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Abstract

In this paper, we consider the control design of the Dubins car system to

track a desired path. We design the control of the Dubins car system using

optimal control approach. The control of the Dubins car system is designed

for tracking the desired path. Instead of the usual quadratic cost function,

a special type of cost functional which includes a tracking error term will be

considered. By this special cost functional, the minimum tracking error of

path of the Dubins car toward a desired path using Pontryagin Maximum

Principle is obtained. The analytical solution of the Hamiltonian system

is difficult to obtain. So, a numerical solution with the steepest gradient

descent method is proposed. The numerical results are given at the last

section of this paper.
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1. Introduction

In recent years, there has been an increasing number of research on the subject
of mobile robotics. This is because mobile robots are increasingly required in in-
dustry. For instance, to access difficult or dangerous area, such as space, military,
or nuclear waste, unmanned mobile robots are a must.

The tracking problem is a challenging problem in mobile robotics. Some re-
seachers have discussed the control design of a mobile robot to track a desired path
in [1],[2],[3],[5],[8]. In [1], the authors discuss the tracking control of mobile robots
using integrator backstepping. Many mechanical systems with nonholonomic con-
traints can be locally or globally converted to the chained form under coordinate
change. Jiang and Nijmeijer [2] study the tracking control problem of nonholo-
nomic system in chained form. They derive semi global tracking controllers for
general chained form systems by means of backstepping and they achieve global
tracking results for some special cases. In [3], an adaptive tracking control prob-
lem is studied for a four wheel mobile robot. The authors propose a formulation
for the adaptive tracking problem that meets the natural prerequisite such that
it reduces to the state feedback tracking problem if the parameters are known.
They derive a general methodology for solving their problem. In [5], Panteley et
all study exponential tracking control of a mobile car using a cascaded approach.
They show that the nonlinear controllers proposed in [1] can be simplified into
linear controller for both the kinematic model and a simple dynamic model of the
mobile robot. Their approach is based on cascaded system. In [8], the authors
study a sufficient condition for the full state tracking stability of nonholonomic
wheeled mobile robots by using the tracking control schemes based on the input
output dynamics. They show that the tracking error internal dynamics and ze-
ro dynamics play a critical role of the full state tracking stability of such mobile
robots. In [6], Tang et al. study optimal output tracking control (OOTC) prob-
lem for a class of bilinear systems with a quadratic performance index using a
successive approximation approach (SAA). They develop a design process of the
OOTC law based on the SAA for bilinear system. In [4], Miswanto et al. study
the tracking problem of a swarm model with the presence of a leader by using
the least square method. That model is a control system which consists of many
agents and one agent has a role as a leader. The control of optimal motion of the
leader is obtained by using the Pontryagin Maximum Principle. In particular, this
control steers the leader to trace a desired path.

In this paper, the task is to steer the Dubin’s car to trace a given path. The
control of the Dubin’s car system is obtained through the solution of the Hamil-
tonian system, using The Steepest Gradient Descent Method (Tjahjana [7]). In
the next section, the formal problem formulation is described. In section 3, we
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show numerical simulations to illustrate our results.

2. Problem Formulation

In this section, we introduce the kinematic model of the Dubin’s car system
as shown in Figure 1.

Figure 1: Dubin’s Car System.

The kinematic model can be written as:

ẋ1 = u1cos(x3)

ẋ2 = u1sin(x3)

ẋ3 = u2 (1)

y = [x1 x2 x3]T

where (x1, x2) denote the position of the Dubin’s car, x3 is the orientation of the
car, and u1, u2 are the linear and angular velocities, respectively. Here, y is the
output of the system. Thus, the output is the position and orientation of the car.
In this paper, the desired path γ that would be tracked by the Dubin’s car is
obtained using calculus variational method. That is, we consider the variational
problem:

min
γ

∫ T

0

L(γ̈)dt, (2)

where γ(0) = A, γ(T ) = B, γ̇(0) = C, γ̇(T ) = D, and A,B, C,D ∈ R2 are given.
The optimal solution of this variational calculus method is denoted by γ(t) =
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(
γ1(t), γ2(t)

)
.

The original problem is translated to the following optimal control problem.
We search for (u1, u2) that makes the following functional minimized,

J =
1
2

∫ 5

0

(
(u1)2 + (u2)2 + ‖e‖2

)
dt. (3)

The term
(
(u1)2 + (u2)2

)
represents the total cost of the control used by the

Dubin’s car. The term ‖e‖2 represents the total error, where

e(t) =
[
x1(t)− γ1(t) x2(t)− γ2(t)

]T
. (4)

Here,
(
x1, x2

)
is the state variable of the system (1). The error term in (3) is

used to minimize the distance between the Dubin’s car path and the desired path.
Now, the Hamiltonian function of the system is H = p1u1cos(x3) + p2u1sin(x3) +
p3u2 + 1

2p0

(
(u1)2 + (u2)2 + ‖e‖2

)
. Using this function, we build the Hamiltonian

system:

∂H

∂p1
= ẋ1 = u1cos(x3)

∂H

∂p2
= ẋ2 = u1sin(x3)

∂H

∂p3
= ẋ3 = u2 (5)

∂H

∂x1
= −ṗ1 = p0

(
x1(t)− γ1(t)

)

∂H

∂x2
= −ṗ2 = p0

(
x2(t)− γ2(t)

)

∂H

∂x3
= −ṗ3 = −p1u1sin(x3) + p2u1cos(x3).

By the Pontryagin Maximum principle, the value of H must be optimized with
respect to the control (u1, u2). Thus,

∂H

∂u1
= p1cos(x3) + p2sin(x3) + p0u1 = 0

∂H

∂u2
= p3 + p0u2 = 0,

since p0 must be constant and negative, without loss of generality, we let p0 = −1.
Thus, we obtain the control

u1 = p1cos(x3) + p2sin(x3)
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u2 = p3.

Then, this control is substituted in (5). Thus, we obtain a system of differential
equations:

ẋ1 = p1cos
2(x3) + p2sin(x3)cos(x3)

ẋ2 = p1sin(x3)cos(x3) + p2sin
2(x3)

ẋ3 = p3

ṗ1 =
(
x1(t)− γ1(t)

)
(6)

ṗ2 =
(
x2(t)− γ2(t)

)

ṗ3 = (p2
1 − p2

2)sin(x3)cos(x3) + p1p2(sin2(x3)− cos2(x3)).

Initial and final conditions of the state variables (xi; i = 1, 2, 3) are known. How-
ever, the costate equations (pi; i = 1, 2, 3) does not have initial condition. So, the
solution of the system of differential equation is difficult to obtain. This paper pro-
poses the steepest gradient descent method. This method is used to approximate
the initial condition of the costate variables in the system of differential equation.
First, the initial value of state variables are given by xi(0) = xi0; i = 1, 2, 3 and the
initial value of costate variables are arbitrarily guessed by pi(0) = qi0; i = 1, 2, 3.
The values are used to solve the system of differential equation. Next, we calculate
F (q10, q20, q30) =

∑3
i=1 ‖ xi(T ) − xiT ‖2, where xi(T ) is obtained from the solu-

tion of the system of differential equation and is the final conditions of the state
variables. Afterwards, we determine the value of the new (q10, q20, q30) by using
the steepest gradient descent method, such as in Tjahjana [7]. The value is used
to make the new F (q10, q20, q30) less than the old F (q10, q20, q30). The process is
done repeatedly until the value of F (q10, q20, q30) is small enough.

3. Numerical Simulation

In this section, numerical simulations to illustrate the proposed method are
reported. The initial and boundary conditions of the desired path are given by
γ(0) = (1, 2), γ(5) = (5, 4), γ̇(0) = (1, 0), and γ̇(5) = (1, 0). A desired path
obtained by the calculus variational method is the following parametric curve:

γ1(t) =
2

125
t3 − 3

25
t2 + t + 1

γ2(t) = − 4
125

t3 +
6
25

t2 + 2. (7)

The Dubin’s car is expected to maneuver tracing this path as close as possi-
ble. The initial and final conditions of the Dubin’s car system are given by
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(x1(0), x2(0), x3(0)) = (1, 2, 0), and (x1(5), x2(5), x3(5)) = (5, 4, 0), respectively.
The desired path in equation (7) is substituted in (6). Thus, we obtain a system
of differential equations:

ẋ1 = p1cos
2(x3) + p2sin(x3)cos(x3)

ẋ2 = p1sin(x3)cos(x3) + p2sin
2(x3)

ẋ3 = p3

ṗ1 =
(
x1(t)− 2

125
t3 +

3
25

t2 − t− 1
)

ṗ2 =
(
x2(t) +

4
125

t3 − 6
25

t2 − 2
)

ṗ3 = (p2
1 − p2

2)sin(x3)cos(x3) + p1p2(sin2(x3)− cos2(x3))

The numerical solution of the above equation utilizes the steepest gradient
descent method. Fig. 2 shows the path of the Dubin’s car tracing the desired path
by using the method. Table 1 shows the error.

Figure 2: The trajectories of desired path and the optimal trajectory of the car.

4. Future Works

From the numerical simulation results above, it can be seen that the tracking
error of the path of the Dubin’s car tracing a desired path is sufficienty small. In
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Tabel 1: Error
Time (t) Error Time (t) Error Time (t) Error

0 5.95E-07 1.75 2.05E-07 3.5 3.11E-07
0.25 8.19E-07 2 1.02E-07 3.75 3.87E-07
0.5 2.30E-07 2.25 2.70E-07 4 4.06E-07
0.75 3.52E-07 2.5 3.45E-07 4.25 3.52E-07
1 4.07E-07 2.75 2.69E-07 4.5 2.30E-07

1.25 3.88E-07 3 1.01E-07 4.75 8.81E-07
1.5 3.11E-07 3.25 2.05E-07 5 5.98E-07

the future works, we will discuss the movement control of swarm system consisting
of several Dubin’s cars with a specific geometry formation.

Pustaka

[1] Z-P. Jiang and H. Nijmeijer, 1997, Tracking Control of Mobile Robots:a Case
Study in Backstepping, Automatica, vol. 33, no. 7, pp. 1393-1399.

[2] Z-P. Jiang and H. Nijmeijer, 1999b, A Recursive Technique for Tracking Con-
trol of Nonholonomic Systems in Chained Form, IEEE Transaction on Auto-
matic Control, vol. 44, no. 2, pp. 256-279.

[3] E. Lefeber And H. Nijmeijer, December 1999, Adaptive Tracking Control of
Nonholonomic Systems: an example, Proceedings of the 38th Conference on
Decision and Control, Phoenix, Arizona USA.

[4] Miswanto, I. Pranoto, and H. Muhammad, 2006, A Model of Swarm Move-
ment with The Presence of A Leader, Proceeding , International Conference
on Mathematics and Natural Sciences, pp. 740-742, ITB, Bandung.

[5] E. Panteley, E. Lefeber, A. Loria, and H. Nijmeijer, September 1998, Ex-
ponential Tracking Control of a Mobile Car Using a Cascaded Approach,
Proceeding of the IFAC Workshop on Motion Control, pp. 221-226, Grenoble
France.

[6] G.Y. Tang, Y.D. Zhao and Hui Ma, 2006, Optimal Output Tracking Con-
trol for Bilinear Systems, Transactions of the Institute of Measurement and
Control 28, 4, pp. 387-397.

[7] H. Tjahjana, I. Pranoto, H. Muhammad, and J. Naibourho, 2007, On the
optimal control Computation of linear system, preprint.



8 The Application of The Steepest Gradient...

[8] D. Wang and G. Xu, June 2000, Full State Tracking and Internal Dynamics of
Nonholonomic Wheeled Mobile Robots, Proceedings of the American Control
Conference, pp. 3274-3278, Chicago, Illinois.


