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Abstract 
One of the primary advantages of field-oriented controlled induction motor for high performance 

application is the capability for easy field weakening and the full utilization of voltage and current rating of the 
inverter to obtain a wide dynamic speed rangeThis paper describes a Model Reference Adaptive System 
(MRAS) based scheme using Artificial Neural Network (ANN) for online speed estimation of sensorless vector 
controlled induction motor drive. The proposed MRAS speed observer uses the current model as an 
adaptive model. The neural network has been then designed and trained online by employing a back 
propagation network (BPN) algorithm. The estimator was designed and simulated in Matlab/Simulink. 
Simulation result shows a good performance of speed estimator. The simulation results show good 
performance in various operating conditions. Also Performance analysis of speed estimator with the 
change in resistances of stator is presented. Simulation results show this estimator robust to parameter 
variations especially resistances of stator. 
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1. Introduction 

Induction motors are electromechanical systems suitable for a large spectrum of 
industrial applications, due to its high reliability, relatively low cost, and modest maintenance 
requirements [1]. Control of the Induction motors can be done using various techniques. Most 
common techniques are: (a) constant voltage/frequency control (V/F), (b) field orientation 
control (FOC), and (c) direct torque control (DTC). The first one is considered as scalar control 
since it adjusts only magnitude and frequency of the voltage or current with no concern about 
the instantaneous values of motor quantities. It does not require knowledge of parameters of the 
motor, and it is an open-loop control. Thus, it is a low cost simple solution for low-performance 
applications such as fans and pumps. The other two methods are in the space vector control 
category because they utilize both magnitude and angular position of space vectors of motor 
variables, such as the voltage and flux. They are employed in high performance applications, 
such as positioning drives or electric vehicles. Especial, the formulation of Field Orientated 
Control (FOC) has lead to the induction motor replacing the DC motor as the main source of 
energy conversion in industrial applications. Along with the increasing in technology and the 
rapid improvement in power devices, it is possible to apply the induction motor drives for high 
performance applications [2, 3]. It is necessary to be able to control the speed of these motor 
drives and the most common way of doing this is by using Vector Control or Direct Torque 
Control, which need feedback of motor speed. So they require a speed sensor which is usually 
placed on the rotor shaft of the machine. These sensors are sources of trouble, mainly in hostile 
environments. Thus sensorless control is taken into consideration. The main reasons for the 
development of sensorless drives are [4]: 

 reduction of hardware complexity and cost  

 increased mechanical robustness 

 higher reliability 

 working in hostile environments 
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 decreased maintenance requirements 

 unaffected moment of inertia 
Since the late 1980s, speed-sensorless control methods of induction motors using the 

estimated speed instead of the measured speed have been reported. They have estimated 
speed from the instantaneous values of stator voltages and currents using induction motor 
model. Other approaches to estimate speed use Rotor Slot Harmonic [5] Extended Kalman 
Filter (EKF), Extended Luenbergern Observer (ELO) [6] Saliency Techniques [7] and Model 
Reference Adaptive System (MRAS) [8], [9]. The saliency techniques attempt to be parameter 
independent, but secondary magnetic effects do lead to complications in their implementation. 
Rotor slot harmonic speed estimation will work successfully if the rotor is about a minimum 
speed. The problems related to EKF or ELO are the large memory requirement, computational 
intricacy, and the constraint such as treating all inductances to be constant in the machine 
model. MRAS schemes are also direct dependent on motor parameters. However, an induction 
motor is highly coupled, non-linear dynamic plant, and its parameters vary with time and 
operating conditions. Therefore, it is very difficult to obtain good performance for the entire 
speed range using previous methods. 

Recently, the use of Artificial Neural Network (ANN) to identify and control nonlinear 
dynamic systems has been proposed because they can approximate a wide range of nonlinear 
functions to any desired degree of accuracy [10]-[14]. Artificial Neural Network advantages such 
as: 

 ability to approximate arbitrary nonlinear mappings 

 learning from the real system or the approximate 

 intelligence and self-organizing capability 

 possibility of parallel computing 

 robustness 

 ability to generalize and fault tolerance 
It is a major advantage of ANN based techniques that they do not require any 

mathematical model of the motor under consideration and the drive development time can be 
substantially reduced [4]. In the paper, speed estimator, based on ANN based Model Reference 
Adaptive System (MRAS) has been studied and analysed. In ANN the back propagation 
network (BPN) algorithm is used for online training of neural network to estimate the motor 
speed. 
 
 
2. Model of Induction Motor 

Neglecting the motor core loss, the saturation, the slot effect, etc, the equivalent circuit 
of the IM in stationary reference frame is shown in Figure 1. The mathematical model in this 
frame then can be derived from the equivalent circuit, that is 
 
 

 
Figure 1. The equivalent circuit of IMs (T-model) in the stationary reference frame 

 
 

V⃗⃗ s = Rsi s +
dλ⃗ s

dt
 (1) 

 
Where 
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Ls = Lls + Lm (3) 
 

Lr = Llr + Lm (4) 
 
And 
 

λ⃗ s = Lsi s + Lmi r (5) 
 

λ⃗ r = Lri r + Lmi s  (6) 
 
The electromagnetic torque produced in the motor is 
 

Te =
2

3
pIm(i sλ⃗ s

∗
) (7) 

 
The induction motor model in the α −β fixed reference frame can be described by the following 
equations 
 

[
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0
0
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 (9) 

 
Where the subscripts s and r stand for stator and rotor quantities; u and i denotes voltage and 

current respectively; R denotes resistance and ωr is the rotor speed; ψ denotes flux linkage. 
 
 
3. FOC Principles 

According to the above equation 
 

T = p
Lm

σLsLr
(λs. jλr) (10) 

 
Where p is the pole pair number and 
 

σ = 1 −
Lm
2

LsLr
 (11) 

 
Assuming a rotor flux reference frame, and developing the previous equations with respect to 
the d axis and q axis components, leads to 
 

dλdr

dt
+

1

τr
λdr =

Lm

τr
ids (12) 

 

T =
3

2
p

Lm

Lr
λdriqs (13) 

 
These equations represent the basic principle of the FOC: in the rotor flux reference frame, a 
decoupled control of torque and rotor flux magnitude can be achieved acting on the q and d axis 
stator current components, respectively. A block diagram of a basic FOC scheme is presented 
in Figure 2. 
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Figure 2. Basic FOC scheme 
 

 
4. Speed Estimation using Neural Network 

In MRAS technique, some state variables,  Xd, Xq (e.g. rotor flux-linkage components, 

ψ
dr

, ψ
dr

, or back-emf components, ed, eq, etc.) of the induction machine (which are obtained by 

using measured quantities, e.g. stator voltages and currents) are estimated in a reference 

model and are then compared with state variables X̂d, X̂q estimated by using an adaptive model. 

The difference between these state variables is then formulated into a speed tuning signal (ε ), 
which is then an input into an adaptation mechanism, which outputs the estimated rotor speed 

(ω̂). 
Speed estimator using ANN is a part of a Model Reference Adaptive System (MRAS), 

where ANN takesthe role of the adaptive model. ANN contains the adjustable and constant 
weights and the adjustable weightsare proportional to the rotor speed. The adjustable weights 
are changed by using the error between the outputs of the reference and adaptive model. 
Figure 3 shows the MRAS-based speed estimation scheme, which contains an ANN with BPN 
adaptation technique [4]. 

 
 

Reference Model

Artificial Neural Network 

(ANN)

1/Z1/Z

1/Z1/Z

∑ 

∑ 

Back Propagation Weight 

Adjustment

dsv

qsv

dsi
qsi

dr

qr

d

q



dr

^



qr

^



2w

 
 

Figure 3. MRAS-based rotor speed estimator containing an ANN 
 
 

The outputs of the reference model are the rotor flux linkage components in stationary reference 
frame, aregiven by 
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ψ
dr

=
Lr

Lm
[∫(vds − RSids) dt − Ls

′ ids] (14) 

 

ψ
qr

=
Lr

Lm
[∫(vqs − RSiqs) dt − Ls

′ iqs] (15) 

 
These two equations do not contain the rotor speed anddescribe the reference model. The 
equations of adaptivemodel are given by 
 

ψ̂
dr

=
1

T
∫Lm ids − ψ̂

dr
− ωrTrψ̂qr

)dt (16) 

 

ψ̂
qr

=
1

T
∫Lm iqs − ψ̂

qr
− ωrTrψ̂dr

)dt (17) 

 
It is possible to implement equations (16) and (17) by a two layer ANN containing weights, W1 (= 

1-C), W2 (= ωrTrC), W3 (=Clm). Where C=
T

Tr
, T, Trare sampling time and rotor time constant. The 

variable ANN weight W2 is proportional to the rotorspeed. By using the backward difference 
method, theequation of adaptive model is given below. 
 

ψ̂
dr

(k) = W1ψ̂
dr

(k − 1) − W2ψ̂
qr

(k − 1) + W3ids(k − 1) (18) 

 

ψ̂
qr

(k) = W1ψ̂
qr

(k − 1) − W2ψ̂
dr

(k − 1) + W3iqs(k − 1) (19) 

 

which gives the value of rotor flux at Kth sampling instant. These equations can be visualized by 
the very simple two layer ANN shown in Figure 4. 

 
 

 
 

Figure 4. ANN model for the estimation of rotor flux linkage 
 
 

After taking learning factor ηand momentum term α into account, the estimated rotor speed is 
given below. 
 

ω̂r(k) = ω̂r(k − 1) +
η

T
{
−[ψ

dr
(k) − ψ̂

dr
(k)]ψ̂

qr
(k − 1)

+[ψ
qr

(k) − ψ̂
qr

(k)]ψ̂
dr

(k − 1)
} +

α

T
Δw2(k − 1) (20) 

 
The learning rate (η) has to be selected to be large, but this can lead to oscillations in the 
outputs of the ANN. Usually α is in the range between 0.1 and 0.8. The inclusion of the 
momentum term into the weight adjustment mechanism can significantly crease the 
convergence, which is extremely useful when the ANN shown in figure 4 is used to estimate in 
real-time the speed of the induction machine [13]. 
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5. Simulation Results 
In this section, the performance of the proposed control strategy in a variety of 

operating conditions was evaluated through simulations. For this purpose, a three- phase, four-
pole induction motor was selected and, accompanied by the suggested ANN based speed 
estimator, were implemented in Matlab/Simulink, as shown in Figure 5. The response of ANN 
based speed estimator is compared with actual machine, as shown in Figure 6. Block diagram 
of ANN-MRAS based sensorless vector control of a induction motor drive in Matlab/Simulink is 
shown in Figure 6. Here, three case studies were considered to verify the proposed drive under 
different conditions. Shown in the figures are motor speed, electromagnetic torque and stator 
current. 

Case I. Nominal Load Condition: In this case, the IM was operating with the nominal 
load at 0.2 sec. and the circumstances below were considered: 

 The speed stepped up to 1200 rpm and then slowly reduced to zero. The simulation 
results are shown in Figure 7. 

 The speed stepped up to 1400 rpm and maintained at constant. Figure 8 shows the 
simulation results.  

 The same as the first part of this case, the speed rose to 1000 rpm and then slowed 
down to zero. The results are shown in Figure 9. 

Case II. No Load Condition: The performance of the proposed drive at low speed and no load 
condition was assessed in this case. The attention, in this case, was given to the operating of 
the IM in the following conditions: 

 The speed rose to 500 rpm and thereafter, reduced rapidly to zero. Figure 10 
shows the simulation results. 

 The speed stepped up to 500 rpm and maintained at constant. Figure 11 shows the 
simulation results.  

 The speed stepped up to 1000 rpm and maintained at constant. Figure 12 shows 
the simulation results.  

The results of these cases show the effectiveness of the suggested drive in tracking the 
reference speed in both of no load and full load conditions. 
Case III. Effects of Stator Resistance (Rs): It is important to see the performance of the drive in 
case of variation in rotor resistance. Here, the stator resistance is changed from its actual value 
to 1.5 times the actual value in the form of step (see Figure13). The load torque, as shown in 
Figure 13, went to positive and negative values in a step manner. Reference speed is changed 
from 0 to 300 rpm as shown in Figure 15. It is clear that the estimated speed is again matching 
with the reference speed. Thus, the robustness of proposed drive to the variation of the stator 
resistance is confirmed. 
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Figure 5. ANN based model of speed estimation 
 
 
The response of ANN based speed estimator is comparedwith actual machine, as shown in 
Figure 6. 
 
 

 
 
Figure 6. Response comparison of actual machine and ANN based speed estimator with error 
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Figure 7. Case I. Nominal load at 0.2 seconds and speed-up to 1400 rpm, and then slow down to 
zero: (a) motor speed, (b) electromagnetic torque, (c) stator current 

 
 

Figure 8. Case I. Nominal load at 0.2 seconds and speed-up to 1400 rpm: (a) motor speed, 
(b) electromagnetic torque, (c) stator current 
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Figure 9. Case I. Nominal load at 0.2 seconds and speed-up to 1000 rpm, and then slow down to 
zero: (a) motor speed, (b) electromagnetic torque, (c) stator current 

 
 

Figure 10. Case II. No load, speed-up to 500 r.p.m and subsequently, decreased rapidly from 
500 to zero: (a) motor speed, (b): electromagnetic torque, (c) stator current 



                     ISSN: 2302-9285 

Bulletin of EEI Vol. 5, No. 1, March 2016 :  25 – 36 

34 

 
 

Figure 11. Case II. No load, speed-up to 500 rpm: (a) motor speed, (b) electromagnetic torque, 
(c) stator current 

 
 

Figure 12. Case II. No load, speed-up to 1000 rpm: (a) motor speed, (b) electromagnetic torque, 
(c) stator current 
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Figure 13. Case III. Effects of Stator Resistance (Rs), the stator resistance changes 
 

Figure 14. Case III. Effects of Stator Resistance (Rs), Electromagnetic torque and reference 
torque 

 

 
 

Figure 15. Case III. Effects of Stator Resistance (Rs), Motor speed and speed reference 
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6. Conclusion 
This paper proposed a new MRAS speed observer for high-performance vector 

controlled of induction motor drives using a novel neural networks based speed estimator. 
Structure and algorithm were simple. The simulation showed that proposed control strategy 
could identify and track the motor speed accurately during the whole operating region. Overall, 
the dynamic response of this scheme of speed estimation showed a good performance. Also 
the results indicated the tracking of the speed references by the motor was good in terms of 
different conditions. Finally, analysis of the performance of the speed estimator during the 
changes of the stator resistance was presented which showed the speed estimator was robust 
to changes in motor parameters. 
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