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Abstract—Support Vector Machine (SVM) is a linear binary
classifier that requires a kernel function to handle non-linear
problems. Most previous SVM implementations for embedded
systems in literature were built targeting a certain application;
where analyses were done through comparison with software im-
plementations only. The impact of different application datasets
towards SVM hardware performance were not analyzed. In this
work, we propose a parameterizable linear kernel architecture
that is fully pipelined. It is prototyped and analyzed on Altera
Cyclone IV platform and results are verified with equivalent
software model. Further analysis is done on determining the
effect of the number of features and support vectors on the
performance of the hardware architecture. From our proposed
linear kernel implementation, the number of features determine
the maximum operating frequency and amount of logic resource
utilization, whereas the number of support vectors determines
the amount of on-chip memory usage and also the throughput
of the system.

I. INTRODUCTION

Future server and embedded systems will likely to consist
of built-in intelligent machine learning classifiers [1]. These
applications need to process large amounts of data, and
this requires massive data parallelism that needs high data
bandwidth between the processors and off-chip memory. Such
data access patterns make on-chip caches mostly ineffective
[1]. Reconfigurable hardware such as field programmable
gate array (FPGA) is a promising platform for speeding up
computations, and for providing high performance computing
(HPC) at minimal cost overhead and power consumption [2].

SVM is an accurate classifiers that is based on a solid
theoretical background for hardware implementation [3], [4].
Some applications that have benefited from SVM hardware
acceleration are pedestrian detection [5], face detection [6]
and object detection [7]. SVM has also been deployed for
medical application such as cardiac arrhythmia detection [8].
Many existing custom hardware implementations focused on
accelerating the decision function that is application specific
[6], [9]. These designs cannot be easily reused for other
applications. Besides that, these design are targeted for fixed
number of classes [6].

Works that targeted on accelerating SVM with a co-
processor unit [1], [10]-[12] tend to focus on the kernel due
to its compute-intensive task and also its innate nature to be
parallelize. Prior work by Kane et al. [13] implemented a
generic SVM classification architecture that was tested with a
wide variety of datasets. However, the analysis is only limited
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to comparison with software implementations only. The effect
of different applications on SVM was not reported such as the
number of features, support vectors and class that vary from
one application dataset to another. In this work, we propose
a linear kernel architecture on FPGA based Kane et al. [13]
work. The proposed design is analyzed in terms of hardware
resource and maximum operating frequency with regards to
different number of support vectors and features.

The rest of this paper is organized as follows. Section II
discusses the overview of SVM. Section III presents related
works in SVM with hardware support. Section IV elaborates
the architecture design of the linear kernel implementation.
Section V discusses the performance evaluation of the hard-
ware implementation with regards to the number of support
vectors and features. This paper is concluded in Section VI
with suggestions for future work.

II. OVERVIEW OF SVM

Traditionally, there have been two fundamentally different
types of tasks in machine learning: unsupervised and super-
vised. The goal of unsupervised learning is to find patterns
and structure in the data, while supervised learning is to
learn a mapping from a labeled dataset [14]. SVM falls
under the category of the latter. In general, SVM task can
be divided into two: training and classification. Based on a set
of labeled dataset, SVM is trained to determine its decision
function. With the decision function, unknown data can then
be classified.

A. Training

In the training phases, SVM determines the decision bound-
ary that maximizes the space between two classes [15]. In
order to handle data which cannot be separated linearly in
low-dimensional feature space, kernel functions are used to
project learning data into high-dimensional space so that it
can be linearly separated [16]. Egs. (1) and (2) show the
dual Lagrange problem to obtain the SVM decision function.
K(x;,x;) is the kernel function, b is the bias parameter and C
is the trade-off parameter between maximizing the margin and
minimizing the error.
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where :
o : Lagrangian multiplier
N : Total amount of training dataset
x; : Training data (feature set)
y; : Training data (label)

The main aim of the training function (eqs. (1) and (2)) is
to obtain ¢; and b values. If ¢ is 0, the corresponding training
feature vector x; is not a support vector. If ¢; is very high, then
the corresponding training feature x; has a high influence over
the decision surface of the hyperplane (x; becomes a support
vector).

B. Classification

Eq. (3) shows the SVM decision function d(u) for classifi-
cation. The computation only extends to the number of support
vectors Ny,, where the support vectors are the subsets of the
training data. Based on the output sign from eq. (3), the class
of unknown input of u is determined by

Kernel functions efficiently map non-linear datasets to a
highly dimensional linear feature space. Kernel allows SVM
to handle non-linear data. The type of kernel to be employed
is entirely dependent on the characteristics of the applications
datasets, which is beyond the scope of this paper. Some of the
main kernel functions that are used in literature are linear (eq.
(4)) polynomial (eq. (5)) Gaussian radial function (RBF) (eq.
(6)) and sigmoid (eq. (7)).

Ny

d(u) = sign ( Y oK (xi,u)+b 3)
i=1

C. Kernel Function

K(xi,u) = xj-u 4)
K(xiu) = (a(xi-u)+r)? (5)
K(xj,u) = e(*Y)”xi*“Hz,where Y>0 (6)
K(xj,u) = tanh(o(x;-u)+r) @)

III. RELATED WORKS

Extant works on accelerating SVM on FPGA can be divided
into two main groups: training and classification. Accelerating
training phase focused for certain applications where on-line
learning is required. These applications, e.g. [17], [18] demand
short training time for fast adaptation with new user habits and
since the characteristics of data change over time. On the other
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hand, accelerating classification phase is important when a task
requires a fixed classification module with large data to be
classified [6], [9]. Depending on the application requirement,
either the training or classification are implemented on FPGA.

For optimizing SVM training problem, SMO [19] is consid-
ered as state-of-the-art training algorithm. However, the SMO
algorithm itself was designed in such away that it caters single-
threaded computer [12]. Besides SMO, there are also Gilbert’s
algorithm [20] and LS-SVM [21] for training. Works that are
targeted for training either implements the whole system on-
chip or offloading to a co-processor [1], [10]-[12] to accelerate
the training process. The task that is targeted for hardware
implementation is the kernel as it is compute-intensive task
that benefit from parallelization.

For the classification part, there were numerous acceleration
works on FPGA. Many existing custom hardware implemen-
tations focused on accelerating the decision function for a
specific task [6], [9]. These designs cannot easily be reused for
other purposes as these designs were targeted for fixed number
of classes. Another approach toward SVM classification on
FPGA system is the cascaded SVM [22]. Cascaded SVM
architecture contains two modules with varying precision rate
that interchange depending on the testing data. However in
this work [22], the focus was solely on binary classification
problem.

There were certain works that targeted multi-class classifi-
cation and tested on various number of datasets [23]. However,
most works in literature were not benchmarked with CPU
or GPU implementation. Kane et al. [13] proposed a SVM
decision architecture with a generic design which was then
tested with a wide variety of datasets. This work outper-
formed GPU and CPU implementations in terms of speed with
practically a negligible trade-off in accuracy. However, the
impact on different types of datasets towards the architecture’s
hardware resource and performance were not reported. In
embedded system environment, hardware resources such as
on-chip memory or logic resource are limited. In this work, we
will analyze factors that affect hardware resource utilization
and performance in implementing SVM linear kernel on
FPGA.

IV. LINEAR KERNEL EMBEDDED ARCHITECTURE

In this section, we describe the proposed linear kernel
architecture in this paper. The general aim is to make the
architecture parameterizable so it can be optimized in terms
of hardware utilization depending on task requirement. Eq. (8)
shows the computations that take place in the linear kernel. x; ;
are the testing data, SV;; are the support vectors, Ny, is the
total number of support vector and Ny is the total number of
features. Each test data needs to perform dot product with each
of the support vector.

Fig. 1 shows the architecture of the linear kernel. The linear
kernel architecture is based on the work from Kane et al.
[13]. Due to its fully pipelined design, after an initial latency,
the architecture produces output in every clock cycle. In our
implementation, all storage memories are implemented using
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Fig. 1: Linear kernel proposed hardware architecture

internal FPGA block RAM to simplify data access. The testing
data RAM stores all the test data, whereas the SV RAM stores
all support vectors. All support vectors are concatenated with
each other to maximize the utilization of each memory block.
In this implementation, features data width are parameterizable
to cater different precision requirement by different types of
application.

The number of feature determines the number of multipliers
needed for the dot product computation. In this work, we focus
on linear kernel since its the basis to any kernel computation.
Based on eqgs.(4) to (7), each of kernel computation needs a
dot product computation. The architecture shown in Fig. 1
can be expanded to any kernel implementation. The addition
process is done in pipelined to reduce the critical path delay.
The number of features also determines the number of adders
that determines the initial latency of proposed architecture.

The resultant output is stored in an on-chip memory. How-
ever, depending on the application requirement in case the
result is to be used for the next computation immediately, the
shift register can be replaced to produce a valid output signal.
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The done signal is to determine the end of the computation.
Shift registers are placed to synchronize the memory access to
the input and output RAMs. Hence, only one address counter
is needed for this implementation.

V. RESULT AND DISCUSSION

The proposed architecture has been evaluated with different
number of features and support vectors. As previously men-
tioned, SVM configurations for different applications differ
based on these parameters. Most implementations of SVM on
FPGA were benchmarked for performance based on one or
more datasets. In Kane et al. [13], nine datasets were used to
benchmark their proposed architecture in comparison to CPU
and GPU. Each dataset has unique number of support vectors,
features and classes. In order to have a detailed hardware
performance analysis of the linear kernel architecture, our
experimental focuses only on varying the number of features
and support vectors. The number of classes is not taken into
account since it is not computed at the kernel stage.
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Our analysis has been carried in two scenarios. For exper-
iment 1, the number of support vectors is fixed to 32. The
number of features is adjusted from 5 onwards with increment
of 5 until the device hits its maximum resource utilization.
For experiment 2, the number of features is fixed to 20.
The number of support vectors are adjusted from 2 onwards,
doubled its prior value, until the device hits its maximum
capacity. The data width of each support vectors, feature and
testing data are fixed to 32 bits.

The increment of one address bit at support vector RAM
(refer Fig. 1) would result in double the memory size. For both
experiments the proposed architecture is analyzed in terms of
logic resources, embedded multipliers, memory and maximum
operating frequency. By changing a certain parameter while
keeping the rest constant, we are able to analyze how a
particular parameter affects the performance of the linear
kernel architecture.

We used Quartus II v13.0 to emulate the system. The linear
kernel has been modeled in Verilog and the RTL simulation
in Quartus has been done using ModelSim 6.6 to obtain cycle
accurate results. An identical software implementation is done
in MATLAB to verify our results. The system implementation
was done on Cyclone IV EP4CE115F29C7 device. In our
targeted device, there are 114,480 logic elements, 3.98 Mbits
of internal memory and 529 9-bits embedded multipliers.

Fig. 2 shows the performance of linear kernel implemen-
tation as the number of features increases. As the number
of features increases the logic unit, embedded multiplier and
memory utilization increase. When all embedded multipliers
are used up, logic resource utilization increases at a much
faster rate since more logic elements are needed to implement
additional multipliers. The maximum operating frequency re-
mains consistent for <70 features since the architecture is fully
pipelined. For >70 features there is a drop in frequency this is
due to increase size of adders and multipliers to handle values
wider data width.
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Fig. 3: The impact of the number of support vectors on
memory bits utilization of the linear kernel architecture

Fig. 3 shows the performance of linear kernel when then
number of support vectors increases. In this linear kernel
architecture, support vectors only affects the on-chip memory
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utilization. Hence it is vital for support vectors to be stored
on-chip since each test data needs to be multiplied with
all of the support vectors. Off-chips support vectors access
would greatly affect the performance of the system. The
logic elements (4380 — 4520), embedded multipliers (160)
and maximum operating frequency (82 — 87 MHz) were not
significantly affected with the number of support vectors.

Based on eq. (8), each training data input needs to be
multiplied with each support vector. Therefore, the number of
clock cycles needed to process the training data is equivalent
ot the number of support vectors. The maximum throughput
this architecture is Ni If the input data rate is greater than the
maximum throughput, a FIFO is required to buffer incoming
input.

VI. CONCLUSION

In this paper, we proposed the architecture for linear kernel
architecture on FPGA. We analyzed the hardware requirement
for different number of of support vectors and also the number
of features. From our proposed linear kernel implementation,
the number of features determine the maximum operating
frequency and logic resource utilization, whereas the number
of support vector determines the amount of on-chip memory
usage and also the overall kernel throughput. Therefore, ap-
plication dataset with larger number of support vectors would
result in lower throughputs. In future work, we target on
implementing the full SVM classification architecture and
analyze the impact of features, support vectors and number
of class towards the hardware performance.
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