COMMUTING TRACES OF SYMMETRIC LEFT BICENTRALIZER ON SEMIPRIME RINGS

Abdul-Rahman.H. Majeed, Auday Hekmat Mahmood*

Abstract

Let R be an associative ring. The purpose of this paper is to study the investigate identities satisfied by symmetric left Bicentralizer on a semiprime rings which make the trace of such mappings is commuting on R.

Key words and phrases: Semiprime rings, symmetric left Bicentralizer, trace of biadditive mappings, commuting mapping.

INTRODUCTION

Throughout R will represent an associative ring with center $Z(R)$. A ring R is semiprime if $a R a=\{0\}$ implies $a=0$. An additive mapping $S: R \longrightarrow R$ is called a left (right) centralizer if $S(x y)=S(x) y(S(x y)=x$ $S(y)$), for all $x, y \in R$. A mapping $B(.,):. R \times R R$ is called symmetric if $B(x, y)=B(y, x)$ for all pairs x, y $\in R$.

A mapping $f: R \rightarrow R$ defined by $f(x)=B(x, x)$, where $B(.,):. R x R \longrightarrow R$ is a symmetric mapping will be called the trace of B. It is obvious that in case $B(.,$.$) :$ $R x R \rightarrow R$ is a symmetric mapping which is also biadditive, the trace of B satisfies $f(x+y)=f(x)$ $+2 B(x, y)+f(y)$.

A symmetric biadditive mapping $F(.$, . .): $R R R$ is called a symmetric left Bicentralizer if for any fixed y, the map $x \rightarrow F(x, y)$ is a left centralizer on R. The commutator $x y-y x$ will be written as $[x, y]$. Note that $[x u, y]=[x, y] u+x[u, y]$ and $[x, y v]=[x, y] v+y[x$, $v]$, for all $x, y, u, v \in R$.

A mapping $L: R \times R$ is said to be centralizing on R if $[L(x), x] \quad Z(R)$, for all $x R$. In special case when $[L(x), x]=0$, for all $x R$, the mapping L is called commuting on R.

It seems that the first results on commuting mappings which are not additive was given by Vokman [3]. He prove that if d is a derivation of a prime ring R of characteristic different from 2 , such that the mapping $q(x)=[d(x), x]$ is commuting then $q=0$, that is d is commuting. In [7] Bresar generalized this result by showing that the same conclusion holds for any additive mapping. Bresar in [9] describe all commuting traces of biadditive mapping on certain prime rings. He prove that if the characteristic of R different from 2 , and R does not satisfy S_{4}, then every such mapping (say q) is of the form $q(x)=\lambda x^{2}+$ $\mu(x) x+v(x)$ for all $x \in R$, where λC (the Extended Centroid of R), and : $R \rightarrow C$ is an additive mapping.

In this paper we generalized some results givens in [5], [4], and [6] by introduce and apply the symmetric left Bicentralizer mappings on these results.

[^0]
Main results

Theorem 1: Let R be a non commutative semiprime ring of characteristic different from 2 , and $F, G: R R R$ are symmetric left Bicentralizers. Suppose that $[F(x$, $y), G(x, y)]$ o $F(x, y)=0$, for all $x, y \in R$, then $[f(x)$, $g(y)] f(x)=0$, and $f(x)[f(x), g(y)]=0$, where f, g are the trace of F, G respectively .

Proof: We have :
$[F(x, y), G(x, y)] F(x, y)+F(x, y)[F(x, y), G(x, y)]$ $=0$, for all $x, y \in R$.

Replace x by $x+y$ in (1), and apply (1) on the obtained relation gives:
$[F(x, y), g(y)] F(x, y)+[f(y), G(x, y)] F(x, y)+[f(y)$, $g(y)] F(x, y)+[F(x, y), G(x, y)]$
$f(y)+[F(x, y), g(y)] f(y)+[f(y), G(x, y)] f(y)+F(x, y)$ $[F(x, y), g(y)]+F(x, y)[f(y), G(x, y)]+F(x, y)[f(y)$, $g(y)]+f(y)[f(y), G(x, y)]+f(y)[F(x, y), g(y)]+f(y)[F(x$, $y), G(x, y)]=0$, for all $x, y \in R$.

Replace x by $-x$ in above relation, and comparing the relation so obtained with it, further using the fact that char $R \neq 2$, we get :
$[f(y), g(y)] F(x, y)+F(x, y)[f(y), g(y)]+[F(x, y), g(y)]$ $f(y)+f(y)[F(x, y), g(y)]+[f(y), G(x, y)] f(y)+f(y)[$ $f(y), G(x, y)]=0$, for $x, y \in R$.

Replace x by $y x$ in (2), and apply (1) on the obtained relation, we obtain:
$f(y) x[f(y), g(y)]+[f(y), g(y)] x f(y)+f(y)[x, g(y)]+$ $f(y)^{2}[f(y), g(y)]+[f(y), g(y)] x f(y)+g(y)[f(y), x]$ $f(y)+f(y)[f(y), g(y)] x+f(y) g(y)[f(y), g(y)]=0$, for all $x, y \in R$.

Putting $x f(y)$ instead of x in (3), we have:
$f(y) x f(y)[f(y), g(y)]+[f(y), g(y)] x f(y)^{2}+f(y)[x$, $g(y)] f(y)^{2}+f(y) x[f(y), g(y)] f(y)+f(y)^{2}[x, g(y)]$ $f(y)+f(y)^{2} x[f(y), g(y)]+[f(y), g(y)] x f(y)^{2}+g(y)$ $x[f(y), x] f(y)^{2}+f(y)[f(y), g(y)] x f(y)+f(y) g(y)$ $[f(y), x)] f(y)=0$, for all $x, y \in R$.

Applying (3) on (4), we get:
$f(y) x f(y)[f(y), g(y)]+f(y)^{2} x[f(y), g(y)]=0$, for all $x, y \in R$.

Replace x by y and y by x in above relation, we see: $f(x) y f(x)[f(x), g(x)]+f(x)^{2} y[f(x), g(x)]=0$, for all $x, y \in R$.

Now putting in (5) $g(x) y$ instead of y :
$f(x) g(x) y f(x)[f(x), g(x)]+f(x)^{2} g(x) y[f(x), g(x)]$ $=0$, for all $x, y \in R$

Left multiplication of (5) by $g(x)$, then subtracting the relation so obtained from (6) leads to:
$[f(x), g(x)] y f(x)[f(x), g(x)]+\left[f(x)^{2}, g(x)\right] y[f(x)$, $g(x)]=0$, for all $x, y \in R$.
$\operatorname{But}\left[f(x)^{2}, g(x)\right]=[f(x), g(x)] f(x)+f(x)[f(x), g(x)]$ $=0$, therefore (7) reduces to:

$$
[f(x), g(x)] y f(x)[f(x), g(x)]=0, \text { for all } x, y \in R .
$$

Left multiplication above relation by $f(x)$ yields:
$f(x)[f(x), g(x)] y f(x)[f(x), g(x)]=0, \quad$ for all x, y $\in R$.

Using the semiprimeness of R we conclude that:
$f(x)[f(x), g(x)]=0$, for all $x, y \in R$.
Now, as a special case of (1) when $y=x$, and using (8), we arrive to:
$[f(x), g(x)] f(x)=0$, for all $x, y \in R$.

Commuting Traces of Symmetric left Bicentralizer on Semiprime Rings

Theorem 2: Let R be a 2-torsion free semiprime ring, and $F, G: R \times R \rightarrow R$ are symmetric left Bicentralizers. Suppose $[[f(x), g(x)], f(x)]=0$, for all $x, y \in R$, then $[f(x), g(y)] f(x)=0$, and $f(x)[f(x), g(y)]=0$, where f, g are the trace of F, G respectively.

Proof: We have:
$[[f(x), g(x)], f(x)]=0$, for all $x, y \in R$.
Linearization of (1) gives:
$[[f(x), g(x)], f(y)]+[[f(x), g(x)], 2 F(x, y)]+[[f(x)$, $2 G(x, y)], f(x)]+[[f(x), 2 G(x, y)], f(y)]+[[f(x), 2 G(x$, $y)], 2 F(x, y)]+[[f(x), g(y)], f(x)]+[[f(x), g(y)], f(y)]+$ $[[f(x), g(y)], 2 F(x, y)]+[[f(y), g(x)], f(y)]+[[f(y)$, $g(x)], 2 F(x, y)]+[[f(y), g(x)], f(x)]+[[f(y), 2 G(x$, $y)], f(x)]+[[f(y), 2 G(x, y)], f(y)]+[[f(y), 2 G(x, y)]$, $2 F(x, y)]+[[f(y), g(y)], f(x)]+[[f(y), g(y)], 2 F(x$, $y)]+[[2 F(x, y), g(x)], f(y)]+[[2 F(x, y), g(x)], 2 F(x$, $y)]+[[2 F(x, y), g(x)], f(x)]+[[2 F(x, y), 2 G(x, y)]$, $f(x)]+[[2 F(x, y), 2 G(x, y)], f(y)]+[[2 F(x, y), 2 G(x$, $y)], 2 F(x, y)]+[[2 F(x, y), g(y)], f(x)]+[[2 F(x, y)$, $g(y)], 2 F(x, y)]+[[2 F(x, y), g(y)], f(y)]=0$, for all $x, y \in R$.

Replacing x by $-x$, and comparing the relation so obtained with the above, we get after using the fact that R is a 2-torsion free:
$[[f(x), g(x)], F(x, y)]+[[f(x), G(x, y)], f(x)]+[[$ $f(x), G(x, y)], f(y)]+[[f(x), g(y)], F(x, y)]+[[f(y)$, $g(x)], F(x, y)]+[[f(y), G(x, y)], f(x)]+[[f(y), G(x$, $y)], f(y)]+[[f(y), g(y)], F(x, y)]+[[F(x, y), g(x)]$, $f(y)]+[[F(x, y), g(x)], f(x)]+[[F(x, y), g(y)]$,
$f(x)]+[[F(x, y), g(y)], f(y)]+[[2 F(x, y), 2 G(x, y)]$, $F(x, y)]=0$, for all $x, y \in R$.

Substituting $2 x$ instead of x in (2), comparing the relation so obtained with (2), and using the fact that R is a 2-torsion free, we see:
$[[f(x), g(x)], F(x, y)]+[[f(x), G(x, y)], f(x)]+[[F(x$, $y), g(x)], f(x)]=0$, for all $x, y \in R$.

Replace y by $x y$ in (3), and apply (1) on the relation so obtained, we arrive:
$f(x)[[f(x), g(x)], y]+3[f(x), g(x)][y, f(x)]+g(x)[[f(x)$, $y], f(x)]+f(x)[[y, g(x)], f(x)]=0$, for all $x, y \in R$

Putting $y f(x)$ for y in (4), and using the identity [$x y$, $z]=x[y, z]+[x, z] y$, we have :
$f(x)[[f(x), g(x)], y] f(x)+f(x) y[[f(x), g(x)], f(x)]+$ $3[f(x), g(x)][y, f(x)] f(x)+g(x)[[f(x), y], f(x)] f(x)+$ $f(x)[[y, f(x)][f(x), g(x)]+f(x) y[[f(x), g(x)], f(x)]+$ $f(x)[[y, g(x)], f(x)] f(x)=0, \quad$ for all $x, y \in R$. (5)

In view of (1) and (4), the relation (5) reduces to:
$f(x) y f(x)\left[[f(x), g(x)]=f(x)^{2} y[[f(x), g(x)]=0\right.$, for all $x, y \in R$.

Replace y by $g(x) y$ in (6) yields:
$f(x) g(x) y f(x)\left[[f(x), g(x)]=f(x)^{2} g(x) y[[f(x), g(x)]\right.$ $=0$, for all $x, y \in R$.

Left multiplication of (6) by $g(x)$, then subtracting the relation so obtained from (7), we obtain:
$[f(x), g(x)] y f(x)[f(x), g(x)]=\left[f(x)^{2}, g(x)\right][f(x)$, $g(x)]$
$=([f(x), g(x)] f(x)+f(x)[f(x), g(x)])[f(x), g(x)]$
According to the requirement of this Theorem, we can replace $[f(x), g(x)] f(x)$ by $f(x)[f(x), g(x)]$ in the right hand side, which gives :
$[f(x), g(x)] y f(x)[f(x), g(x)]=2 f(x)[f(x), g(x)] y[[$ $f(x), g(x)]$

Left multiplication of the above relation $\mathrm{f}(\mathrm{x})$ gives: $f(x)[f(x), g(x)] y f(x)[f(x), g(x)]=2 f(x)^{2}[f(x), g(x)] y$ [$[f(x), g(x)]$

On the other hand, putting $[f(x), g(x)] y$ for y, and comparing the relation so obtained with (8), we arrive to:
$f(x)[f(x), g(x)] y f(x)[f(x), g(x)]=0$, for all $x, y \in R$.
Hence, by semiprimeness of R, it follows:
$f(x)[f(x), g(x)]=0$, for all $x \in R$.
Finally, from the last equation and our assumption (1), we have: $[f(x), g(x)] f(x)=0$, for all $x \in R$.

Theorem 3: Let R be a non-commutative semiprime ring of characteristic different from 2 , and F, G : $R \times R \rightarrow R$ are symmetric left Bicentralizers. Suppose $f(x)[f(x), g(x)]=0$, and $[f(x), g(x)] f(x)=0$, for all x R, then $[f(x), g(x)]=0$, for all $x \in R$, where f, g are the trace of F, G respectively.

Proof: We have:
$f(x)[f(x), g(x)]=0$, for all $x, y \in R$.
Now, using similar techniques as used to get (3) from (1) in Theorem (2), and the fact that charR2, we arrive at :
$f(x)[f(x), G(x, y)]+f(x)[F(x, y), g(x)]+F(x, y)[f(x)$, $g(x)]=0$, for all $x, y \in R$.

Putting in (2) $x y$ for y, and apply the identity $[x y, z]=$ $x[y, z]+[x, z] y$ on the relation so obtained, we get :
$f(x)[f(x), g(x)] y+f(x) g(x)[f(x), y]+f(x)^{2}[y, g(x)]+$ $f(x)[f(x), g(x)] y+f(x) y[f(x), g(x)]=0$, for all $x, y \in R$. In view of (1), above relation reduces to:
$f(x) g(x)[f(x), y]+f(x)^{2}[y, g(x)]+f(x) y[f(x), g(x)]$ $=0$, for all $x, y \in R$.

The above relation can be written as:
$f(x) y[f(x), g(x)]+f(x)^{2} y g(x)-f(x) g(x) y f(x)+f(x)[$ $f(x), g(x)] y=0$.

According to (1), above relation reduce to:
$f(x) y[f(x), g(x)]+f(x)^{2} y g(x)-f(x) g(x)$ y $f(x)=0$, for all $x, y \in R$.

Now, substitution $g(x) y$ instead of y in (3) gives:
$f(x) g(x) y[f(x), g(x)]+f(x)^{2} g(x) y g(x)-f(x) g(x)^{2} y$
$f(x)=0$.
Left multiplication of (3) by $g(x)$ and subtracting the relation so obtained from (4) yields:
$[f(x), g(x)] y[f(x), g(x)]+\left[f(x)^{2}, g(x)\right] y g(x)+[g(x)$, $f(x)] g(x)$ y $f(x)=0$.

But $\left[f(x)^{2}, g(x)\right]=[f(x), g(x)] f(x)+f(x)[f(x), g(x)]=0$, then above relation reduces to:
$[f(x), g(x)] y[f(x), g(x)]+[g(x), f(x)] g(x) y f(x)=$ 0 , for all $x, y \in R$.

Putting $y f(x) z$ for y in (5) gives:
$[f(x), g(x)] y f(x) z[f(x), g(x)]+[g(x), f(x)] g(x) y f(x)$ $z f(x)=0$.

Right multiplication of (5) by $z f(x)$, and subtracting
(6) from the relation so obtained leads to:
$[f(x), g(x)] y \mu(x, z)=0$, for all $x, z \in R$.

Commuting Traces of Symmetric left Bicentralizer on Semiprime Rings

Where $\mu(x, z)=[f(x), g(x)] z f(x)-f(x) z[f(x), g(x)]$
Again replace y by $z f(x) y$ in (7), leads to :
$[f(x), g(x)] z f(x) y_{\mu(x, z)=0, \text { for all } x, z \in R . ~}^{\text {. }}$
Left multiplication of (7) by $f(x) z$, then subtracting the relation so obtained from (8) yields:
$\mu(x, z) y(x, z)=0$, for all $x, y, z \in R$.
Using the semiprimeness of R, we conclude that:
$[f(x), g(x)] z f(x)=f(x) z[f(x), g(x)]$
Now putting $g(x) y$ for z in (9) implies that:
$[f(x), g(x)] g(x) y f(x)=f(x) g(x) y[f(x), g(x)]$ (10)

In view of (10) the relation (5) at once yields that:
$[f(x), g(x)] y[f(x), g(x)]-f(x) g(x) y[f(x), g(x)]=0$.
This can be reduces to:
$g(x) f(x) y[f(x), g(x)]=0$, for all $x, y \in R$.
Replacing y by $g(x) y$ in (11) gives :
$g(x) f(x) g(x) y[f(x), g(x)]=0$, for all $x, y \in R$.
Also left multiplication of (11) by $g(x)$ and subtracting the relation so obtained from the above, we get:
$g(x)[f(x), g(x)] y[f(x), g(x)]=0$, for all $x, y \in R$. (12)

Putting $y g(x)$ for y in (12) and using the semiprimeness property of R, we conclude:
$g(x)[f(x), g(x)]=0$, for all $x, y \in R$.
The substitution $y g(x)$ for z in (9) gives because of (13) :
$[f(x), g(x)] y g(x) f(x)=0$, for all $x, y \in R$.
For the second condition $[f(x), g(x)] f(x)=0$, using the similar techniques as used to get (3) in theorem (2), and the fact that char $R 2$, one obtains:
$[f(x), G(x, y)] f(x)+[F(x, y), g(x)] f(x)+[f(x), g(x)]$ $F(x, y)=0$, for all $x, y \in R$.

Replace y by $x y$ in above relation leads to:
$2[f(x), g(x)] y f(x)+g(x)[f(x), y] f(x)+f(x)[y, g(x)]$ $f(x)=0$, which can be written as :
$[f(x), g(x)] y f(x)+f(x) y g(x) f(x)-f(x) y f(x)^{2}=0$, for all $x, y \in R$.

In view of (9) the above relation at once yields that: $f(x) y[f(x), g(x)]+f(x) y g(x) f(x)-g(x) y f(x)^{2}=0$, for all $x, y \in R$.

This can reduce to $f(x) y f(x) g(x)-g(x) y f(x)^{2}=0$, and consequently :
$f(x) y f(x) g(x)=g(x) y f(x)^{2}$
Putting $g(x) y$ for y in (15) leads to :
$f(x) g(x) y f(x) g(x)=g(x)^{2} y f(x)^{2}$
Left multiplication of (15) by $g(x)$, and subtracting the relation so obtained from (16) leads to:
$[f(x), g(x)] y f(x) g(x)=0$, for all $x, y \in R$.
Combining (14) with (17), we get:
$[f(x), g(x)] y[f(x), g(x)]=0$, for all $x, y \in R$.
By semiprimeness property of R yields:
$[f(x), g(x)]=0$, for all $x, y \in R$.
Now, Theorems (1), (2) and (3) leads to the following results.

Corollary \boldsymbol{A} : Let R be a non-commutative semiprime ring of characteristic different from 2, and F, G : $R \times R \longrightarrow R$ are symmetric left Bicentralizers. Suppose that $[F(x, y), G(x, y)] o F(x, y)=0$, for all $x, y \in R$, then $[f(x), g(x)]=0$, for all $x \in R$, where f, g are the trace of F, G respectively .

Corollary B: Let R be a 2-torsion free semiprime ring, and $F: R \times R \longrightarrow R$ be symmetric left Bicentralizer. Suppose that $[F(x, y), x]$ o $x=0$, for all $x \in R$, then the trace of $F($ say $f)$ is commuting on R.

Corollary C: Let R be a 2-torsion free semiprime ring, and $F: R \times R \longrightarrow R$ be symmetric left Bicentralizer. Suppose that $[[f(x), x], x]=0$, for all $x \in R$, where f is the trace of F, then f is commuting on R.

Corollary D: Let R be a 2-torsion free semiprime ring, and $F: R \times R \longrightarrow R$ be symmetric left Bicentralizer. Suppose that $[[f(x), x], f(x)]=0$, for all $x \in R$, where f is the trace of F, then f is commuting on R.

REFERENCES

H. A. Shaker: Centralizer on prime and semiprime rings, M.sc .thesis. College of Science .Univ. of Baghdad . 2005.
I. Kosi. UlbI. A remark on centralizers in semiprime rings. Glasnik Matematiki. V.39, No1, (2004), 21-26.
J.Vokman, commuting and centralizing mappings in prime rings, Proc.Amer.Math.Soc. 109 (1990), 47-52.
J.Vokman. An identity related to centralizer in semiprime rings .Comment. Math. Univ .Carolina 40, V.3,(1999), 447-456.
J.Vokman, centralizers on prime and semiprime rings .Comment. Math .Univ. Carolina 38, V.2, (1997), 231-240.
J.Vokman, centralizers on semiprime rings .Comment. Math .Univ. Carolina 42, V.2, (2001), 237-240.
M. Bresar, On generalization of the notion of centralizing mapping ,Proc .Amer. Math .Soc 114 (1992), 641-649.
M. Bresar, On generalized Bi-derivation and related maps, Univ .of Maribor. Academic press. Inc. (1995), 764-786.
M. Bresar, commuting traces of bi-additive mappings, commutativity preserving mappings, and lie mappings, Trans. Amer .Math. Soc. 335 (1993), 525-546.

[^0]: ${ }^{1}$ Mathematic Department College of Science, University of Baghdad
 ${ }^{2}$ Mathematic Department College of Education, Al-Mustansiriyah University

