ANALISIS PERBANDINGAN SUBSTITUSI SLAG PADA SEMEN DAN PASIR PADA CAMPURAN BETON MUTU K-225 PADA PT IMIP KABUPATEN MOROWALI PROVINSI SULAWESI TENGAH

Zainul^{1*}, Djamaluddin², Habibie Anwar¹

 Jurusan Teknik Pertambangan Universitas Muslim Indonesia
 Departemen Teknik Pertambangan Universitas Hasanuddin Email: zikslahkan@gmail.com

SARI

Kawasan industri yang dibangun oleh PT Indonesia Morowali Industrial Park (IMIP) merupakan kawasan industri terpadu berbasis pada pengelolaan nikel yang juga berisi industri turunannya yang lain yaitu stainless steel. Beton merupakan bahan bangunan yang banyak digunakan dalam membangun struktur kerja di Indonesia karena banyaknya manfaat yang diberikan seperti bahan penyusunnya mudah didapat, mudah dipasang, mampu membawa beban berat, tahan terhadap suhu tinggi, dan biaya pemeliharaan. Berbagai upaya telah dilakukan untuk membuat semen. Upaya tersebut dilakukan terhadap persyaratan pemanfaatan slag dari PT Indonesia Morowali Industrial Park. Kemudian dilanjutkan dengan mengetahui perbandingan kuat tekan pada pengolahan limbah terak (*slag*) dengan mensubstitusi pada semen dan pasir, pada substitusi ke semen kuat tekan tertinggi berada pada substitusi terak 15% yaitu mencapai kuat tekan 24,295 MPa atau 25,34% lebih tinggi dibanding beton normal dan akan menurun kuat tekannya ketika mendapatkan substitusi lebih dari 15% sedangkan pada substitusi ke pasir akan mendapatkan kuat tekan kuat tekan tertinggi pada substitusi ke 30%, yaitu mencapai 28,956 MPa atau 49,385 lebih tinggi dibandingkan beton normal. Pada penggunaan substitusi slag ke pasir akan bertambah kuat tekannya apabila substitusi yang digunakan lebih tinggi. Jadi penggunaan *slag* sebagai substitusi semen dan pasir pada beton k-225 sebaiknya digunakan pada substitusi ke pasir sehingga penggunaan limbah slag lebih banyak dan memperoleh kuat tekan yang tinggi.

Kata kunci: kuat tekan, terak, beton k-225.

ABSTRACT

Industrial area built by PT Indonesia Morowali Industrial Park (IMIP) is an integrated industrial area based with nickel-based production and its derivative industries such as stainless steel. Concrate is building's materials which are mostly used in Indonesia for building the structure. This is because of its adventageous such as availability, flexibility, its strenght to to carry heavy loads, resistance to the high temperature, and cheap maintenance cost. There have been efforts to make to creat cement. This is because of the order of PT. Indonesia Morowali Industrial Park to recycle slag as a substitute of cement and sands. In the cement subtitute, the most powerful pressure strenght was in the 15%. It reached up to 24.295 Mpa or 25.34% higher than standad concrete, and the pressure will decrease the subtitute is more than 15%. As for the sands subtitute, the strongest pressure strenght was in the 30% subtitutin where it reached 28.956 Mpa or 49.385 higher than the normal concrete. In the slag subtitution to sands will get higher strength if the subtitute is higher as well. Therefore, the use of slag as the cement and sands subtitute in the concrete k-225 is best. It is better to use it as sands subtitute to use more slag waste and to gain more pressure strength.

Keywords: pressure strength, slag, k-225 concrete.

PENDAHULUAN

Penambangan sebagai sumber ketiga telah terbanyak yang mencemari lingkungan, maka perlu dikembangkan pertumbuhan tambang yang berwawasan lingkungan baik dari awal pendirian maupun pada proses dan akhir produksinya menunjang pembangunan berkesinambungan. PT Indonesia morowali Industrial Park merupakan salah satu smelter Nikel yang menghasilkan limbah setiapharinya. Seperti industri lain, dalam kegiatan produksinya Indonesia Morowali Industrial Park juga menghasilkan limbah yang berpotensi untuk mencemari lingkungan. Limbah-limbahyang dihasilkan dapat berupa Bahan Berbahaya dan Beracun (B3) ataupun non B3. Pada PT IMIP terjadi kelimpahan limbah slag seiring dengan meningkatnya jumlah produksi tambang. Berbagai kasus pencemaran limbah B3 dari penambangan diIndonesia, hingga saat ini belum dikelola dengan serius (Arino dan Barzin.1999).

Penelitian ini dimaksudkan untuk mengetahui sejauh mana material slag nikel dapat dimanfaatkan sebagai bahan perkerasan lapis permukaan jalan. Dengan meninjau dan mengevaluasi sifat campuran perkerasan tersebut diharapkan dapat diketahui kinerja dari campuran perkerasan dengan menggunakan slag nikel.

METODOLOGI PENELITIAN

Pada penelitian ini penulis mengambil data dengan metode pengumpulan data melalui pengamatan langsung di lokasi penelitiaan, dengan tujuan untuk mengetahui kuat tekan yang didapat dengan menggunakan slag sebagai pengganti dengan pasir sebagian semen persentase masing-masing sebesar 0%, 10%, 15%, 20%, dan 30% dari berat semen dan pasir. Benda uji beton akan dicetak menggunakan cetakan siliner, dengan tinggi 30 cm dan berdiameter 15 cm. Setelah itu beton akan dilakukan perawatan (curing) dengan merendamkan benda uji beton yang telah di beri kode sampel ke dalam air biasa selama 7, 21, 28 hari. Setelah itu dilakukan pengujian diolah dan dianalisa untuk ditarik kesimpulan dari hasil pengujian sampel tersebut.

HASIL DAN PEMBAHASAN

Slag mempunyai kandungan Kalsium Oksida dan silicon dioksida yang tinggi yaitu 42,30% dan 26,56% yang perlu diperhatikan dari sifat kimia slag dalam hubungannya dengan campuran beton adalah kandungan CaO dan SiO2. Dalam hal ini CaO bebas dalam campuran beton akan bereaksi dengan air selama proses hidrasi menjadi Ca(OH)2reaksi ini yang akan menyebabkan beton mengembangan. Sedangkan SiO2 dalam campuran beton akan bereaksi dengan Ca(OH)2 (Calcium hidroksida) membentuk CSHSilicate Hydrat), reaksi ini yang akan beton mengurangi jumlah pori pada (Brindha and Nagan, 2010)

Tabel 1. Material Beton K-225 Normal

Beton K-225 Standar			
Semen	3,17 Kg		
Pasir	$6{,}98~{ m Kg}$		
Kerikil	$10,47~\mathrm{Kg}$		
Air	2,1 Liter		

Dari tabel 1 di atas dapat dilihat standar beton K-225 normal yaitu semen dan pasirnya 3,17 Kg dan 6,98 Kg yang akan disubstitusikan slag dengan kualitas beton tetap mengacu pada Badan Standarisasi Nasional tahun 2000.

Tabel 2. Kuat Tekan Beton Substitusi *Slag* pada Semen Umur 7 Hari

	Beton umur 7 hari			
Kode Sampel	Slag (%)	Beban (KN)	Kuat Tekan (MPa)	Kuat Tekan Rerata (MPa)
0BTN-a	0	200	10,654	
0BTN-b	0	230	12,873	11,801
0BTN-c	0	220	11,876	
10BTN-a	10	240	14,765	
10BTN-b	10	240	14,456	14,792
10BTN-c	10	265	15,154	
15BTN-a	15	290	17,185	
15BTN-b	15	290	16,766	17,201
15 BTN-c	15	300	17,653	
20BTN-a	20	230	13,680	
20BTN-b	20	230	13,631	13,726
20BTN-c	20	235	13,867	
30BTN-a	30	220	12,533	
30BTN-b	30	210	11,132	11,721
30BTN-c	30	210	11,498	

Pada tabel 2 hasil uji beton dengan substitusi slag pada semen umur 7 hari didapatkan hasil beton normal yaitu 11,801 MPa dengan substitusi pada persentase 10% yaitu 14,792 MPa, pada persentase 15% yaitu 17,201 MPa, pada persentase 20% pada yaitu 13,726 MPa, sedangkan persentase 30% yaitu 11,721 MPa. Pada substitusi slag pada semen dengan umur beton 7 hari ini beton dengan substitusi 15% pada semen mendapatkan kuat tekan yang lebih tinggi dari beton normal dengan selisih 5,4 MPa atau sekitar 45,75% sedangkan pada persentase 30% mendapatkan kuat tekan lebih rendah dari beton normal dengan selisih 0,008 MPa atau sekitar 0,67%

Tabel 3. Kuat Tekan Beton Substitusi *Slag* pada Pasir Umur 7 Hari

Kode Sampel	Slag (%)	Beban (KN)	Kuat Tekan (Mpa)	Kuat Tekan Rerata (MPa)
0BTN-a	0	200	10,654	
0BTN-b	0	230	12,873	11,801
0BTN-c	0	220	11,876	
10BTN-a	10	235	13,562	
10BTN-b	10	235	12,986	13,330
10BTN-c	10	240	13,442	
15BTN-a	15	240	13,890	
15BTN-b	15	245	13,881	14,098
15BTN-c	15	240	14,523	
20BTN-a	20	265	15,570	
20BTN-b	20	270	15,722	15,645
20BTN-c	20	270	15,643	
30BTN-a	30	310	17,014	
30BTN-b	30	280	16,882	16,809
30BTN-c	30	295	16,531	

Tabel 3 merupakan hasil uji beton dengan substitusi slag pada pasir umur 7 hari maka didapatkan hasil beton normal yaitu 11,801 MPa dengan substitusi pada persentase 10% yaitu 13,330 MPa, pada persentase 15% yaitu 14,098 MPa, pada 15,645 persentase 20%yaitu MPa, sedangkan pada persentase 30% yaitu 16,809 MPa. Pada substitusi slag pada pasir kuat tekan mengalami kenaikan setiap penambahan persentase slag pada pasir dengan kenaikan berkisar 12% sampai 42,43 %, dan kenaikan kuat tekan tertinggi terdapat pada substitusi slag 30% pada pasir yaitu dengan kenaikan 5,008 MPa atau 42,43% seperti pada table 3.

Jadi pada umur 7 hari perbandingan kuat tekan beton dengan substitusi *slag* pada semen pada persentase 15%

mendapatkan kuat tekan lebih tinggi dibandingkan substitusi slag pada pasir yaitu 17,201 MPa sedangkan pada substitusi slag pada pasir hanya 14,098 MPa dengan selisi 3,103 MPa atau sekitar 22%. Tetapi pada persentase substitusi 30% beton pada semen dengan substitusi slag mengalami penurunan hingga 5,48 MPa atau 31,85%, sedangkan pada substitusi slag pada pasir dengan persentase 30% kuat tekan mengalami kenaikan hingga 2,711 MPa atau sekitar 19,22%.

Tabel 4. Kuat Tekan Beton Substitusi Slag pada Semen Umur 21 Hari

Kode Sampel	Slag (%)	Beban (KN)	Kuat Tekan (Mpa)	Kuat Tekan Rerata (MPa)
0BTN-a	0	325	17,981	
0BTN-b	0	325	18,976	18,457
0BTN-c	0	320	18,413	
10BTN-a	10	350	21,182	
10BTN-b	10	360	20,948	20,893
$10 \mathrm{BTN}\text{-}\mathrm{c}$	10	360	20,548	
15BTN-a	15	400	22,756	
15BTN-b	15	410	22,553	22,677
$15 \mathrm{BTN}\text{-}\mathrm{c}$	15	415	22,722	
20BTN-a	20	360	18,488	
$20 \mathrm{BTN}\text{-}\mathrm{b}$	20	370	19,654	18,824
$20\mathrm{BTN}\text{-}\mathrm{c}$	20	350	18,331	
30BTN-a	30	270	16,771	
30BTN-b	30	280	15,122	15,805
30 BTN-c	30	290	15,522	

Tabel 4 merupakan hasil uji beton dengan substitusi slag pada semen umur 21 hari maka didapatkan hasil beton normal yaitu 18,457 MPa dengan substitusi pada persentase 10% yaitu 20,893 MPa, pada persentase 15% yaitu 22,677 MPa, pada 20% persentase yaitu 18,824 MPa, sedangkan pada persentase 30% yaitu 15,805 MPa. Pada substitusi slag pada semen dengan umur beton 21 hari ini beton dengan substitusi 15%pada mendapatkan kuat tekan yang lebih tinggi dari beton normal dengan selisih 4,22 MPa 22,86% sedangkan pada sekitar persentase 30% mendapatkan kuat tekan lebih rendah dari beton normal dengan selisih 2,652 MPa atau sekitar 14,36%.

Tabel 5 merupakan hasil uji beton dengan substitusi *slag* pada pasir maka didapatkan hasil beton normal yaitu 18,457 MPa dengan substitusi pada persentase 10% yaitu 20,045 MPa, pada persentase 15% yaitu 21,586 MPa, pada persentase 20% yaitu 23.150MPa, sedangkan pada persentase 30% yaitu 26,784 MPa. Pada substitusi slag pada pasir kuat tekan mengalami kenaikan setiap penambahan persentase *slag* pada pasir dengan kenaikan berkisar 8,6% sampai 45,11 %, dan kenaikan kuat tekan tertinggi terdapat pada substitusi *slag* 30% pada pasir yaitu dengan kenaikan 8,327 MPa atau 45,11%.

Tabel 5. Kuat Tekan Beton Substitusi *Slag* pada Pasir Umur 21 Hari

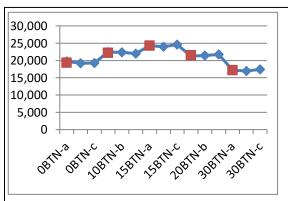
Kode Sampel	Slag (%)	Beban (KN)	Kuat Tekan (Mpa)	Kuat Tekan Rerata (MPa)
0BTN-a	0	325	17,981	
0BTN-b	0	325	18,976	18,457
0BTN-c	0	320	18,413	
10BTN-a	10	360	19,814	
10BTN-b	10	360	19,631	20,045
10 BTN-c	10	370	20,690	
15BTN-a	15	380	21,116	
$15 \mathrm{BTN}\text{-}\mathrm{b}$	15	395	22,034	21,586
$15 \mathrm{BTN}\text{-}\mathrm{c}$	15	380	21,607	
20BTN-a	20	410	22,133	
$20 \mathrm{BTN}\text{-}\mathrm{b}$	20	415	23,431	23,150
$20\mathrm{BTN}\text{-}\mathrm{c}$	20	415	23,885	
30BTN-a	30	455	26,798	
30BTN-b	30	470	26,541	26,784
30 BTN-c	30	465	27,013	

Tabel 5 merupakan umur 21 hari perbandingan kuat tekan beton dengan substitusi slag pada semen pada persentas 15% mendapatkan kuat tekan lebih tinggi dibandingkan substitusi slag pada pasir yaitu 22,677 MPa sedangkan pada substitusi slag pada pasir hanya 21,586 MPa dengan selisih 1,091 MPa atau sekitar 5%. Tetapi pada persentase substitusi 30% beton pada semen dengan substitusi slag mengalami penurunan hingga 6,872 MPa atau 30,3%, sedangkan pada substitusi slag pada pasir dengan persentase 30% kuat tekan mengalami kenaikan hingga 5,198 MPa atau sekitar 24%.

Tabel 6 merupakan hasil uji beton dengan substitusi *slag* pada semen umur 28 hari maka didapatkan hasil beton normal

yaitu 19,715 MPa dengan substitusi pada persentase 10% yaitu 22,231 MPa, pada persentase 15% yaitu 24,295 MPa, pada 20% 21.477 persentase yaitu MPa. sedangkan pada persentase 30% vaitu 17,204 MPa. Pada substitusi slag pada semen dengan umur beton 28 hari ini beton substitusi 15% pada mendapatkan kuat tekan yang lebih tinggi dari beton normal dengan selisih 4,912 MPa atau sekitar 25,34% sedangkan pada persentase 30% mendapatkan kuat tekan lebih rendah dari beton normal dengan selisih 2.179 MPa atau sekitar 11.24%.

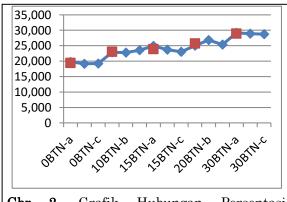
Tabel 6. Kuat Tekan Beton Substitusi *Slag* pada Semen Umur 28 hari


Kode Sampel	Slag (%)	Beban (KN)	Kuat Tekan (Mpa)	Kuat Tekan Rerata (MPa)
0BTN-a	0	350	19,715	
0BTN-b	0	330	19,184	19,383
0BTN-c	0	340	19,249	
10BTN-a	10	380	22,415	
10BTN-b	10	380	22,334	22,231
10BTN-c	10	380	21,944	
15BTN-a	15	425	24,311	
15BTN-b	15	425	23,983	24,295
15 BTN-c	15	435	24,591	
20BTN-a	20	380	21,276	
20BTN-b	20	370	21,433	21,477
$20 \mathrm{BTN}\text{-}\mathrm{c}$	20	370	21,721	
30BTN-a	30	310	17,212	
30BTN-b	30	300	16,969	17,204
30 BTN-c	30	310	17,431	

Tabel 7 merupakan hasil uji beton dengan substitusi slag pada pasir maka didapatkan hasil beton normal yaitu 19,383 MPa dengan substitusi pada persentase 10% yaitu 23,073 MPa, pada persentase 15% yaitu 23,910 MPa, pada persentase 20% yaitu 25,749 MPa, sedangkan pada persentase 30% yaitu 28,956 MPa. Pada substitusi slag pada pasir kuat tekan mengalami kenaikan setiap penambahan persentase slag pada pasir dengan kenaikan berkisar 19,03% sampai 49,38%, kenaikan kuat tekan tertinggi terdapat pada substitusi slag 30% pada pasir yaitu dengan kenaikan 9,573 MPa atau 49,38%.

Tabel 7. Kuat Tekan Beton Substitusi *Slag* pada Pasir Umur 28 Hari

Kode Sampel	Slag (%)	Beban (KN)	Kuat Tekan (Mpa)	Kuat Tekan Rata- rata
0BTN-a	0	350	19,715	
0BTN-b	0	330	19,184	19,383
0BTN-c	0	340	19,249	
10BTN-a	10	410	22,881	
10BTN-b	10	400	22,798	23,073
10BTN-c	10	420	23,541	
15BTN-a	15	435	24,965	
15BTN-b	15	430	23,751	23,910
15 BTN-c	15	425	23,013	
20BTN-a	20	445	25,031	
20BTN-b	20	455	26,872	25,749
20BTN-c	20	460	25,344	
30BTN-a	30	510	29,161	
30BTN-b	30	525	28,943	28,956
30BTN-c	30	520	28,763	


Perubahan kuat tekan terjadi pada setiap umur beton yang dilakukan pada pengujian tiap campuran beton yang dibuat. Pada umur 7 hari kuat tekan mencapai 16,608 MPa dan pada umur 21 hari kuat tekan beton sebesar 22,081 MPa, sedangkan pada umur 28 hari tidak berbeda jauh dengan kuat tekan umur 21 hari yaitu sebesar 23,496 MPa.

Gbr 1. Grafik Hubungan Persentasi Substitusi *Slag* pada Semen dengan Kuat Tekan Beton

Gambar statistik 1 dan 2 didapat hasil bahwa pada substitusi *slag* pada semen kuat tekan tertinggi terdapat pada substitusi 15% *slag* dengan kuat tekan mencapai 24,295 atau mengalami kenaikan sekitar 25,34 % dari beton normal dan akan mengalami penurunan jika substitusi dinaikan melebihi 15% seperti substitusi pada 30% mengalami penurunan yang sangat derastis dari beton

normal yakni hanya 17,204 MPa atau menurun 11,24 % dari beton normal.

Gbr 2. Grafik Hubungan Persentasi Substitusi *Slag* pada Pasir dengan Kuat Tekan Beton

Sedangkan pada substitusi *slag* pada pasir mengalami kenaikan kuat tekan setiap kenaikan persentase substitusi *slag* pada pasir dengan kenaikan tertinggi pada substitusi *slag* 30 yaitu mencapai 28,956 MPa dengan selisih terhadap beton normal 9,573 MPa atau sekitar 49,38% (Zuraidah, 2009)

Dari hasil analisis di atas maka dapat disimpulkan bahwa penggunaan limbah slag paling efektif digunakan substitusi ke pasir dari segi kuat tekan substitusi ke pasir lebih tinggi kuat tekan yang dihasilkan dibandingkan substitusi ke semen. dan dalam segi ekonomis penggunaan substitusi slag ke pasir lebih menguntungkan karena pemanfaatan slag yang lebih banyak juga memberikan hasil yang lebih baik dari segi kuat tekan yang di hasilkan (Widodo, dkk,2003).

KESIMPULAN

Limbah *Slag* memiliki kandungan CaO, SiO2 dan MG yang tinggi yaitu 42,30%, 26,56% dan 13,7% yang dapat digunakan untuk campuran beton karena memiliki unsur kimia CaO.SiO22HsO(CSH) yaitu calcium silicate hydrat yang berasal dari reaksi Ca(OH) (calcium hidroksida) pada limbah slag dan CSH (calcium silicate hydrat) yang berasal dari beton yang bereaksi sehingga menjadi bahan padat yang akan mengurangi jumlah pori pada beton. Penggunaan slag pada substitusi ke semen pada campuran beton mutu K-225

lebih baik pada kisaran 15% dengan kuat tekan mencapai 24,295 MPa atau 25,34% lebih tinggi dibanding beton normal, dan akan menurun kuat tekannya ketika mendapatkan substitusi lebih dari 15%. Pada penggunaan slag dengan mensubstitusi ke pasir akan mendapatkan kuat tekan tertinggi pada substitusi ke 30%, yaitu mencapai 28,956 MPa atau 49,385% lebih tinggi dibandingkan beton normal, pada penggunaan substitusi slag ke pasir akan bertambah kuat tekannya apabila substitusi yang digunakan lebih tinggi.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada semua pihak, terutama:

- 1. PT. Bintang Delapan Mineral.
- 2. PT. Indonesia Morowali Industrial Park.
- 3. Seluruh staf dan karyawan PT. Bintang delapan Mineral dan PT. Indonesia Morowali Industrial Park.
- Segenap civitas akademika Jurusan Teknik Pertambangan Fakultas Teknologi Industri Universitas Muslim Indonesia.

DAFTAR PUSTAKA

Arino, Antonio M. dan Barzin, Mobasher. 1999. Effect of Ground Copper Slag on Strenght and Toughness of Cementitious Mixes. ACI Material Journal

- Badan Standarisasi Nasional. 2000. *Tata Cara Pembuatan Campuran Beton Normal*, SNI 03-2834-2000. Badan
 Standarisasi Nasional, Jakarta
- Brindha, D. dan Nagan, S. 2010. *Utilization of Copper Slag as a Partial Replacement of Fine Aggregate in Concrete.*International Journal of Earth Sciences and Engineering, India.
- Widodo, Selamet., Sentosa, Agus., dan Pusoko, Prapto. 2003. Pemanfaatan Limbah Abu Batu Sebagai Bahan Pengisi Dalam Produksi Self-Compacting Concrete. Jurnal Ilmiah Fakultas Teknik universitas Negeri Yogyakarta. Yogyakarta.
- Zuraidah. 2009. Peningkatan Kuat Lentur pada Beton Dengan Penambahan Fiber Polyprophylene dan Copper Slag (Tarak Tembaga). Jakarta.