigorous stirring. After the reaction, the 

mixture was centrifuged to remove the cata-

lyst. The conversion of benzyl alcohol and the 

selectivity of benzaldehyde were determined by 

gas chromatography equipped with a SE-54 ca-

pillary column (GC-1100, 0.25 mm × 0.25 mm × 

30 m). 

 SO3Na

O

NH OHCCN

SO3Na

H2O H2O H2O
H2O

Ca1A
OO

O
OSS

H2OO OO
NCCH=N NHNH HCCN

O OO
H2O

S S OO
O OCa1

H2O H2O
H2O H2O

+

Ca(ClO4)2¡¤2H2O ethanol/water 

(v:v = 2:1)

N=

NH2

Empirical formula C26H42Ca2N6O26S4 

Formula weight 1063.05 

Temperature/K 293(2) 

Crystal system triclinic 

Space group P-1 

a/Å 7.1961(14) 

b/Å 11.972(2) 

c/Å 12.275(3) 

α/° 89.76(3) 

β/° 88.09(3) 

γ/° 83.21(3) 

Volume/Å3 1049.5(4) 

Z 1 

ρcalcmg/mm3 1.682 

μ/mm‑1 0.571 

S 1.048 

F(000) 552 

Index ranges -8 ≤ h ≤ 9, 

-15 ≤ k ≤ 15, 

-15 ≤ l ≤ 15 

Reflections collected 10314 

Independent reflections 4771 [R(int) = 0.0228] 

Data/restraints/parameters 4771/0/297 

Goodness-of-fit on F2 1.085 

Final R indexes [I ≥ 2σ (I)] R1 = 0.0413, wR2 = 0.1258 

Final R indexes [all data] R1 = 0.0452, wR2 = 0.1187 

Largest diff. peak and hole 0.837 and -0.659 e·Å-3 

Figure 1. The reaction equation for the for-

mation of Ca(II) complex  

Table 1. Crystallographic data and refinement 

details for Ca(II) complex  
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3. Results and Discussion 

3.1  IR Spectra of Ca(II) Complex 

The IR spectrum (Figure 2) of Ca(II) com-

plex shows the bands at 3445 cm-1 (O–H 

stretch), 1656 cm-1 (C=N), 1227 cm-1 (SO3
-), and 

1165 cm-1 (SO3
-), respectively. The results of IR 

show that the Ca(II) complex contains H2O 

molecules and only the O atoms of SO3
- groups 

take part in coordination with Ca(II) ion by 

comparison with ref. [30]. The results are also 

confirmed by crystal structure analysis. 

  

3.2 Structural Description of Ca(II) Complex 

The Ca(II) complex crystallizes in the tri-

clinic space group P-1. The detailed analysis of 

the crystal structure indicates that the Ca(II) 

complex is made up of two Ca(II) ions, two      

4-formylbenzene-1,3-disulfonate-isonicotinic  

acid hydrazone ligands, ten coordinated water 

molecules and two lattice water molecules 

(Figure 3). Each Ca(II) ion is coordinated with 

three O atoms of SO3
- groups from two          

dif-ferent 4-formylbenzene-1,3-disulfonate-

isonicotinic acid hydrazone ligands and five O 

atoms from five coordinated water molecules to 

form a distorted trigonal dodecahedron geome-

try. The dihedral angle between two rings (ring 

1: C1-C2-C3-C4-C5-C6, ring 2: C9-C10-C11-N1-

C12-C13) is 8.2o, indicating that the ligand is 

almost coplanar. The complex molecules form 

-  interactions 

(Figure 4), and further to form a three-

dimensional network structure (Figure 5). The 

important bond lengths and angles are given in 

Table 2. 

 

3.3 Catalytic Testing Studies 

The catalytic performance of the Ca(II) com-

plex was assessed in the oxidation of benzyl al-

cohol. The equation of conversion of benzyl    

alcohol oxidation is shown in Figure 6. The re-

sults of the catalytic activity of the Ca(II) com-

plex are given in Table 3. First, we investiga-

ted the effect of the solvent system on the  effi-

ciency and found that 1,4-dioxane is the best 

solvent for the benzyl alcohol oxidation reac-

tion. As shown in Table 3, the conversion of 

benzyl alcohol and selectivity of benzaldehyde 

in 1,4-dioxane are 78 % and 98 % at 130 °C for 

6 h, respectively (Table 3, entry 1). Meanwhile, 

the corresponding conversion and selectivity in 

tetrahydrofuran were 57 % and 61 % at 130 °C 

for 6 h, respectively (Table 3, entry 2).        

However, the benzyl alcohol conversion and the 

benzaldehyde selectivity were 12 %, 10 %, 9 % 

and 25 %, 14 %, 14 % when dimethylforma-

mide, acetonitrile, and ethyl acetate was used 

as solvent at 130 °C within 6 h, respectively 

(Table 3, entry 3-5). In addition, the reaction 

temperature was investigated for the impact 

on the benzyl alcohol conversion and benzalde-

Figure 3. The molecular structure of Ca(II) complex 

Figure 2. The IR spectrum of Ca(II) complex 
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hyde selectivity of the oxidation reactions. Up-

on increase the reaction temperature from 120 

°C to 130 °C in 1,4-dioxane, the conversion of 

benzyl alcohol dramatically enhanced (Table 3, 

entries 1 and 6). Notably, 98 % selectivity to-

ward benzaldehyde was maintained during the 

temperature increasing from 120 °C to 130 °C 

(Table 3, entries 1 and 6). The conversion of 

benzyl alcohol and the selectivity of benzalde-

hyde were 80 % and 67 % at 140 °C for 6 h 

(Table 3, entry 7). The good conversion of ben-

zyl alcohol (78 %) and excellent selectivity of 

benzaldehyde (98 %) was achieved when the re-

action was carried out at 130 °C in 1,4-dioxane. 

Therefore, it appears that 130 °C is the opti-

mum temperature for the benzyl alcohol oxida-

tion reaction over the complex. Based on the 

above results, the optimum conditions of the 

benzyl alcohol oxidation reaction over the 

Ca(II) complex catalyst are 130 °C, 1,4-dioxane 

as solvent and 6 h (reaction time). 

As the structure of Ca(II) complex (Figure 4 

and Figure 5) shows, coordinatively unsatura-

ted calcium is completely exposed to the pore of 

the Ca(II) complex. The coordinatively unsatu-

rated calcium could be easily contact with the 

reactant (benzyl alcohol and O2) which is bene-

fit to the catalytic reaction. In addition, it can 

also promote rapidly removal of the product 

(benzaldehyde), and prevent further reaction of 

the benzaldehyde. A possible mechanism for 

the selective benzyl alcohol oxidation over the 

Figure 4. The 1D chained structure of Ca(II) complex 

Figure 6. The conversion of benzyl alcohol oxidation 

Figure 5. The 3D network structure of Ca(II) complex 
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Bond Distance (Å) Angle (o) 

O3-Ca1 2.691(2) O4-Ca1-O3 53.47(6) 

Ca1-O4 2.590(19) O5-Ca1-O3 147.45(6) 

Ca1-O5 2.4302(19) O4-Ca1-O5 153.35(6) 

Ca1-O8 2.486(2) O5-Ca1-O8 78.46(7) 

Ca1-O9 2.3910(19) O5-Ca1-O10 79.85(7) 

Ca1-O10 2.4481(19) O5-Ca1-O11 80.70(6) 

Ca1-O12 2.4157(19) O8-Ca1-O3 133.92(7) 

Ca1-O11 2.4309(19) O8-Ca1-O4 82.06(7) 

    O9-Ca1-O3 83.81(7) 

    O4-Ca1-O9 75.23(7) 

    O9-Ca1-O5 115.19(8) 

    O9-Ca1-O8 72.48(7) 

    O10-Ca1-O9 72.82(7) 

    O9-Ca1-O12 139.61(7) 

    O9-Ca1-O11 140.40(7) 

    O10-Ca1-O3 81.34(6) 

    O4-Ca1-O10 126.59(6) 

    O10-Ca1-O8 125.41(7) 

    O12-Ca1-O3 70.07(7) 

    O12-Ca1-O4 109.42(7) 

    O12-Ca1-O5 79.15(7) 

    O8-Ca1-O12 147.11(7) 

    O12-Ca1-O10 73.21(7) 

    O12-Ca1-O11 76.71(7) 

    O11-Ca1-O3 101.68(6) 

    O11-Ca1-O4 77.09(6) 

    O11-Ca1-O8 76.14(7) 

    O11-Ca1-O10 146.65(6) 

Entry Solvent Temperature (°C) Conversion (%) Selectivity (%) 

1 1,4-dioxane 130 78 98 

2 tetrahydrofuran 130 57 61 

3 dimethylformamide 130 12 25 

4 acetonitrile 130 10 14 

5 ethyl acetate 130 9 14 

6 1,4-dioxane 120 6 98 

7 1,4-dioxane 140 80 67 

Table 3. Catalytic performance of the Ca(II) complex in the oxidation of benzyl alcohol 

Table 2. The important bond lengths and angles of Ca(II) complex 
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Ca(II) coordination polymer catalyst was sup-

posed. First the hydroxyl group in benzyl alco-

hol can coordinate with coordinatively unsatu-

rated calcium sites to obtain the intermediate 

calcium-alcoholate species. And the proton in 

the hydroxyl group is abstracted to the support 

to form surface adsorbed H species and alkox-

ide intermediates. Then the alkoxide interme-

diates undergo a ß-hybride elimination to give 

the target product benzaldehyde. At the same 

time, Ca-hydride species is created that is then 

oxidized by the O2, which ultimately regenera-

ted the original Ca(II) coordination polymer 

with releasing of H2O and O2. 

 

4. Conclusions 

We have synthesized a new calcium(II) com-

plex by one-pot method. Its structure was de-

termined by elemental analysis, IR and single 

crystal X-ray diffraction. The results of cataly-

tic activity show that the calcium (II) complex 

exhibits good catalytic activity for oxidation of 

benzylic alcohol with the conversion of benzyl 

alcohol and selectivity of benzaldehyde in       

1,4-dioxane are 78 % and 98 %, respectively. 
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