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Abstract 

This paper presents a study of how human perceive the quality of geometrically 

distorted images by presenting the design and analysis of a subjective-test experiment. 

The results of this experiment is then used to evaluate the performance HPQM 

(Homogeneity-based Perceptual Quality Measurement) method presented in the first 

paper of this series.  
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1. Introduction 

Research on human perception of image quality has been widely performed. 

Aspects of images considered in such research are, for example, color, granularity or 

sharpness. Another example is to test specific artifacts of a compression algorithm 

(e.g., the blocking artifact of JPEG compression) or watermarking system (e.g., the 

random noise artifact of noise-based watermark-ing systems). Some examples of the 

image quality assessment for these distortions can be found in [1]. As a result, we 

already have a good understanding of how these aspects influence human perception 

of quality and we are able to quantify these perceptual aspects in cases where the 

distortion is near the visibility threshold. We can use the result, for example, to build a 

system to objectively measure image quality based on these aspects which 

corresponds quite well to subjective quality perception. We can also use the result of 

this research to improve the performance of various applications dealing with images 

by designing the systems such that most changes or distortions to the images occur in 

the areas that have small perceptual impact for human observers. The examples 

mailto:(iwan.setyawan@ieee.org)


Techné Jurnal Ilmiah Elektroteknika Vol. 9 No. 1 April 2010 Hal 13 – 39 
 
 

14 
 

mentioned above, namely the compression algorithms and watermarking systems, are 

two examples of applications that can take advantage of this knowledge. However, the 

research on human perception of image quality has not dealt with another type of 

distortion that an image can undergo, namely geometric distortion (i.e., distortions due 

to geometric operations). As a result, we are currently unable to quantify the 

perceptual impact of geometric distortions on images.  

This paper presents a study of the impact of geometric distortions on human 

perception of the quality of the affected images. The aim of this study is to provide 

both a better understanding of human perception of geometric distortion and a 

reference point with which to evaluate the performance of our novel objective 

geometric distortion measure scheme, the HPQM (Homogeneity-based Perceptual 

Quality Measurement) method, described in the previous paper of this series (see also 

[2]). 

In order to perform this study we propose a user test system that is specifically 

designed to observe the impact of geometric distortion on human perception of image 

quality. The results we obtain from this test can also be useful to other researchers 

performing similar research in the fields of watermarking, image processing and 

human visual systems. Therefore, we have also made our test set and test results 

available for download on our website [3].  

The rest of this paper is organized as follows. In Section 2, we present the 

design of our user test experiment and statistical analysis methods used to process the 

test results. In Section 3, we present the actual setup of our user test. In Section 4, we 

present and analyze the result obtained from this user test. In Section 5, we will 

briefly review our objective geometric distortion measure algorithm, present scores 

obtained using this method and evaluate its performance based on the subjective test 

result and compare its performance with other possible objective perceptual quality 

measurement systems. Finally, in Section 6, we present our conclusions and provide 

an outlook for further research. 

 

2. Test design & analysis method 

 In this section we shall discuss in more detail the test design and the analysis 

tools we use to analyze the test results. The test design and analysis tools we use are 

well known in the literature [4, 6]. They have been used, for example, in experiments 
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to determine consumer preference to certain products or product variants (e.g., 

different flavors of food) [4]. However, their usage in evaluating perceptual impact of 

geometric distortions in images, to the best of the author’s knowledge, is novel and 

has never been discussed in the literature.   

 

2.1. Test design 

In order to evaluate the perceptual impact of geometric distortion, we 

performed a subjective test involving a panel of users, who are asked to evaluate a test 

set comprised of an original image and various distorted versions of it. The test 

subjects evaluate one pair of images at a time, comparing 2 images and choosing the 

one they think is more distorted. This type of experiment is called the paired 

comparison test. There are two experiment designs for a paired comparison test, 

namely the balanced and incomplete designs [4, 5]. In a balanced design, a test 

subject has to evaluate all possible comparison pairs taken from the test set. In the 

incomplete design, a test subject only has to perform comparisons of part of the 

complete test set. The latter design is useful when the number of objects in the test set 

is very large. In our experiment, we used the balanced paired-comparison design. Our 

choice for this design is based on three factors. Firstly, the number of objects in our 

test set is not very large and a test subject can finish the test within a reasonable time 

frame (as a rule of thumb, we consider a test lasting 60 minutes or less to be 

reasonable). Secondly, by asking every test subject to evaluate all objects in the test 

set we will be able to get a more complete picture of the perceptual quality of the 

images in the test set. Finally, in this design we make sure that each test subject 

evaluates an identical test set. This makes it easier to evaluate and compare the 

performance of each test subject.  

Let t be the number of objects in the test set. One test subject performing all 

possible comparisons of 2 objects Ai and Aj from the test set, evaluating each pair 

once, will make 








2
t  paired comparisons in total. The result of the comparisons is 

usually presented in a t × t matrix. If ties are not allowed (i.e., a test subject must cast 

his/her vote for one object of the pair), the matrix is also called a two-way preference 

matrix with entries containing 1’s if the object was chosen and 0’s otherwise. An 

example of such a matrix for t = 4 is shown in Figure 1. Each entry Ai,j of the matrix is 
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interpreted as object Ai is preferred to object Aj. The indices i and j refer to the rows 

and columns of the matrix, respectively. 

 

 A1 A2 A3 A4 

A1 × 1 1 0 

A2 0 × 1 1 

A3 0 0 × 0 

A4 1 0 1 × 

 

Figure 1. An example of a preference matrix 

 

Let ai be the number of votes object Ai received during the test. In other words, 
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We can extend these results to the case where we have n test subjects 

performing the paired comparison test. In this case, the test result can also be 

presented in a preference matrix similar to the one presented in Figure 1. However, 

each entry Ai,j of this matrix now contains the number of test subjects who prefer 

object Ai to object Aj. If again we do not allow ties, the values of Ai,j will be integers 

ranging from 0 to n. We also note that in this case Aj,I = n – Ai,j. Finally, in this case, 

the total and average scores are expressed as )1(
2
1

−tnt  and )1(
2
1

−tn , respectively. 
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2.2. Statistical analysis of the experiment 

After performing paired comparison tests, we obtain a preference matrix for 

each test set. Now we have to perform an analysis of this test result. We have two 

main objectives for this analysis. In the first place, we want to obtain the overall 

ranking of the test objects. The second objective is to see the relative quality 

differences between the test objects, that is, whether object Ai is perceived to be either 

similar to or very different in quality from object Aj. The analyses we perform on the 

data to achieve these objectives are the coefficient of consistency, the coefficent of 

agreement and the significance test on score differences. Each of these analyses is 

discussed in the following sections.  

 

2.2.1. Coefficient of consistency 

A test subject is consistent when he/she, in evaluating three objects Ax, Ay and 

Az from the test set, does not make a choice such that Ax à Ay à Az but Az à Ax. The 

arrows can be interpreted as “preferred to”. Such a condition is called a circular triad. 

While circles involving more than three objects are also possible, any such circles can 

easily be broken up into two or more circular triads. The preference matrix presented 

in Figure 6.1 has one such triad, namely A1 à A2 à A4 but A4 à A1. 

 

For smaller values of t, one can easily enumerate the circular triads 

encountered. For larger t, this task becomes very tedious. However, we can compute 

the number of circular triads, c, from the scores ai using the following relation [4,6]: 

  

2
)1(

24
2 Tttc −−=     (3) 

where 

∑
=

−=
t

i
i aaT

1

2)(     (4) 

 

The number of circular triads c can be used to define a measure of consistency 

of the test subjects. There are different approaches to do this [4]. Kendall/Babington-

Smith compared the number of circular triads found in the test to the maximum 
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possible number of circular triads. The coefficient of consistency ζ is defined as 

follows: 

 

)1(
241 2 −

−=
tt

c
ζ , if t odd   (5a) 

)4(
241 2 −

−=
tt

c
ζ , if t even   (5b) 

 

There are no inconsistencies if, and only if, ζ = 1. This number will move to zero as 

the number of circular triads, thus the inconsistencies, increases.  

 

The coefficient of consistency can be used in the following ways. In the first 

place, we can use this coefficient to judge the quality of the test subject. Secondly, we 

can use this coefficient as an indication of the similarity of the test objects. If, on 

average, the test subjects are inconsistent (either for the whole data set or a subset 

thereof), we can conclude that the test objects being evaluated are very similar and 

thus it is difficult to make a consistent judgement. Otherwise, if one particular test 

subject is inconsistent while the other test subjects are – on average – consistent, we 

may conclude that this particular subject is not performing well. If the consistency of 

this subject is significantly lower than average, we may consider removing the result 

obtained by this subject from further analysis. 

 

2.2.2. Coefficient of agreement 

The coefficient of agreement shows us the diversity of preferences among n test 

subjects. Complete agreement is reached when all n test subjects make identical choices 

during the test. From Section 2.1, we see that if every subject had made the same choice 

during the test (in other words, if there has been complete agreement), then half of the entries 

in the preference matrix will be equal to n, while the other half would be zero. Alternatively, 

in the worst case situation, all entries will be equal to n/2 (if n is even) or (n ± 1)/2 if n is odd.   

It is obvious that the minimum number of test subjects, n, that we need in 

order to be able to measure agreement is 2. Each time 2 test subjects make the same 

decision regarding a pair of test objects Ai and Aj, we say that we have one agreement 

regarding this pair. In other words, we measure the agreement by counting the number 
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of pairs of test subjects that make the same decision about each pair of test objects. 

We do this by computing τ, defined as 
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In Equation (6), 
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ijA
 gives us the number of pairs of test subjects making the 

same choice regarding objects Ai and Aj. Thus τ gives us the total number of 

agreements among n test subjects evaluating t objects. Obviously, when Ai,j = 1 we do 

not have any agreement among the subjects and the contribution of this particular Ai,j 

to τ would be zero. If Ai,j = 0, it means that all test subjects agree not to choose Ai over 

Aj. Although the contribution of this Ai,j to τ is also zero, the number of agreements 

regarding this pair of test objects will be reflected by the value of Aj,i.  
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n  possible pairs of subjects, 

therefore the maximum number of agreements between the subjects is given by 
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Meanwhile, the minimum value of τ is given by 
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We can also express τ in a more computationally convenient way, as follows. 
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Kendall/Babington-Smith [6] defines the coefficient of agreement, u, as follows  
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The value of u = 1 if and only if there is complete agreement among the test 

subjects, and it decreases when there is less agreement among the test subjects. The 

minimum value of u is -1/(n-1) if n is even or -1/n if n is odd. The lowest possible 

value of u is -1 which can only be achieved when n = 2. This value of u shows the 

strongest form of disagreement between the test subjects, namely that the test subjects 

completely contradict each other.  

 

We can perform a hypothesis test to test the significance of the value u. The 

null hypothesis is that all test subjects cast their preference completely at random. The 

alternative hypothesis is that the value of u is greater than what one would expect if 

the choices would have been made completely at random. To test the significance of u 

we use the following statistic, as proposed in [4] 
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which has χ2 distribution with 
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As n increases, the expression in Equation (11) reduces to a simpler form [7] 
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2
t  degrees of freedom. 

It is important to note that consistency and agreement are two different 

concepts. Therefore, a high u value does not necessarily imply the absence of 

inconsistencies and vice versa.  

 

The coefficient of agreement also shows whether the test objects, on average, 

received equal preference from the test subjects. If the overall coefficient of 
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agreement is very low we can expect that the score of each test object will be very 

close to the average scores of all test objects, i.e., there is no significant difference 

among the scores. As a consequence, assigning ranks to the objects or drawing the 

conclusion that one object is better (or worse) than the others is pointless since the 

observed score differences (if any) cannot be used to support the conclusion. On the 

other hand, strong agreement among the test subjects indicates that there exist 

significant differences among the scores.  

 

2.2.3. Significance test of the score difference 

A significance test of the score difference is performed in order to see whether 

the perceptual quality of any 2 objects from the test set is perceived as different. In 

other words, the perceptual quality of object Ai is declared to be different from the 

quality of object Aj, only if ai is significantly different from aj. Otherwise, we have to 

conclude that the test subjects consider the perceptual quality of the 2 objects to be 

similar.  

 

This problem is equivalent to the problem of dividing the set of scores we 

obtain, i.e. S = {a1, a2, …, at}, into sub-groups such that the variance-normalized 

range (the difference of the largest and lowest values) of the scores within each group,  

ia

aaR
σ

)( minmax −
=     (13) 

is lower or equal to a certain value Rc (in other words, the difference of any 2 scores 

within the group must be lower or equal to Rc), which depends on the value of  the 

significance level α. In other words, we want to find Rc such that the probability P[R ≥ 

Rc] is lower or equal to the chosen significance level α. We declare the objects within 

each group to be not significantly different, while those from different groups are 

declared to be significantly different. By adjusting the value of α, we can adjust the 

size of the groups. This in turn controls the probability of false positives (declaring 2 

objects to be significantly different when they are not) and false negatives. The larger 

the groups, the higher the probability of false negatives. On the other hand, the 

smaller the groups, the higher the probability of false positives.     
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The distribution of the range R is asymptotically the same as the distribution of 

variance-normalized range, Wt, of a set of normal random variables with variance = 1 

and t samples [4]. Therefore, we can use the following relation to approximate P[R ≥ 

Rc]  

  ]2
12

[ , nt

R
WP

c

t

−
≥α     (14) 

 

In Equation (14), Wt,α is the value of the upper percentage point of Wt at significance 

point α. The values of Wt,α are tabulated in statistics books for example the one 

provided in [8]. 

 

The significance test for the differences between scores proceeds as follows: 

1. Choose the desired significance level α. 

2. Compute the critical value Rc using the following relation 





 +=

4
1

2
1

, ntWR tc α      (15) 

3. Any difference between 2 scores that is lower than Rc is declared to be 

insignificant. Otherwise, the score difference is declared significant. 

 

3. Test procedure 

 User test mechanism to measure the impact of geometric distortion on the 

human perception of image quality is not widely discussed in the literature. Therefore, 

we have proposed a new user test system that is specifically designed for this purpose. 

In this section we shall describe in more detail the design of a suitable test set and user 

interface for such user test system.   

 

3.1. Test set 

We used the same test sets as the ones we used in the previous paper in this 

series. The two images used as a basis to build our test set, i.e. the Bird and Kremlin 

images (shown in Figure 2), are 8-bit grayscale images with 512 × 512 pixels 

resolution. The images are chosen primarily due to their content. The first image, 
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Bird, does not have many structures such as straight lines. Furthermore, not every test 

subject is very familiar with the shape of a bird (in particular the species of bird 

depicted in the image). So in this case, a subject should have little (if any) “mental 

picture” of what things should look like. On the other hand, the Kremlin picture has a 

lot of structures and even though a test subject may not be familiar with the Kremlin, 

he/she should have some prior knowledge of what buildings should look like. 

 

  
 (a)    (b) 

Figure 2. The 2 basis images: (a) Bird and (b) Kremlin 

 

We used 17 different versions of the images. Each version is geometrically 

distorted in a different way. Thus in our test we use t = 17. The geometric distortions 

we used in the experiment are also identical to the ones used in the previous paper and 

their descriptions are repeated here in Table 1 for convenience. As in the previous 

paper, we use the notation Ai, with i = 1, 2, … 17 to identify each image. 

The distortions chosen for the test set range from distortions that are 

perceptually not disturbing to distortions that are easily visible. The global bending 

distortions {A6, A7, A8, A9} are chosen because these kinds of distortions are, up to a 

certain extent, visually not very disturbing in natural images. However, this distortion 

severely affects the PSNR value of the distorted images. The sinusoid (stretch-shrink) 

distortions {A10, A11, A12, A13} distort the image by locally stretching and shrinking the 

image. Depending on the image content, this kind of distortion may not be 

perceptually disturbing. The rest of the distortions distorts the image by shifting the 

pixels to the left/right or upwards/downwards. These distortions are easily visible, 

even when the severity is low. The distortions {A2, A3, A4, A5} apply the same 

distortion severity over the whole image, while the severity of distortions {A14, A15, 
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A16, A17} is varied within the image. Some examples of the geometric distortions used 

in the experiment are shown in Figure 3. 

Table 1. Geometric distortions used in the experiment 

Image Description 

A1 No distortion (original image) 

A2 Sinusoid, amplitude factor = 0.2, 5 periods 

A3 Sinusoid, amplitude factor = 0.2, 10 periods 

A4 Sinusoid, amplitude factor = 0.5, 5 periods 

A5 Sinusoid, amplitude factor = 0.5, 10 periods 

A6 Global bending, bending factor = 0.8 

A7 Global bending, bending factor = - 0.8  

A8 Global bending, bending factor = 3 

A9 Global bending, bending factor = -3  

A10 Sinusoid (stretch-shrink), scaling factor 1, 0.5 period 

A11 Sinusoid (stretch-shrink), scaling factor 1, 1 period 

A12 Sinusoid (stretch-shrink), scaling factor 3, 0.5 period 

A13 Sinusoid (stretch-shrink), scaling factor 3, 1 period 

A14 Sinusoid (increasing freq), amplitude factor = 0.2, starting period 

= 1,  

freq increase factor = 4 

A15 Sinusoid (increasing freq), amplitude factor = 0.2, starting period 

= 1,  

freq increase factor = 9 

A16 Sinusoid (increasing amplitude), start amplitude factor = 0.1, 5 

periods, amplitude increase factor = 4 

A17 Sinusoid (increasing amplitude), start amplitude factor = 0.1, 5 

periods, amplitude increase factor = 9 

 

We then proceed to make all possible comparison pairs out of the 17 images, 

including the comparison of an image with itself. In each pair, we designate the first 

image as the left image and the other as the right image. This refers to how the images 

are to be presented to the subjects (see Figure 4). We then repeat each pair once, with 
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the left-right ordering of the images reversed. Thus we have 306 pairs of images for 

each of the two images for a total of 612 pairs of images in the test set.  

 

      
(a)    (b)    (c) 

Figure 3. Examples of the geometric distortions: 

 (a) Distortion A5, (b) Distortion A13 and (c) Distortion A16 

 

3.2. Test subjects  

The user test experiment involved 16 subjects, consisting of 12 male (IL, ON, 

PD, AH, ES, DS, IS, JO, JK, JJ, KK and RH) and 4 female (KC, CL, CE and ID) 

subjects. The subjects have different backgrounds and levels of familiarity with the 

field of digital image processing. As discussed in Section 3.1, each user will examine 

each pair of test images twice in one test session. Furthermore, subjects IL, DS and IS 

each perform 3 test sessions. Therefore, in the tables found in Section 4, a number 

will be added to the subject names to show different test sessions (eg., IL1 shows the 

result of subject IL from the 1st test, etc.). These repetitions are done to see the 

difference between test results for one person when the test is repeated. We assume 

that each repetition of the test (both within a single test session and between test 

sessions) is independent. Therefore, we have the total number of test repetitions n = 

44.  

 

3.3. Test procedure 

The test is performed on a PC with a 19-inch flatscreen CRT monitor. The 

resolution is set at 1152 × 864 pixels. The vertical refresh rate of the monitor is set at 

75 Hz. To perform the test, a graphical user interface is used. This user interface is 

shown in Figure 4. 
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Figure 4. The user interface used in the experiment 

 

4. Test results and analysis 

4.1. User preference matrix 

After performing the user test, we obtain the preference matrices for the Bird 

and Kremlin images. In Tables 2(a) and 2(b), we show the preference matrices 

obtained for the Bird and Kremlin test images. These preference matrices are 

available for downloading from our website [3]. The images codes refer to Table 1. 

The column ai shows the sum of each row, i.e., the score of each image Ai. Since in 

our experiment the test subject is asked to choose the image with the most distortion, a 

smaller score ai means that the image is perceptually better. 
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Table 2(a). Preference matrix for the Bird image 

  A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 ai 

A1 × 7 3 0 0 11 21 19 8 8 24 2 10 9 1 0 0 123 

A2 37 × 4 0 0 33 28 29 24 30 36 10 11 12 5 1 1 261 

A3 41 40 × 3 1 42 43 39 39 41 42 25 18 37 9 5 0 425 

A4 44 44 41 × 3 44 44 42 43 43 43 37 39 43 31 15 1 557 

A5 44 44 43 41 × 44 44 44 43 43 44 42 43 44 43 42 24 672 

A6 33 11 2 0 0 × 25 15 17 15 33 4 11 8 1 0 0 175 

A7 23 16 1 0 0 19 × 15 13 21 28 3 11 5 2 0 0 157 

A8 25 15 5 2 0 29 29 × 12 17 27 6 10 9 1 1 0 188 

A9 36 20 5 1 1 27 31 32 × 30 40 8 15 15 2 2 0 265 

A10 36 14 3 1 1 29 23 27 14 × 34 6 9 9 0 0 0 206 

A11 20 8 2 1 0 11 16 17 4 10 × 4 5 6 1 0 0 105 

A12 42 34 19 7 2 40 41 38 36 38 40 × 20 31 9 5 1 403 

A13 34 33 26 5 1 33 33 34 29 35 39 24 × 25 17 5 0 373 

A14 35 32 7 1 0 36 39 35 29 35 38 13 19 × 6 1 0 326 

A15 43 39 35 13 1 43 42 43 42 44 43 35 27 38 × 7 2 497 

A16 44 43 39 29 2 44 44 43 42 44 44 39 39 43 37 × 1 577 

A17 44 43 44 43 20 44 44 44 44 44 44 43 44 44 42 43 × 674 

 

4.2. Statistical analysis of the preference matrix 

4.2.1. Coefficient of consistency (ζ) 

We measured the coefficient of consistency for individual test subjects using 

Equation (5a) since we have t = 17. Since each test subject performs the user test 

twice per session, we use the average value of ζ as an indication of each subject’s 

consistency. The average coefficient of consistency is presented in Table 3. 
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Table 3. Coefficient of consistency (ζ) 

Subject Bird Kremlin Subject Bird Kremlin 

IL1 0.83 0.93 DS1 0.67 0.87 

IL2 0.83 0.91 DS2 0.73 0.92 

IL3 0.85 0.95 DS3 0.82 0.93 

KC 0.85 0.86 IS1 0.92 0.95 

ON 0.94 0.98 IS2 0.94 0.93 

PD 0.70 0.87 IS3 0.94 0.97 

AH 0.87 0.96 JO 0.93 0.97 

CL 0.82 0.90 JK 0.90 0.96 

CE 0.83 0.94 JJ 0.85 0.88 

ES 0.89 0.94 KK 0.70 0.79 

ID 0.66 0.90 RH 0.90 0.95 

 

From Table 3 we can conclude that in general the test subjects are consistent 

in their decisions. We can also see that in general the values of ζ for the Bird image 

are lower than those of the Kremlin image. This is due to the fact that the Kremlin 

image contains more structure compared to the Bird image, which helps the test 

subjects to make consistent decisions. Furthermore, the unfamiliarity of the test 

subjects with the particular species of bird depicted in the image also makes it 

difficult to make consistent decisions. 

 

4.2.2. Coefficient of agreement (u) 

We measured two types of coefficient of agreement from the preference 

matrix. The first is the overall coefficient of agreement that measures the agreement 

among all test subjects in the experiment. The second is the individual coefficient of 

agreement that measures the agreement of a test subject with him-/herself during the 

two repetitions in a test session. A low u value in this case would indicate that the 

subject is confused and does not have a clear preference for the images being shown. 

For the overall coefficient of agreement, we have n = 44 and t = 17. For these 

values, the maximum and minimum values of u are 1 and -0.0227, respectively. From 

the preference matrices, we can calculate that the overall coefficient of agreements are 
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ubird = 0.574 and ukremlin = 0.731. Performing the significance test on both u values 

using the method described in Section 2.2.2 shows that in both cases the value of u is 

significant at α = 0.05. Therefore, we can conclude that in both cases there are strong 

agreements among the test subjects. However, we can also see that the agreement in 

the case of the Bird image is much weaker than the Kremlin image, due to the image 

content.  

 

Table 4. Individual Coefficient of Agreements(u) 

Subject Bird Kremlin Subject Bird Kremlin 

IL1 0.559 0.750 DS1 0.265 0.647 

IL2 0.574 0.721 DS2 0.471 0.794 

IL3 0.677 0.779 DS3 0.559 0.750 

KC 0.662 0.691 IS1 0.721 0.882 

ON 0.779 0.868 IS2 0.809 0.721 

PD 0.485 0.677 IS3 0.735 0.838 

AH 0.559 0.794 JO 0.721 0.853 

CL 0.456 0.750 JK 0.824 0.735 

CE 0.618 0.691 JJ 0.529 0.691 

ES 0.765 0.765 KK 0.368 0.515 

ID 0.279 0.691 RH 0.691 0.765 

 

For the individual coefficient of agreement, we have n = 2 and t = 17. In this 

case, we have -1 ≤ u ≤ 1. The individual coefficient of agreements are presented in 

Table 4. As expected, we see that all subjects have larger u values for the Kremlin 

image. The exceptions to this are subject ES, who has the same u values for both 

images, and subjects IS2 and JK, who have larger u for the Bird image. After 

performing the significance test on the values of u, we can conclude that all subjects 

have u values that are significant at α = 0.05 for both the Bird and Kremlin images.  

 

4.2.3. Significance test of score differences 

The strong agreements among the test subjects for both images, as shown in 

the previous section, show that there exist significant differences among the scores of 
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the test objects. We use the procedure described in Section 2.2.4 to find the critical 

value for the score difference for the images, at significance level α = 0.05. From [8] 

we have Wt, α= 4.89. Substituting this value into Equation (15), we have Rc
 = 67.12 

and thus we set R = 68. Therefore, only objects having a score difference of more than 

68 are to be declared significantly different. 

In Figure 5, we present the grouping of the images in the test set based on the 

significance of the score differences. The images have been sorted from left to right 

based on their scores, starting from the image with the smallest score (i.e., perceived 

to have the highest quality) to the one with the largest score. The score for each image 

is shown directly under the image code. Images having a score difference smaller than 

68 are grouped together. This is represented by the shaded boxes under the image 

code. For example, in Figure 5(a), images A14 and A13 belong to one group. 
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Figure 5. Score grouping for: (a) Bird image and (b) Kremlin image 

   

From Figure 5, we can see that the images occupying the last 6 positions of the 

ranking for both the Bird and Kremlin images are distorted using the same distortion. 

Furthermore, they are sorted in the same order (except for images A5 and A17, but the 

difference between their scores is not significant). Thus we can conclude that these 

distortions are perceived similarly by the test subjects, regardless of the image 
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content. These distortions occupy the “lower quality” segment of the ranking so we 

can also conclude that the distortions are so severe that the image content no longer 

plays a significant role. For the other images, the influence of image content on the 

perceived quality of the distorted images is larger.  

 

Table 5. Group u values  

Bird Kremlin 

Group u  Significant? Group u  Significant? 

A11A1A7 0.006 No  A1 A10 A12 A6 0.008 No  

A1A7A6A8 0.061 Yes A10 A12 A6 

A11 

0.03 Yes 

A7A6A8A10 0.041 Yes A11 A7 0.011 No  

A10A2A9 0.07 Yes A13 A8 0.08 Yes 

A2A9A14 0.085 Yes A8 A2 A14 0.175 Yes 

A14A13 -0.004 No A2 A14 A9 0.054 Yes 

A13A12A3 -0.003 No A3 A15 -

0.021 

No 

A15A4 0.148 Yes A4A16 0.112 Yes 

A4A16 0.08 Yes A17 A5 0.011 No 

A5A17 -0.015 No - - - 

 

Table 5 shows the overall u values for each score group. We expect that when 

the images in a group do not have significantly different scores, there will not be any 

clear preference for any of them among the test subjects and therefore the u values 

should be low. The groups are presented in the 1st and 4th columns using their 

members as group names. The 3rd and 6th columns of the table show the result of the 

significance test for u, as described in Section 2.2.2, with significance level α = 0.05. 

We can conclude from Table 5 that the u values for each group are very low. 

Some groups even have u values that are not significantly larger than the u values that 

would have been achieved had the votes within that group been cast at random. This 

result shows that indeed the grouping of the images performed based on the 

significance of score differences has produced groups within which the perceived 

quality is difficult to distinguish. 
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4.3. Conclusions 

From the analysis of the user test results, we can draw the following 

conclusions: 

1. The test objects are generally perceptually distinguishable by the test subjects. 

This is supported by the fact that the consistency of the test subjects is 

relatively high, as shown in Table 3. Furthermore, we also see that the 

individual u values (shown in Table 4) are also high.   

2. There is a general agreement as to the relative perceptual quality of the test 

images among the test subjects. This is supported by both the high overall and 

individual u values. Therefore, we can make a ranking of the images based on 

their perceived quality. 

3. For some images, the relative perceptual quality among them is not clearly 

distinguishable. We can see this from the grouping of the scores based on the 

significance test of score differences. This is further supported by the lack of 

agreement among test subjects regarding the relative quality of images within 

such groups. 

 

5. Evaluation of the objective perceptual quality measurement 

method 

5.1. Overview of the method 

The objective geometric distortion measurement is based on the ideas in our 

previously published work [9] and further developed and described in [2] and in the 

previous paper of this series. The algorithm is based on the hypothesis that the 

perceptual quality of a geometrically distorted image depends on the homogeneity of 

the geometric distortion. We call our proposed scheme the Homogeneity-based 

Perceptual Quality Measurement (HPQM). The less homogenous the geometric 

distortion is, the lower the perceptual quality of the image will be. We proposed a 

method to measure this homogeneity by approximating the underlying geometric 

distortion using simple RST approximation. We use the Optical Flow Estimation 

(OFE) algorithm [10,11] to perform this approximation. We increase the locality of 

our approximation until the level of approximation error is lower than a 
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predetermined threshold or until the locality of the approximation reaches a 

predetermined maximum. The locality is increased using quadtree partitioning of the 

image, where smaller block sizes indicate higher approximation locality. We then 

determine the score (i.e., the quality) of the image based on the resulting quadtree 

structure. In the objective test, the score that can be achieved by an image is 

normalized to the range of 0 – 100.  

 

5.2. Performance evaluation  

In this section we shall evaluate the performance of our proposed objective 

quality measurement algorithm. In this performance evaluation we use the results of 

the subjective-test as a ground truth. In other words, the proposed algorithm will be 

considered to be performing well if its results have a good correspondence to the 

subjective-test results. Furthermore, in order to evaluate the performance of the 

proposed objective quality measurement algorithm relative to the performance of 

other possible measurement schemes, we also evaluate the performances of two other 

possible objective quality measurement schemes. The other possible measurement 

schemes we evaluate in this section are PSNR measurement and Motion-Estimation 

(ME)-based measurement scheme. 

The PSNR measurement is a widely used tool used to evaluate the objective 

quality of images. Although this measurement does not always  correspond well to 

human perception of quality, its performance is good enough to evaluate the quality 

of, for example, images degraded by additive noise. However, PSNR measurement 

relies heavily on the pixel-per-pixel correspondence between the images being 

evaluated. Since geometric distortion destroys this correspondence, PSNR 

measurement is not well suited for evaluating geometrically distorted images. 

Therefore, in our experiments the results of the PSNR measurement are used to 

indicate the worst-case scenario (i.e., an ineffective measurement scheme). 

The second alternative objective quality measurement scheme we evaluate is 

an motion estimation (ME)-based measurement scheme. This measurement scheme is 

inspired by the use of motion estimation techniques in image and video watermarking 

to deal with geometric distortion for example the technique presented in [12]. In order 

to use the motion estimation technique as a measurement scheme we take into account 
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two outputs of the motion estimation process, namely the motion vector entropy and 

the variance of the prediction error. The motion vector entropy is used to indicate the 

“activity” of the distortion. A high activity means that various parts of the image are 

distorted in a different way. The higher the activity of the distortion, the lower the 

perceptual quality of the image. The variance of the prediction error shows the 

residual error after the motion estimation and compensation process. A large error 

variance indicates a heavy distortion and thus a lower perceptual quality. Our 

observations indicate that the motion vector entropy plays a more important role in 

determining the perceptual quality of the image. Therefore, we give this measurement 

parameter a larger weight than the residual error variance. These weights are 

determined experimentally. The proposed ME-based quality measurement (MEQM) 

scheme is presented in Figure 6. In our experiments, we chose a block size of 16 × 16 

pixels, maximum displacement of 7 pixels and full-search method. This ME-based 

measurement approach is somewhat similar to the HPQM approach with two main 

differences. The first difference between the two is the simpler approximation model 

of the MEQM scheme. The MEQM scheme uses only translation instead of an 

RTS/affine  model used by HPQM. The second difference is in the locality of the 

approximation. The MEQM scheme uses a fixed locality for the approximation. This 

locality is determined by the chosen block size. In other words, we can regard the 

MEQM scheme as a simpler, more restricted, version of the HPQM.  

 

 
Figure 6. An ME-based measurement scheme 
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In evaluating the performance of the objective quality measurements, we look 

at the intra- and inter-distortion comparisons. For intra-distortion comparisons, we 

evaluate the scores of the images within one type of geometric distortion, but with 

different distortion parameters. For example, we perform an intra-distortion 

comparison by evaluating the scores of images A2, A3, A4 and A5 that are distorted by 

the same sinusoid distortion but with different parameters (see Table 1). In this 

comparison, an image with a more severe distortion parameters should get a lower 

score. For inter-distortion comparisons, we evaluate the scores of all images in the test 

set. This is a more difficult test for the objective quality measurement schemes since 

they have to be able to indicate the relative perceptual qualities between different 

types of geometric distortions.  

All measurement schemes that we evaluated in our experiments, including 

PSNR measurement, perform well in the intra-distortion comparison. In other words, 

the images distorted with a more severe parameter set are correctly given lower 

scores. In order to evaluate the performance of the objective quality measurement 

schemes in performing inter-distortion comparisons, we plot their results against the 

subjective test scores. The comparison plots for the Bird image set is shown in Figure 

7. The plots for the Kremlin image set show similar behavior. 
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Figure 7. Result comparisons for the Bird image: 

 (a) User test vs. HPQM 
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Figure 7. (continued):  

 (b) User test vs. PSNR 
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(c) 

Figure 7. (continued):  

(c) User test vs. MEQM 

 

From Figure 7(b) we can see that the PSNR measurement has a very poor 

correspondence to the subjective test result. This is shown by the regression line that 

is virtually horizontal. The value of the correlation coefficient ρ in this case also 

reflects this fact, namely we have ρup = 0.14. The MEQM scheme performs much 

better than PSNR measurement as shown in Figure 7(c) and with ρum = -0.32. We can 
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also see that the HPQM scheme gives the best performance among the three evaluated 

schemes, as shown in Figure 7(a) and with ρuh = -0.6. The negative values of ρum and 

ρuh correctly reflect the fact that in our experiments a larger subjective test score 

represents a lower perceptual quality. 

If we evaluate Figure 7(a) we can see that image A13 does not properly fit the 

behavior of the rest of the data set and can be considered an outlier. Removing this 

image from the data set and recalculating the correlation coefficient, we get ρuo = -

0.87. In general, we observe that the HPQM scheme cannot handle images distorted 

by the sinusoid (stretch-shrink) distortion (see Table 1) well, except for image A10
1. At 

present, we do not yet have a satisfactory explanation regarding this phenomenon. In 

the case of image A10, the geometric transformation applied to this image is similar to 

the one implemented in television broadcasting when it is necessary to convert video 

frames from one aspect ratio to another. This transformation is perceptually not 

disturbing (unless there is a lot of movement, for example camera panning), and 

therefore, our test subjects give this image a high ranking. In this distortion, the image 

is stretched slightly in the horizontal and vertical direction. The slight increase in 

image width and height is compensated by shrinking the outer parts of the image. This 

distortion can be approximated by slightly enlarging the original image. Since this is a 

homogenous RTS approximation, the HPQM scheme gives this image a high score. 

Image A11 of the Bird test set is interesting since the subjects prefer this image to the 

undistorted image A1. This is probably due to the unfamiliarity of the subjects to the 

bird species shown in the picture. Apparently, the test subjects get the impression that 

the size of the bird’s head in the original image was either too large or too flat. 

Therefore, they preferred the image in which the head of the bird is slightly shrunk 

horizontally (and consequently slightly rounder). The fact that this does not happen in 

the Kremlin test set (see Table 2(b)) seems to support this conclusion. 

 

6. Conclusion and future works 

In this paper, we have described the method we use to perform a perceptual 

user test for geometrically distorted images. We also described the statistical tools we 

use to analyze the results of the user test. The result of the user test is then used as a 

                                                
1 Similarly, the MEQM scheme also seems to have difficulties in dealing with this type of distortions. 
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ground truth to validate our objective perceptual quality measurement scheme, the 

HPQM, which is based on the hypothesis that the perceptual quality of a distorted 

image depends on the homogeneity of the geometric transformation causing the 

distortion. Furthermore, in order to have a better assessment of the performance of the 

HPQM, we also compare its performance to the performance of the PSNR 

measurement and the MEQM scheme. In our experiments, we evaluate the 

performance of all three objective measurement schemes in two areas, namely in 

performing intra- and inter- distortion comparisons. 

All objective measurements evaluated in our experiments, the HPQM, PSNR 

and MEQM, give similar performance in performing intra-distortion comparisons. For 

inter-distortion comparisons, the PSNR measurement performs poorly. The MEQM 

and HPQM schemes outperform PSNR measurement in this category, with the HPQM 

giving the best performance among the three evaluated schemes.  

While the amount of data collected in our experiments is not yet large enough 

to form firm conclusions, we observe a very strong tendency that our HPQM scheme 

has a very good overall correspondence to the results of the subjective test. The 

scheme is not yet perfect, however, and we still observe some discrepancies between 

the ranking of the images generated by HPQM to that generated by the subjective test 

result.  

In the future, more measurements and user test experiments similar to the one 

described and analyzed in this chapter should be performed. The data collected from 

such experiments can than be used to further validate or refine the hypothesis and to 

further fine-tune the performance of the HPQM scheme. Finally, other objective 

quality measurement approaches should also be explored and tested.  
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