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ABSTRACT

In this paper we consider the Degree Constrained Minimum Spanning Tree Problem. This
problem is concerned with finding, in a given edge weighted graph G (all weights are non-
negative), the minimum weight spanning tree T satisfying specified degree restrictions on the
vertices. This problem arises naturally in communication networks where the degree of a vertex
represents the number of line interfaces available at a center. Because of its NP-completeness, a
number of heuristics have been proposed. In this paper we propose two new search methods: one
based on the method of Tabu search and the other based on a penalty function approach. For
comparative analysis, we test our methods on some benchmark problems. The computational
results support our methods.
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1. INTRODUCTION

The Degree Constrained Minimum Spanning Tree (DCMST) problem is concerned
with finding a minimum-weight spanning tree whilst satisfying degree requirements on
the vertices. The applications of the Degree Constrained Minimum Spanning Tree
problems that may arise in real-life include: the design of telecommunication,
transportation, and energy networks. It is also used as a subproblem in the design of
networks for computer communication, transportation, sewage and plumbing. Gavish
(1985), for example, used the DCMST as a subproblem in the design of a centralized
computer network; and Gavish (1992) also provides several examples of optimization
problems that are faced in the process of designing computer communication networks

The DCMST may be used in the design of the road system, which has to serve a
collection of suburbs/towns, and has the additional restriction that no more than certain
number of roads (example: four roads) are allowed to meet at an intersection. A degree
constraint in a communication network also limits the liability in the case of vertex
failure. In computer networks, the degree restrictions can be used to cater for the number
of line interfaces available at a server/terminal.

The DCMST can be stated as follow: Given a weighted graph G =(V,E)  and
positiveintegers b1, b2,…,bn, find a  minimum weight spanning tree T such that the degree
di  of every vertex in T  is at most bi,1≤ i ≤n.

By reducing the DCMST problem to an equivalent symmetric Traveling Salesman
Problem (TSP), Garey and Jhonson (1979) showed that this problem computationally
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difficult (NP-complete), thus it is unlikely that a polynomial bounded algorithm exists for
solving general DCMST problems.

Many authors have proposed solution methods for the DCMST problem, which
include both exact and heuristic methods. Since this problem is NP complete, heuristic
methods have dominated. Some of the heuristics that have been investigated include: a
number of basic MST algorithms of Prim (1957)  and Kruskal (1956) (see Narula and Ho
(1980) and Caccetta et al (2000)); the Genetic Algorithm by Zhou and Gen (1997);
Simulated Annealing by Krishnamoorthy et al. (2001); Iterative Refinement by Boldon et
al. (1996) and Deo and Kumar (1997); Tabu Search (CW1) by Caccetta and Wamiliana
(2001).

Narula and Ho (1980) proposed two heuristics (primal and dual heuristics) to
construct the DCMST. The primal heuristic is a modified Prim’s algorithm and the other
is the heuristic that starts with a minimum weight spanning tree generated from Prim’s
algorithm and moves towards feasibility through a series of edge exchanges. Their
algorithms were tested on 120 randomly Euclidean problem problems with up to 100
vertices and degree bounds of 3 and 4. They do not implement with the more difficult
problem, the random table problem.

Caccetta, et al. (2000) considered seven heuristics. The first, second and third
heuristics are the modification of the Prim’s and Kruskal’s algorithms with the additional
step of testing the degree violations. The fourth and fifth heuristics are also the
modification of the Kruskal’s algorithm with the introduction of a Critical Value (CV),
where the CV=α 








−1n
LB . LB is the lower bound and the value of α used in calculations is

0.60. The CV is used for selecting edges where an edge is selected if its weight is less
than the CV. The sixth heuristic is the heuristic of Savelsbergh and Volgenant (1985), and
the seventh heuristic is the modification of the sixth heuristic by starting from one
violated vertex as a root and using the procedure of Volgenant and Jonker (1983) in
determining the cost of exchanging edges. They implemented these heuristics for the
graphs with up to 500 vertices and degree bound of 3, 4, 5 and 6.

Boldon et al. (1996) and Deo and Kumar (1997) proposed an Iterative Refinement
Method. They proposed 4 version of that method, named as algorithms BF1, BF2, BF3
and BF4. All algorithms start with finding a MST and then the edges incident to a degree
violated vertex are penalized. The difference among the four lies on the number of
penalizing edges and the penalty function. The penalty function for BF 1 and BF2 are
deterministic (they name them as DET algorithms), while BF3 and BF4 are randomized
(RAND algorithms). In addition, BF1 and BF3 penalized all edges incidence to the
violated vertices, while BF2 and BF4 penalized all except the smallest one. With the new
weighted edges, the process of calculating a MST is repeated, and continues until a
spanning tree without degree violation is found. These algorithms were implemented
using parallel computing on a computer with 8192 processors. This can be done because
the nature of the algorithm/method, where every vertex can be assigned a processor and
the computational process of penalizing edges is independent (non sequential). Among
the four algorithms, BF2 performs the best. Problems with up to 5934 vertices were
solved. However, the quality of the solution of this approach is not so good. They
reported that for solving the DCMST with degree bound 5 their methods obtain the
solution that lies within 40% to 70% of the MST (lower bound).
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The Simulated Annealing method has been applied to the DCMST problem by
Krishnamoorthy et al. (2001).  In their Simulated Annealing procedure, they also used the
Prufer (1918) number and a permutation of the nodes in the representation of solutions.
The search strategy used is a cut and paste  neighborhood transformation. This process
starts by choosing randomly a vertex i from the spanning tree and then deleting the edge
from i to j. This deletion of edge (i,j) creates two disconnected components. In their paper
they did not mention which edge should be chosen if there are some edges incidence to
vertex i. The two disconnected components are then re-connected by randomly choosing
another node to connect i.  To do this cut and paste method, they employed the
permutation of the nodes, besides the representation of the tree by the Prufer number.
They did this in order to avoid having to decode a number in each iteration.

The use of the Genetic algorithms for the DCMST problem has been investigated by
Zhou and Gen (1997). They solved problems with up to 50 vertices. The Prufer (1918)
number is employed in encoding and decoding the tree. In the method Zhou and Gen
(1997) adopt uniform crossover and perturbation mutation operators as the genetic
operators. The crossover probability used is 0.5 and the mutation probability is 0.01. This
approach was tested on five randomly generated graphs with the number of vertices
ranging from 10 to 50. The edge weights are integer values generated randomly from
uniform distribution from 10 to 100.

Caccetta and Wamiliana (2001) and Wamiliana (2002), proposed Modified Penalty
Methods (MP1 and MP2) as variants of Iterative Refinement methods. Implemented on
some benchmark problems, the methods perform better than Simulated Annealing
method.

The remainder of this paper is organized as follows. Section 2 discusses about the
two heuristics approach for the DCMST problem, Section 3 presents the computational
results and Section 4 contains conclusions.

2. THE TWO SEARCH METHODS PROPOSED

2.1 Tabu Search Approach

Tabu Search begins the same way as ordinary local or neighborhood search. It
proceeds iteratively from one solution to another until a chosen termination criterion is
satisfied. Each solution is reached from u by an operation called move. We note w=u⊕m
∈ S* for the move applied to solution i in order to obtain solution w.

Tabu Search goes beyond local search by employing a strategy of modifying N (u),
the neighborhood of u, of solutions that are "close" to u as the search progresses,
effectively replacing it by another neighborhood N*(u), using a special memory structure
which serves to determine N*(u) at every iteration, and hence to organize the way in
which the space is explored. Since the structure of the neighborhood depends on the
iteration, we use notation N (u,k) instead of N*(u).

The definition of N (u,k) implies that some recently visited solutions are removed
from N (u,k-1). These solutions are considered as tabu solutions, which should be avoided
in the next iteration. Such a memory based on recency will partially prevent cycling. For
example, if Lk is a tabu list at iteration k , then the cycles of length at most Lk will be
avoided.
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In order to improve the efficiency of the exploration process, one needs to keep track
of not only local information (like current objective function value) but also some
information related to the exploration process. Short-term memory keeps track of solution
attributes that have changed during the past, and this memory is referred to as recency-
based memory in Glover and Laguna (1997). Recency based memory is exploited by
assigning a tabu active designation to selected attributes that occur in the solutions
recently visited, and then the solutions that contain tabu active elements become tabu.
However, these solutions only hold tabu status or tabu attributes temporarily, not forever.
The tabu tenure is defined as the duration that an attribute remains tabu active (usually is
measured by the number of iterations). Tabu tenure can vary for different types or
combinations of attributes, can also vary over different times or stages of the search.

One term that accompanies the short-term memory is Aspiration Criteria or
aspiration condition.  The tabu status of a solution is not absolute, but can be overridden
if certain conditions are met, and this is expressed in the form of aspiration condition. In
effect, these aspiration conditions provide thresholds of attractiveness that the solutions
maybe considered admissible in spite of being classified as tabu. Intensification strategy
is another important component in long-term memory. Intensification strategy is based on
modifying choice rules to encourage move combinations and solution features historically
found good. Intensification strategy may also initiate a return to attractive regions to
search them more thoroughly.

Diversification strategy, as its names suggests, is designed to drive the search into
the new regions. This strategy is often based on modifying choice rules to bring attributes
into the solution that are infrequently used or alternatively, it may introduce such
attributes by partially or fully restarting the solution process.

Adapting Tabu Search to the DCMST Problem.

In our heuristic we adapt the following terminology: G is an edge weighted
connected graph, T is the minimum weight-spanning tree generated from, Tabu move is
the set of edges that are given the status tabu active and kept on that attribute for certain
time (tabu_tenure), Tabu tenure is the number of iterations that keep a solution in tabu
status and Moves are the set of edges incidence to the leaves in G\T.

In our algorithm (called as CW), we start our heuristic by finding the MST. This
gives us a lower bound (LB). The modified Kruskal algorithm provides us with a Degree
Constrained Spanning Tree (DCST), which provides an upper bound (UB). The heuristic
starts from the upper bound, which is feasible and work towards optimality. The moves
are the set of edges incident with the leaves (vertices of degree 1) in the G\T. Tabu tenure
is set to be 0.1 n, where n is the number of vertices in the graph. The maximum number
of iterations is 0.2n. The stopping criteria are maximum number of iterations and the
tolerance, where tolerance=1% of gap and gap=UB –LB.  Note UB is revised as better
feasible solutions are obtained.

The aspiration criteria are applied if a degree violation is detected. All possible edge
exchanges among the edges of T incident to the violated vertex i and the edges of G not in
T involving the neighbor of i, are examined. If searching doesn’t yield any better solution,
we record the current best solution, put the currently used moves into tabu status and
restart. The main idea of the algorithm is as follows:
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begin
set t: 0   
initialize: Graph, Tabu_move,Tabu_Status
find MST, DCST
set control T: DCST
while  (not termination condition)
do

choose the best move
perform edge exchange
if ( new solution feasible)
compare the new solution with control T
adjust the Tabu-move and tabu_status
set t: t + 1
else
apply the  aspiration criteria
compare the new solution with control T
adjust the Tabu-move and tabu_status
set t: t + 1
endif

end
end

2.2 Modified Penalty Approach

This method is the refinement of the previous version of the Modified Penalty
algorithms (MP1 and MP2) developed by Caccetta and Wamiliana (2001), and
Wamiliana (2002). In general, the Modified Penalty algorithm is the algorithms
developed using the idea of the Iterative refinement method (IR) method of Boldon et al
(1996) and Deo and Kumar (1997). The IR method starts by finding a minimum spanning
tree of the given graph. Then, the degree restriction constraint is used to increase the
weights of selected edges in order that the next tree constructed will have fewer
violations. This step employs a special function called as “Blacklisting function” to
penalize the edges incident to the vertices violating the degree restriction. The penalty for
edge (i,j) with di > bi and weight wij is determined as:

kt max
minmax

minij e
ee

ew
 








−

−
 ,

where 0≤k≤1, k is the combing factor,  t=1 (if dj ≤ bj ) or 2 ( if dj >bj),  and emax and emin are
respectively the maximum and minimum edge weights in the current tree. Next, the
minimum spanning tree of that graph is computed again using the edges that already have
altered weights. Continue with this manner until a spanning tree without degree violations
is found.

The penalizing (blacklisting) step has the effect of moving those edges that cause a
degree violation low down in the sequence. This step is similar in ‘spirit’ with the Tabu
Search method, where the penalized edges are ‘blacklisted’, while in the Tabu Search, the
current moves are given tabu attributes/status. The new sequence of edges after resorting
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will determine the edges that appear in an MST in the next iteration. Thus, in the
algorithm, the penalizing step is followed by the computation of the minimum spanning
tree again.

We note here, that the quality of the final solution lies crucially on the ‘blacklisting
function’, the function that penalized the edges incident to the violated vertices in the
spanning tree.  If the weights are increased by a large amount then the quality of the
solution maybe not be so good, and too far from optimal. On the other hand, we face a
slow convergence if the weights are increased by a small amount.  The weight increased
is controlled by a parameter in the blacklisting function, namely the combing factor k ,
where k is the real number whose value is a user setting and 0≤k≤1.

The way Boldon et al. (1966) and Deo and Kumar (1997) defined the blacklisting
functions motivates the modification we propose. The main modifications made are as
follow:
1. bi–1 smallest weighted edges incidence to the violated vertex i are not penalized.
2. The penalizing step is done sequentially in the loop routine, and there is no priority of

handling the violated vertices. The violated vertices are handled one by one using the
smallest index. Notice here that MP1 is quite similar to BF2, except in the
implementation. In BF2 the penalizing step is handled simultaneously while in MP1 it
is sequentially.

The main idea of the algorithm is as follow:
Input: graph G, constraints C and D, where C  is the minimum weight constraints and
D is the degree constraints.
begin

In graph G find a spanning tree that satisfies C
while  (spanning tree violates D)

using D alter the weight of edges in G by penalty function to obtain
graph G′  with new weights
In graph G′  find a spanning tree that satisfies C
Set G: = G′

end while
end

3. COMPUTATIONAL RESULTS

We implemented our heuristics on a Silicon graphics Indy Machine with 150 MHz
speed and 64 Mbytes memory. We use 2160 random problems generated as follows:
§ Number of vertices range from 10 to 500.
§ The edge weights are integers and generated randomly from the uniform distribution

(1, 1000).
§ For each n, 30 random problems are generated
§ For each n, graphs are generated with different density p. We use p =0.25, 0.5, 0.75

and 1.0.
For a given p, the edge eij is chosen if the random number q chosen from the unit

distribution is less than p. The expected number of edges in the graph is p
n









2

.
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Disconnected graphs are rejected. In all cases we use the degree bound of 3 which is
computationally the hardest case.

For Tabu Heuristic approach, the tolerance is set 1% of the lower bound, and the
maximum number of iterations is approximately 20 % of the number of vertices. For the
Modified Penalty, we test the problems with size varies from 10 vertices to 250 vertices
with the different increments:  for vertex orders 10 to 100 in increments of 10, and in
increments of 50 for higher orders. We test bigger sizes problems, but due to time
limitations, some of the problems remained infeasible after the maximum iteration
number (the allowable maximum iterations number is 10000) achieved. Based on our
preliminary testing, using k  value smaller than 0.5 will end up with slow convergence. In
addition, testing with k =1 the performance is far from optimal.

Our computational results, based on those 2160 random table problems with up to
500 vertices and degree bound 3, the performance of the Tabu heuristic, in terms of the
statistic H LB

LB
− , reveal the average 6.51 % of the lower bound. We have to note here that

in the implementation, especially for sparse graphs, the maximum iteration number must
be set to a smaller value than the one already defined. This is because in sparse graphs
there are not as many available moves as in the complete graphs.

The performances of the Modified Penalty (MP) algorithms strongly depend on the
penalty function (Blacklisting function).  Among the three components of the penalty
function, the combing factor plays an important role. When k=1, the solution obtained on
average is quite far from optimal, the average performance, in term of statistic H LB

LB
−  is

within  16.2242 %, while for k=0.5, the performances of the algorithm is within 11%.
For comparative analysis, we test our heuristics on some benchmark problems that

used by Krisnamoorthy et al (2001) and Deo and Kumar (1997). Those problems can be
downloaded from TSPLIB at: http://www.iwr.uniheidelberg.de/iwr/comopt/soft/
TSPLIB95/TSPLIB. The table below presents the computational results.

Table 1. Results on Some Benchmarks Problems

Algorithm pr264 att532 rat575
Best TSP solution 49135 27686 (*) 6773
MST 41142 75872 6246
BF2(Deo, Kumar) 41143 NA 6265
BF4(Deo, Kumar) 41143 NA 6265
GA-F(Krishnamoorthy et al) 41142 75981 6250
GA-P (Krishnamoorthy et al) 44344 75981 6397
PSS(Krishnamoorthy et al) 41143 75981 6250
SA(Krishnamoorthy et al) 43438 79046 6393
BB(Krishnamoorthy et al) 41143 75912 6250
BB(Volgenant) 41143 75912 6250
Tabu (CW) 41154 75968 6265
Modified Penalty 41147 76091 6271

Legend (*): The att532 TSP result uses integer pseudo-Euclidean distances, so edge distances
differ approximately by a factor 10 .
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4. CONCLUSION

This paper developed a new approach, based on Tabu search, to solve the Degree
Constrained Minimum Spanning Tree Problem. Extensive computational results
demonstrate that our Tabu search heuristic performs well. Moreover, tested on some
benchmark problems, both methods, either Tabu search heuristic or Modified Penalty
show that our heuristic is competitive.
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