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Abstract. Packer tests and slug tests were conducted at 49 points at the Grasberg 

surface mine, Indonesia to obtain hydraulic conductivity data. The HC-system 
approach, which relies on rock quality designation, lithology permeability index, 

depth index, and gouge content designation, was applied. Geotechnical drill 

holes in 441 locations, consisting of 4,850 points of information, were used to 

determine the K values using the equation K = 2x10-6x HC0.5571. The K values, 

which were within the range of 10-8 and 10-5 m/s, were distributed into five 

alternative 3D distributions using Ordinary Kriging (OK) and Artificial Neural 

Network (ANN). The result of the ANN modeling showed that some of the K 

values, with log K varying from -10.51 m/s to -3.09 m/s, were outside the range 

of the observed K values. The OK modeling results of K values, with log K 

varying from -8.12 m/s to -5.75 m/s, were within the range of the observed K 

values. The ANN modeled K values were slightly more varied than the OK 
modeled values. The result of an alternative OK modeling was chosen to 

represent the existing data population of flow media because it fits well to the 

geological conditions.     

Keywords: artificial neural network (ANN); fractured rock; HC-system; spatial 

hydraulic conductivity; ordinary kriging (OK).  

1 Introduction 

The hydrogeological conditions of hard rock (metamorphic and igneous) in 
mine sites are commonly characterized by a fractured condition under complex 

geological settings consisting of a fault zone and fracture networks [1]. The 

Grasberg Mine, PT Freeport Indonesia, Papua is situated in fractured-
groundwater-flow media. The hydraulic properties, among which hydraulic 

conductivity (K), are related to the following parameters: in-situ stress, rock 

matrix properties, fracturing including aperture, density, persistence, 
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orientation, interconnectivity, filling material and roughness [2]. Other 

researchers have discussed hydraulic conductivity estimation, usually based on 

empirical equations, which shows a decrease of hydraulic conductivity with 

depth [3,4].   

It is known that the stability of the slope in the Grasberg Mine is prone to 

groundwater influence. Thus, it is important to build a robust groundwater 

model to study several aspects of the area, including the dewatering process. 
Groundwater modeling requires 3D distributed data of hydraulic conductivity 

(K) to be able to place dewatering drilling targets accurately. Optimization of 

dewatering drilling targets can be achieved by utilizing reliable hydraulic 

parameters for the groundwater model. The parameters can be obtained through 
field measurements, such as packer tests and slug tests. These tests are 

considered very costly during the early stages of mine-site characterization [5]. 

In order to reduce the costs, a new method predicting hydraulic conductivity 
distribution was successfully applied by comparing in-situ packer test data with 

geotechnical drill log data, such as rock quality designation (RQD), lithology 

permeability index (LPI), depth index (DI) and gouge content index (GCI). This 
method was developed by Hsu, et al. [6] and is called HC-system.   

In order to acquire the spatial distribution for the entire domain within the field, 

a geostatistical method was applied. This method considers subsurface 

formations as mathematical models of random fields in which the spatial 
correlations of the parameters are statistically inferred from observations [7]. 

Ordinary Kriging (OK) is one of the most common spatial estimators for a 

single variable. OK calculates a value at unsampled points using a weighted 
summation of n samples. Cahyadi, et al. [8] have successfully modeled a 3D 

distribution of hydraulic conductivity based on 34 data from constant head 

permeability slug tests. Apart from the geostatistical method, an artificial neural 

network (ANN) method was also applied to estimate the hydraulic conductivity 
at unsampled points.  

ANN is a computational system that mimics biological neural processing to 

determine the specific relationship between input and output variables. This 
process can be achieved and validated by training based on a number of input 

and output pairs [9]. Modeling of the spatial distribution of hydraulic 

conductivity with ANN can be conducted by using a segmentation method [10].  

The purposes of this study were: (1) to estimate the K values at points for which 

a geotechnical log data are available but no hydraulic test data; (2) to choose the 

best 3D distribution alternative of the hydraulic conductivity model under 

limited in-situ data using HC-system, which was approached using two different 
methods, i.e. ANN and OK; (3) to compare the alternative hydraulic 
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conductivity models constrained by the geological conditions at the Grasberg 

Mine. 

2 Geological Settings 

Following McDonald, et al. [11] and McDowell [12], the geological settings of 

the study area can be summarized as follows. The Grasberg open-pit mine is 

located in the Papuan Fold and Thrust Belt, more particularly in the south of the 

Mobile Belt. Late Miocene to Pliocene calc-alkaline magmatism pierces the 
fold and thrust belt and the related porphyry copper deposit, i.e. Grasberg in 

West Papua. The structures in the location are as follows: the Yellow Valley 

Syncline, first fault set including Idenberg #1 Fault, Meren Valley #2 Fault, 
Fairy Lakes Fault, second fault set including Barat Laut Fault, Idenberg #2 

Fault, and third fault set including Grasberg Fault, Carstensz Valley Fault, and 

New Zealand Pass Fault (Figure 1). There are two fundamentally different 
protoliths within the Grasberg Intrusive Complex (GIC): a Dalam Volcanic 

Breccia Group (DBG) and a Quartz Monzodiorite Group (QMG). The DBG 

includes the Dalam Andesite and the Dalam Fragmental units. The QMG 

includes the Early Kali, Late Kali, Main Grasberg Intrusive, and the Dalam 
Diorite units. The hydrothermal alteration types are roughly concentrically 

zoned within the diatreme. Alteration types commonly overlap and create 

several types of materials, including Poker Chip, Dalam Fine, and Hard Zone.  

 

Figure 1 Geological map of Grasberg (modified from Suwardi, et al. [13]). 
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The stratigraphy of the Grasberg mine, according to Suwardi, et al. [13] and 

Hill, et al. [14], can be described as follows: alluvium (Quaternary alluvial, 

colluvium, and glacial); intrusions (Dalam Intrusion, Main Grasberg Intrusion, 

and Kali Intrusion); the Kais Formation (limestone with low fracture and high 
fracture, and coarse fragmentation); the Sirga Formation (sandstone with 

medium to coarse fragmentation); the Faumai Formation (massive limestone); 

the Waripi Formation (dolomite); the Ekmai Formation (sandstone); the Piniya 
Formation (mudstone); the Woniwogi Formation (sandstone); and the Kopai 

Formation (sandstone). 

3 Hydrogeological Settings  

Grasberg is one of the largest open-pit mines in the world, with a 3.5 km 

diameter and a depth of 1.1 km. Rainfall is high in the area, more than 4,000 

mm/year, with 1,470 ha of catchment area. The rainfall impacts the quantity of 
precipitation of 25,500 gpm, from which 55% runs off [15]. Based on field 

observation, the groundwater system at the Grasberg Mine can be divided into 

two different types. The first is a primary aquifer, which is controlled by 

porosity, consisting of overburden material, alluvial material, and the Sirga 
Formation. The other one is a secondary aquifer, controlled by fracture inter-

connection and consisting of the Kais Formation, which is dominated by 

limestone. According to Silaen, et al. [16], the occurrence of aquifers in and 
around the GIC is related to secondary geological structures. Based on the 

existing geological information from investigation drilling, the conceptual 

hydrogeology of the Grasberg mine can be described as follows [16]: 

1. GIC (locally permeable where structures occur), comprising three intrusions 

(Dalam Intrusion Complex, Kali Intrusion Complex, and Main Grasberg 

Intrusive Complex (MGI)); 

2. inner contact zone (permeable) between the GIC and the Heavy Sulphide 
Zone (HSZ); 

3. HSZ (variable permeability); 

4. outer contact zone (permeable) between the HSZ and adjacent marble zone; 
5. marble zone (low permeability); 

6. limestone country rocks outside the GIC (permeable, where secondary 

structures occur). 

The Dalam fine material has the lowest hydraulic conductivity compared to the 
other materials. HSZ has higher hydraulic conductivity than the Dalam fine 

material, which is suspected to provide a conduit for the surface water forming a 

perched groundwater system [16]. 



       Hydraulic Conductivity Modeling of Fractured Rock 41 
 

4 Methods 

The field study was completed on March 2015. Data collection consisted of 

hydraulic conductivity tests by packer test, slug test and geotechnical log data 
from drill holes. Hsu, et al. [6] and Iskandar, et al. [17] used packer tests to 

develop empirical models of hydraulic conductivity. Following the previous 

researches, this study was aimed at developing the following five alternative 

empirical models: 

1. Empirical model – Alternative I: based on 18 data from packer tests, of 

which 14 data were used for estimation and 4 data for validation. 

2. Empirical model – Alternative II: based on 31 data from slug tests, of which 
26 data were used for estimation and 5 data for validation. 

3. Empirical model – Alternative III: based on a combination of packer test 

and the slug test data, 49 in total, of which 40 data were used for estimation 
and 9 data for validation. 

4. Empirical model – Alternative IV: based on all packer test data, which were 

used for estimation while the slug test data were used for validation. 

5. Empirical model – Alternative V: based on all slug test data, which were 
used for estimation while the packer test data were used for validation. 

 

The packer test data were available from 2 boreholes and 18 target points. 
Additionally, slug test data were available from 31 boreholes. Five alternative 

empirical models were built to estimate hydraulic conductivity using 441 drill 

hole data, or 4,850 additional isotropic hydraulic conductivity points (Figure 2). 
Then, the observed data and HC extracted from the models were spatially 

distributed using ANN and OK. 

 

Figure 2 3D spatial distribution of data points. 
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ANN was chosen because of its capability to describe non-linear relationships 

between parameters – e.g. the distribution of hydraulic conductivity against 

position. For the purpose of comparison, 3D distribution of hydraulic 

conductivity was performed with OK. Figure 3 shows the steps carried out in 
this study. It was initiated by empirical modeling of hydraulic conductivity 

according to the HC-system. The results were then 3-dimensionally distributed 

using the OK method [8] and soft computing using ANN [10]. The best 
performing model was verified using a statistical approach and geological 

model correlation.  

 

 

 

 

 

 

 

 

 

 

Figure 3 Schematic diagram of 3D hydraulic conductivity distribution modeling. 
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information from RQD, LPI, DI, GCD from 441 geotechnical drill holes, or 

4,850 points.  

 

1. Rock Quality Designation (RQD) 

 RQD = ∑��
��

×100%                (1)          

Following Deere, et al. [18], the RQD value was defined as the cumulative 

length of core pieces longer than 100 mm in a run (RS) divided by the total 

length of the core run (RT). 

 
2. Lithology Permeability Index (LPI) 

Different lithologies affect permeability variation in the field, according to the 

following assumption: the bigger the grain size, the higher the permeability of a 
lithology. The LPI index for the Grasberg Mine was developed according to 

Singhal and Gupta [19], Spitz and Moreno [20], Bear [21], Hsu, et al. [6]. The 

rating of LPI values for the Grasberg Mine is listed in Table 1. 

Table 1 Rating of LPI values based on lithology in the study area. 

Lithology 
Suggested 

rating  
Lithology 

Suggested 

rating 

Andesite 0.15   Sandy dolomite 0.95 

Trachyandesite 0.15   Silty dolomite 0.95 

Hydrothermal breccia 0.1   Gravel 1 

Intrusive breccia 0.1   Limestone 0.7 

Diorite 0.15   Limestone breccia 1 

Porphyritic diorite 0.15   Dolomitic limestone 0.7 

Monzonite 0.15   Sandy limestone 0.4 

Porphyritic monzonite 0.1   Silty limestone 0.3 

Quartz diorite 0.15   Mudstone 0.3 

Quartz diorite porphyritic 0.15   Shale 0.5 
Quartz monzonite 0.15   Shale carbonaceous 0.75 

Quartz monzonite porphyritic 0.15   Shale limey 0.6 

Tuff 1   Sandstone 1 

Alluvium 1   Limestone sandstone 0.95 

Colluvium 1   Sandstone breccia 1 

Rehandle Material 1   Sandstone breccia 1 

Sedimentary breccia 1   Limey sandstone 0.3 

Tectonic breccia 1   Silty sandstone 0.3 

Conglomerate 1   Siltstone 0.3 

Clay 0.3   Dolomitic siltstone 0.2 

Dolomite 0.7   Limey siltstone 0.3 

Dolomite breccia 0.85   Sandy siltstone 0.2 
Limey dolomite 0.7    
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3. Depth Index (DI) 

 DI = 1 − �	
��

  (2) 

Following Hsu, et al. [6], LT is the total length of the borehole; Lc is the depth 
located at the middle of the observation test interval in the borehole. Since Hsu, 

et al. [6] used only vertical boreholes, vertical transformation was performed for 

inclined boreholes in this study. This method was also applied by Iskandar, et 

al. [17]. 

 
4. Gouge Content Designation (GCD) 

The value of GCD was assumed to be proportional to RQD: as RQD increases, 

permeability decreases. The GCD value was estimated to range between 0.9 and 

1.0. Gouge content thickness was not recorded in the regular drill core logs. The 

HC index is an empirical method to estimate the HC-value (HC), and in this 
study it was then plotted against the hydraulic conductivity from the observation 

test in the same zone. Following Hsu, et al. [6], the HC index is described by 

Eq. (3). 

 HC = 
1 − ���
�� � . ����. �1 − ����. �����          (3) 

where: 
HC : HC value 

RQD : rock quality designation 

DI : depth index 

GCD : gouge content designation 
LPI : lithology permeability index 

Based on the field test results using packer tests and slug tests (Table 2), the 

hydraulic conductivity values in this study were heterogeneous. Structure and 
fracture are controlled by tectonic setting and geological process. The location 

at which the hydraulic packer tests and slug tests was performed is dominated 

by igneous and sedimentary rock. The K value varies even within similar 
lithologies, e.g. in limestone the value ranges from 7.53 x 10

-9 
to 1.09 x 10

-6
 

m/s.   

A regression analysis was applied to estimate the dependence of the HC index 

on the hydraulic conductivity from 49 pairs of packer test data and slug test data 
from the same zone. The RQD of each test interval was calculated using Eq. (1). 

The LPI of each test interval was determined by conversion using Table 1 and 

the value of DI of each test interval was calculated using Eq. (2). The GCD was 
assumed, due to the limited core drilling data. Hence, an empirical model of the 

hydraulic conductivity could be obtained, which follows the power law 
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relationship. Finally, five empirical HC models were developed, as depicted in 

Figure 4.  

Different empirical models may give unique responses to each hydraulic 

conductivity estimation. Hsu, et al. [6] and Iskandar, et al. [17] relied on packer 
test data to get an empirical model of hydraulic conductivity. In this study, the 

authors tried to apply all useable resources to develop the empirical model. A 

number of slug tests was targeted to specific lithology to predict its hydraulic 
conductivity. Different empirical models (see Figure 4) were used to predict 

hydraulic conductivity in drill holes without observation data. A sensitivity 

analysis for the empirical models was carried out by comparing the empirical 

models’ values with real values of hydraulic conductivity in the field. The five 
empirical HC models are expressed in Eqs. (4) to (8), respectively. 

 K = 7 x 10
-6

 x (HC)
0.8125

 , R
2
 = 0.825  (4) 

 K = 2 x 10
-6

 x (HC)
0.5866

 , R
2
 = 0.794   (5) 

 K = 2 x 10
-6

 x (HC)
0.5571

 , R
2
 = 0.716  (6) 

 K = 7 x 10
-6

 x (HC)
0.8132

 , R
2
 = 0.861  (7) 

 K = 2 x 10
-6

 x (HC)
0.6034

 , R
2
 = 0.761  (8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Relationship between observed hydraulic conductivity and HC values.  
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Table 2 Result of calculation of HC values in each packer and slug test zone. 

Hole ID Lithology 

K packer 

& slug 

test (m/s) 

1-

(RQD/100) 
DI 

1-

GCD 
LPI HC 

VZW-094 Hornblende 5.79 x 10
-6

 0.9 0.92 0.9 0.8 0.598 

VZW-094 Volcanic Breccia 4.73 x 10
-7

 0.6 0.76 0.6 0.1 0.028 

VZW-094 Volcanic Breccia 2.16 x 10
-7

 0.6 0.68 0.6 0.1 0.025 

VZW-094 Volcanic Breccia 7.78 x 10
-8

 0.4 0.59 0.4 0.1 0.009 

VZW-094 Volcanic Breccia 1.63 x 10
-7

 0.4 0.52 0.4 0.1 0.008 

VZW-094 Volcanic Breccia 4.54 x 10
-8

 0.2 0.43 0.2 0.1 0.002 

VZW-094 Scarn 1.50 x 10
-6

 0.8 0.34 0.8 0.8 0.177 

VZW-094 Limestone 4.27 x 10
-8

 0.2 0.26 0.2 0.5 0.005 

VZW-094 Limestone 3.37 x 10
-7

 0.5 0.16 0.5 0.5 0.021 

VZW-094 Limestone 1.51 x 10
-7

 0.4 0.05 0.4 0.5 0.004 

GHD-3885-26 Volcanic Breccia 1.08 x 10
-6

 0.9 0.85 0.9 0.3 0.207 

GHD-3885-26 Volcanic Breccia 1.43 x 10
-6

 0.9 0.61 0.9 0.3 0.149 

GHD-3885-26 Volcanic Breccia 2.06 x 10
-6

 0.9 0.43 0.9 0.3 0.105 

GHD-3885-26 Hornblende 9.64 x 10
-7

 0.9 0.33 0.9 0.8 0.220 

GHD-3885-26 Hornblende 1.79 x 10
-6

 0.9 0.26 0.9 0.8 0.169 

GHD-3885-26 Hornblende 2.11 x 10
-6

 0.9 0.17 0.9 0.8 0.110 

GHD-3885-26 Hornblende 1.23 x 10
-6

 0.9 0.10 0.9 0.8 0.067 

GHD-3885-26 Hornblende 9.97 x 10
-7

 0.9 0.03 0.9 0.8 0.024 

CSTG-01 Alluvium 3.98 x 10
-7

 0.6 0.87 0.6 0.8 0.252 

CSTG-02B Alluvium 1.75 x 10
-6

 0.9 0.72 0.9 0.8 0.470 

VZW-17S Alluvium 1.52 x 10
-6

 0.9 0.80 0.9 0.8 0.521 

OHS-21 Overburden 8.79 x 10
-7

 1 0.93 1 1 0.940 

VZW-25A Overburden 2.71 x 10
-6

 1 0.95 1 1 0.958 

VZW-31 Quartz 9.57 x 10
-7

 0.5 0.65 0.5 0.2 0.033 

VZW-58 Quartz 1.38 x 10
-6

 1 0.52 1 0.7 0.371 

VZW-74 Quartz 3.97 x 10
-8

 0.2 0.94 0.2 0.2 0.008 

VZW-50 Quartz 3.76 x 10
-7

 0.4 0.30 0.4 0.1 0.005 

VZW-55 Quartz 2.55 x 10
-7

 0.4 0.78 0.4 0.1 0.013 

VZW-62 Quartz 1.74 x 10
-8

 0.5 0.56 0.5 0.1 0.014 

VZW-17 Granodiorite 1.17 x 10
-7

 0.1 0.35 0.1 0.1 0.0003 

VZW-76 Trachyandesite 4.13 x 10
-8

 0.1 0.68 0.1 0.1 0.0007 

VZW-51 Volcanic Breccia 7.36 x 10
-7

 0.8 0.81 0.8 0.3 0.157 

VZW-29 Limestone 7.53 x 10
-9

 0.1 0.25 0.1 0.1 0.0003 

VZW-29S Limestone 5.46 x 10
-8

 0.2 0.76 0.2 0.1 0.003 

VZW-40 Limestone 1.59 x 10
-6

 0.9 0.97 0.9 1 0.786 

VZW-49D Limestone 7.52 x 10
-7

 0.6 0.97 0.6 0.5 0.175 

VZW-52 Limestone 1.09 x 10
-6

 0.9 0.95 0.9 1 0.775 

VZW-53A Limestone 2.82 x 10
-6

 0.9 0.94 0.9 1 0.765 

VZW-59 Limestone 7.05 x 10
-7

 0.6 0.43 0.6 0.5 0.078 

VZW-63 Limestone 3.38 x 10
-6

 1 0.90 1 1 0.906 

VZW-68 Limestone 2.27 x 10
-6

 1 0.27 1 1 0.280 

VZW-69 Limestone 1.21 x 10
-6

 1 0.47 1 1 0.474 

VZW-71 Sandstone 2.06 x 10
-7

 0.3 0.12 0.3 0.9 0.010 

VZW-75 Limestone 3.01 x 10
-7

 0.5 0.52 0.5 0.5 0.066 

VZW-39 Limestone 2.04 x 10
-8

 0.2 0.49 0.2 0.1 0.002 

VZW-61 Limestone 7.36 x 10
-8

 0.2 0.76 0.2 0.1 0.003 

VZW-73 Limestone 5.29 x 10
-8

 0.2 0.84 0.2 0.1 0.003 

VZW-245 Volcanic Breccia 1.14 x 10
-8

 0.5 0.20 0.5 0.1 0.005 

VZW-244 Limestone 1.46 x 10
-7

 0.5 0.55 0.5 0.1 0.014 
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The correlation between the values from observation and each empirical HC 

model was then verified. Initially, 4 target points were used to verify the model, 

i.e. the following drill holes: VZW-094 from 158 m to 183 m; VZW-094 from 

233 m to 267 m; GHD-3885-26 from 50.19 m to 68.96 m; and GHD-3885-26 
from 121.84 m to 132.57 m. Secondly, 5 points target points were used to verify 

the model, i.e. the following drill holes: CSTG-01, VZW-74, VZW-52, VZW-

245, and VZW-244. Thirdly, the first and second targets were combined. 
Fourthly, verification of the empirical HC model was carried out by using all 

slug test data. Lastly, verification was carried out based on the packer test data 

from VZW094 and GHD-3885-26 (Table 2). The correlation parameters for 

every alternative model are shown in Figure 5. The verification was then used to 
determine the rock mass hydraulic conductivity for other drill holes surrounding 

the Grasberg Mine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Correlation between modeled K according HC-system and observed K. 
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5.2 Ordinary Kriging (OK) 

Before utilizing the OK method for hydraulic conductivity prediction at 

unsampled points, a semivariogram was required for each alternative to 
determine the spatial correlation and data distribution pattern. The 

semivariograms were used in different directions (0°, 45°, 90°, 135°) and 

omnidirectional.  

The five alternatives are shown with different nugget and sill values (Figure 6). 
The smallest nugget value was found in the third alternative (c). The 

semivariograms show distances of influence of 2,100 m and 1,250 m in the 

horizontal and the vertical direction, respectively. A summary of the 
semivariograms is shown in Table 3. Estimation according to OK was carried 

out using the Stanford Geostatistical Modeling software [22]. Because the 

hydraulic conductivity values were very small, their logarithms were taken to 
simplify the analysis. The values of hydraulic conductivity were transformed to 

a logarithmic scale and then normalized after analysis.  

Table 3 Summary of semivariograms. 

Model 
Azimuth: 0°, 45°, 90°, 135° Azimuth: omnidirectional 

Nugget Sill Range (m) Nugget Sill Range (m) 

Alternative 1 0.09 0.27 1,250 0.09 0.24 2,100 

Alternative 2 0.045 0.14 1,250 0.045 0.13 2,100 

Alternative 3 0.04 0.13 1,250 0.04 0.11 2,100 

Alternative 4 0.07 0.28 1,250 0.07 0.24 2,100 
Alternative 5 0.045 0.15 1,250 0.045 0.13 2,100 

To measure the quality of the 3D hydraulic conductivity model, a verification 

process was conducted. The authors used some observations to verify the 

implementation in the field. The hydraulic conductivity model according to HC-

system was then distributed 3-dimensionally by means of a block model with a 
grid size of 50 m x 50 m x 15 m. From 441 geotechnical drill holes, 4,850 

hydraulic conductivity points were retrieved from HC-system. The points were 

then distributed to model the spatial distribution of hydraulic conductivity in the 
study area with total dimensions of about 5 km x 5 km x 1.2 km. 

Figure 7 shows the different quality levels of the validation models. The third 

alternative had a significant coefficient of determination of 0.63. The relatively 

higher coefficient of determination compared to the other alternatives is in 
agreement with the smaller nuggets obtained from the semivariogram. The OK 

method was alternatively used for estimation of unsampled points. For 

comparison, ANN was also used to predict hydraulic conductivity at the 
unsampled points. 
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Figure 6 Semivariogram distribution from observed and modeled HC-system: 

(a) first alternative; (b) second alternative; (c) third alternative; (d) fourth 

alternative; and (e) fifth alternative. 
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Figure 7 Comparison of validation of modeled K values using OK and 

observed K values. 

5.3 Artificial Neural Network (ANN) 

ANN is a soft computing method following the idea of basic biological neuron 

processing, which does not require determining a specific function expression. 

It only needs a connection between input and output variables with training and 
prediction analysis [9]. In this study, training and testing were carried out using 

a segmentation method that was developed by Mabruri, et al. [10]. This is a new 

method in stepwise training and testing, which was applied for unsampled 
points using ANN.  

The best ANN architecture in this study was achieved using 9 nodes, 5 sequence 

data, and 2 hidden layers, as shown in Figure 8. The first hidden layer used a 

log-sigmoid (logsig) transfer function, while the second hidden layer used a 



       Hydraulic Conductivity Modeling of Fractured Rock 51 
 

purely linear transfer function. Thus, every result was summed linearly. The 

Levenberg-Marquardt algorithm was used for training. 

 

Figure 8 Architecture of ANN. 

 

Figure 9 Comparison of validation of modeled K values using ANN and 

observed K values. 
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In this study, the original data were sorted based on depth (Z), and then a 

customized ANN was trained for the first 5 upper data to model log K 

distribution from surface depth to the 5
th
 depth data. Furthermore, a new 

customized ANN was also trained for data numbers 2-6. This was applied 
continuously until the last step of the customized ANN had trained data 

numbers 4,846-4,850. Z (depth) segmented training was selected in every Z 

segment, because the data were distributed normally in the XY plane. A total of 
4,845 network functions from the training process formulated by ANN were 

used to predict the hydraulic conductivity distribution. After training, prediction 

of K distribution was continuously made on the XY plane.  

The best performance with MSE <10
-10 

was used to control the quality of the 
training. Each trained segment was used to predict log K spatial distribution in 

its segment range, and every segment of spatial distribution data was combined 

to obtain the final model result. Verification and cross validation were then 
conducted following prediction according to ANN. This showed that the 

training was successful in estimating weighting and vice versa. Thus, all 

alternatives seemed to give a higher coefficient of determination (Figure 9).  

6 Discussion 

6.1 Statistics Approach 

Statistical analysis based on the hydrogeological parameter study was required 

to determine the best alternative hydraulic conductivity model. The result of the 

statistical analysis of the observed and the modeled hydraulic conductivity 

distribution is listed in Table 4. Alternative 3 was considered to be the best 
alternative because of the following two reasons. Firstly, it relies on all 

 
Table 4 Statistical summary of log hydraulic conductivity. 

Alternative 3 Observation HC model ANN OK 

Amount of data                     49            4.851     1.037.680     1.036.681  
Minimum value (log K) m/s -8.12 -7.72 -10.51 -8.12 
First quartile (log K) m/s -7.40 -7.21 -8.65 -7.53 
Median (log K) m/s -6.68 -6.71 -6.80 -6.94 
Second quartile (log K) m/s -5.96 -6.21 -4.94 -6.34 
Maximum value (log K) m/s -5.24 -5.70 -3.09 -5.75 

Mean (log K) m/s -6.43 -6.37 -6.60 -6.32 
Standard deviation 0.73 0.33 0.87 0.25 
Variance 0.53 0.11 0.76 0.06 
Skewedness -0.58 -0.63 -0.70 -0.59 

observed information, from 49 points in total. Secondly, it resulted in the 

smallest difference between observed mean and modeled mean according to all 
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methods. With Alternative 3, ANN had the best K values, however these were 

not suitable when compared to the population of observation. The observed 

hydraulic conductivity values ranged between log -8.12 m/s and log -5.24 m/s. 

The ANN method gave a distribution with log K ranging from -10.51 m/s to log 
-3.09 m/s. Meanwhile, the OK method gave hydraulic conductivity values with 

log K ranging from -8.12 m/s to log -5.75 m/s. The ANN result yielded a 

slightly wider range of predicted values due to the absence of restrictions in the 
model construction. The OK model is strongly controlled by the semivariogram. 

6.2 Best Alternative 

HC-system was designed to estimate hydraulic conductivity values using in-situ 
rock properties [6]. According to the regression analysis of the alternatives, it 

can be concluded that the model shows good correlation between the HC index 

and hydraulic conductivity. Geological complexity may have an impact on 
water flow in fractured media in different ways, thus also influencing the 

 

 

Figure 10 3D hydraulic conductivity models: (a) using OK method, (b) using 

ANN method. 
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complexity of the hydraulic conductivity estimation. The most significant or 

major component of HC-system in this case was RQD. It is suitable for the 

conceptual groundwater model of the Grasberg Mine, which is controlled by 

secondary aquifers and overburden primary aquifers. According to the statistical 
summary from the five alternatives, the third alternative using OK is considered 

to be the best model. The 3D models of hydraulic conductivity using OK and 

ANN are shown in Figure 10. 

Figure 10(a) shows the hydraulic conductivity distribution resulted from the OK 

method with images of the circular area effect. The circle is formed by a 

semivariogram parameter that was previously set. Figure 10(b) shows the 

interpretation result of the hydraulic conductivity distribution using the ANN 
method, which is layer-shaped. This is due to the segmented interpolation in the 

horizontal plane resulted from the ANN method. The method can predict 

hydraulic conductivity at locations where values are not available by using the 
RQD and LPI variables. Predicted hydraulic conductivity at unsampled points 

should be clustered.  

7 Conclusion 

In this study numerical analysis using HC-system was employed to develop 

spatial distribution models of hydraulic conductivity based on hydrogeological, 

geotechnical and geological data. HC-system can be used to estimate K values 
in a zone where field test data are not available. However, geotechnical log data, 

i.e. RQD, LPI, GCD and DI, must be available. Reproducibility of hydraulic 

conductivity prediction with HC-system relies significantly on a large number 
of observational data. More data availability will provide a better correlation to 

the model. The 3D hydraulic conductivity model using OK was the best 

performing model out of five alternatives. It is expressed by equation                

K = 2 x 10
-6

 x (HC)
0.5571 

with R
2
 = 0.716. The log of hydraulic conductivity 

ranged from -8.12 m/s to -5.75 m/s. The ANN method also provided a fair 

interpretation. This is due to the segmented interpolation in the horizontal plane. 

Predicted hydraulic conductivity at unsampled points should be clustered and 
correlated to specific rock properties, such as RQD and LPI. 
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