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Abstract— This paper discusses about an observer based fault 

detection scheme to detect sensor and actuator faults 

simultaneously in LTI system. The proposed strategy is to add 

derivative action on the extended state observer (ESO) in addition 

to proportional-integral action, so that the structure of the 

proposed observer is PD/PI or called PD/PI-ESO. The derivative 

action is performed both in state estimation and fault estimation. 

This is to achieve fast state estimation as well as fast fault 

estimation. Furthermore, the effects of disturbance are attenuated 

by using the H performance approach. The observer gains are 

then determined based on Linear Matrix Inequalities (LMI) 

technique. Simulation results of a DC motor speed control system 

are presented to illustrate the effectiveness of the proposed method. 
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I.  Introduction  

Recently, the control system development has encountered 
the problems of safety and reliability. One of the research topics 
contributing in these problems is fault detection and diagnosis 
(FDD) scheme for any component of a control system, such as 
sensor and actuator. The study of FDD has been much conducted. 
Some of the results can be found in several excellent books [1-2] 
and a survey paper [3]. The basic idea of this technique is to 
compare the observed system behavior with the desired system 
behavior. This difference is often known as a residual. But 
nowadays, it has emerged the new concept to develop FDD 
scheme without using residual analysis, that is a fault estimation 
approach. If the fault can be estimated accurately then all fault 
information includes type, amount, location, and time could be 
obtained. Thus the fault estimation approach gives more direct 
way to get any fault information (for detection and diagnosis) 
than the residual based approach. The estimator can be performed 
by artificial intelligence schemes as in [4] and [5], or by observer 
schemes as in this paper. The used observer is commonly called 
the extended state observer (ESO). 

At ESO techniques, the estimation of state and fault are 
conducted in one design as long as the robustness and 
boundedness conditions are met. The observer structure initially 
is proportional/integral (P/I). Here, the used general assumption 
is that fault or unknown input changes slowly. It become lack of 
this technique because the fault may have unpredictable behavior 

and in most of the time is not constant, which means the 
derivative of it is not zero and may further cause high gains. 
However many researchers have tried to improve this approach 
related to more general fault and fast estimation, by using the 
classical observer such as in [6] for sensor and/or actuator faults; 
[7] for sensor faults; [8] for actuator faults; [9] and [10] for 
simultaneous sensor and actuator faults, or using the descriptor 
observer such as in [11] for actuator faults; [12] and [13] for 
sensor faults, [14] for simultaneous sensor and actuator faults. 
The classical observer method used a proportional gain for the 
state estimation and an integral and/or a proportional gain for the  
fault estimation. While the descriptor observer method had used 
derivative action in estimating states in addition to proportional 
action, but it was still assumed that the dynamic information of 
fault had been known previously (a priori). 

This paper proposes the development of descriptor observer 
to simultaneously detect any general faults (no need a priori 
knowledge) for both sensor and actuator faults eventually.  Most 
fault detection researches deal with sensor faults or actuator 
faults alone. In this case, sensor and actuator faults are subjected 
as one vector in which the sensor faults appear as unknown 
inputs as adopted from [15]. This technique was also used by 
[10] to be able to estimate the sensor and actuator faults. 
However, the effects of disturbances have not been reviewed in 
that study. The disturbances could come from the model 
uncertainty which greatly affects the performance of observer 
based fault detection system. Thus the objective of this paper is 
to develop a robust ESO in order to estimate sensor and actuator 
faults simultaneously and correctly even the disturbances exist. 

 The proposed observer structure is proportional-
derivative/proportional-integral (PD/PI), hereinafter referred to as 
PD/PI-ESO. By using this structure, it is provided that the 
accurately estimation process can be made without impulsive 
behavior and faster, with the result that false alarm and time 
detection problems of FDD scheme can be overcome. The 

robustness of the proposed observer is obtained by using the H 
performance approach through linear matrix inequalities (LMI) 
formulation. 

This paper is organized as follows. In section II, the LTI 
system with sensor and actuator faults and the extended state 
observer problems dealing with fast estimation are presented. In 
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section III, the development of the extended state observer using 
derivative action based on descriptor system is proposed. A 
numerical example of a DC motor speed control system and its 
simulation results are given in section IV. Finally, concluding 
remarks are given in section V. 

II. Problem Statement 

A. System description 

Consider the following linear time invariant system (LTI) 
with disturbance, noise, sensor and actuator faults 

 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐷𝑑𝑑(𝑡) + 𝐹𝑎𝑓𝑎(𝑡) (1) 

  𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝜔𝜔(𝑡) + 𝐹𝑠𝑓𝑠(𝑡) (2) 

where 𝑥(𝑡) ∈ 𝑅𝑛 , 𝑢(𝑡) ∈ 𝑅𝑚 , 𝑦(𝑡) ∈ 𝑅𝑝, 𝑑(𝑡) ∈ 𝑅𝑛 , 𝜔(𝑡) ∈
𝑅𝑞 , 𝑓𝑎(𝑡) ∈ 𝑅

𝑟 , 𝑓𝑠(𝑡) ∈ 𝑅
𝑞  are the states, the input, the 

measurement output, the disturbance, the measurement noise, the 
actuator faults, and the sensor faults respectively. 
𝐴, 𝐵, 𝐶, 𝐷𝑑 , 𝐷𝜔 , 𝐹𝑎, 𝐹𝑠 are constant real matrices of appropriate 
dimension. It is supposed that the pairs (𝐴, 𝐶) are observable. 

The effect of actuator and sensor faults can be represented as 
an additional unknown input vector acting on the dynamics of the 
system or on the measurements [16]. An actuator fault 
corresponds to the variation of the global control input applied to 
the system, whereas a sensor fault corresponds to the variation of 
the global measurement output of the system. It is assumed that 
the derivative of fault with respect to time is norm bounded. In 
the rest of this paper, the dependence on time of the used 
variables will be suppressed when no confusion might arise. 

B. Classical PI Observer  

Introducing the new state xz  Rp as follows [15]: 

 𝑥̇𝑧 = 𝐴𝑧(𝑦 − 𝑧) = −𝐴𝑧𝑥𝑧 + 𝐴𝑧𝐶𝑥 + Az𝐷𝜔𝜔 + 𝐴𝑧𝐹𝑠𝑓𝑠 (3) 

where Az is a stable matrix with appropriate dimension. 

Defining the augmented state X as 𝑋 = [𝑥  𝑥𝑧]
𝑇, then it is 

obtained the augmented state space of (1) and (3): 

 𝑋̇ = 𝐴𝑎𝑧𝑋 + 𝐵𝑎𝑢 + 𝐷𝑎𝜔𝜔 + 𝐹𝑧𝑓 + 𝐷𝑑𝑑 (4) 

 𝑌 = 𝐶𝑎𝑋 (5) 

with 

 𝐴𝑎𝑧 = [
𝐴 0
𝐴𝑧𝐶 −𝐴𝑧

] ;  𝐵𝑎 = [
𝐵
0
] ; 𝐷𝑎𝜔 = [

0
𝐴𝑧𝐷𝜔

] ;   

𝐹𝑧 = [
𝐹𝑎 0
0 −𝐴𝑧𝐹𝑠

] ; 𝐶𝑎 = [0    𝐼𝑝];  𝑓 = [
𝑓𝑎
𝑓𝑠
] 

Furthermore, the PI observer can be obtained from (4)-(5) in the 
following form:  

 {

𝑋̇̂ = 𝐴𝑎𝑋̂ + 𝐵𝑎𝑢 + 𝐹𝑓 + 𝐿𝑋(𝑌 − 𝑌̂)

𝑓̇ = 𝐿𝑓(𝑌 − 𝑌̂)

𝑌̂ = 𝐶𝑎𝑋̂

 (6) 

where 𝑋̂, 𝑓, 𝑌̂ are the estimated augmented state, the estimated 
fault, and the estimated output respectively. The second equation 
in (6) describes the integral loop added to the proportional one, in 
the first equation. This observer type is therefore termed PI 
observer. LX is the proportional observer gain and Lf is the 
integral observer gain which are computed using the LMI 
formulation as in [10]. These observer gains are used to ensure 
the stability of the estimated error dynamics.  

From (6), it is implied that the fault estimation is only pure 
integral term so this observer may fail to deal with fast time 
varying fault [6]. In addition, the fast state estimation can also 
accelerate the fault estimation and derivative action could realize 
no impulsive behavior [17][18]. Furthermore Az in (3) is chosen 
on an empirical manner and the disturbances have not a                     
been considered. Therefore this paper proposes derivative action 
in order to improve performances and to provide more systematic 
way of the observer based fault estimation.  

III. PD/PI Extended State Observer 

A. Observer Algorithm  

The disturbance could represent the model uncertainty. 
Because the observer is developed based on a model, the 
modeling error has an excessive affect on the observer 
performance. Therefore the proposed observer must be robust to 
the disturbance. On the other hand, the existence of measurement 
noise is not able to be avoided and need to be handled without 
amplifying it as the conventional observers do [19]. For this 
purpose, the noise is considered as the  disturbance also. Then the 
augmented state space is redefined as follow: 

 𝑋̇ = 𝐴𝑎𝑋 + 𝐵𝑎𝑢 + 𝐹𝑓 + 𝐷𝑎𝑑𝑎 (7) 

with 

 𝐴𝑎 = [
𝐴 0
𝐶 −𝐼𝑝

] ; 𝐷𝑎 = [
𝐷𝑑 0
0 𝐷𝜔

] ; 𝐹 =

[
𝐹𝑎 0
0 −𝐹𝑠

] ; 𝑑𝑎 = [
𝑑
𝜔
]  

The matrix I is the identity matrix with appropriate 

dimension shown in its subscribe. Note that there is no 

more Az in (7). 

The structure of the proposed observer is as follows: 

 

{
 
 

 
 𝑋̇̂ = 𝐴𝑎𝑋̂ + 𝐵𝑎𝑢 + 𝐹𝑓 + 𝐿𝑋(𝑌 − 𝑌̂) + 𝐿𝑋𝑑 (𝑌̇ − 𝑌̇̂)

𝑓̇ = 𝐿𝑓(𝑌 − 𝑌̂) + 𝐿𝑓𝑑 (𝑌̇ − 𝑌̇̂)

𝑌̂ = 𝐶𝑎𝑋̂

 (8) 
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𝐿𝑋, 𝐿𝑋𝑑 , 𝐿𝑓 , 𝐿𝑓𝑑 are the observer gains.  

Letting 𝑒𝑋 = 𝑋 − 𝑋̂, 𝑒𝑓 = 𝑓 − 𝑓,  the error dynamic of the 

proposed observer (8) is: 

[
𝐼𝑛+𝑝 + 𝐿𝑋𝑑𝐶𝑎 0

𝐿𝑓𝑑𝐶𝑎 𝐼𝑟+𝑞
] [
𝑒̇𝑋
𝑒̇𝑓
] = [

𝐴𝑎 − 𝐿𝑋𝐶𝑎 𝐹
−𝐿𝑓𝐶𝑎 0] [

𝑒𝑋
𝑒𝑓
] 

                                    +[
𝐷𝑎 0
0 𝐼𝑟+𝑞

] [
𝑑𝑎
𝑓̇
] (9) 

The compact form of (9) lead to the state space system of the 

error, i.e. 

 {
𝐸𝑜𝑒̇ = 𝐴𝑜𝑒 + 𝐵𝑜𝑑𝐷
𝑣 = 𝐶𝑜𝑒

  (10) 

with 

𝑒 = [
𝑒𝑋
𝑒𝑓
] , 𝑑𝐷 = [

𝑑𝑎
𝑓̇
] , 𝐵𝑜 = [

𝐷𝑎 0
0 𝐼𝑟+𝑞

] , 𝐶𝑜 = 𝐼𝑛+𝑝+𝑟+𝑞 

 𝐴𝑜 = 𝐴̃ − 𝐿𝐶̃ (11)

  

where  

 𝐴̃ = [
𝐴𝑎 𝐹
0 0

]  (12) 

 𝐶̃ = [𝐶𝑎 0] (13) 

 𝐿 = [
𝐿𝑋
𝐿𝑓
] (14) 

 𝐸𝑜 = 𝐼𝑛+𝑝+𝑟+𝑞 + 𝐿𝑑𝐶̃ (15) 

where  

 𝐿𝑑 = [
𝐿𝑋𝑑
𝐿𝑓𝑑

] (16) 

From (10), it is concluded that the error dynamic of the 
proposed observer can be formulated as a descriptor system. So 
the analysis and synthesis of descriptor systems are used to 
determine the observer gains.  

In order to correctly estimate the system state in the presence 
of the fault and the disturbance, it is proposed to use the H∞ 
approach. For standard systems, the well-known approach is to 
use the Bounded Real Lemma [20]. Consider Lemma 1 provided 
in the pioneering work of [21] gives the Bounded Real Lemma 
for descriptor system. 

Lemma 1: The pair (E, A) is admissible and its transfer function 

from exogenous disturbance (with a distribution  matrix of B) to 

performance variable (with a distribution  matrix of C), i.e 𝐺 =
𝐶(𝑠𝐸 − 𝐴)−1𝐵 , satisfy ||G|| <  if and only if there exists P with 

appropriate dimension such that: 

 𝐸𝑃 = 𝑃𝑇𝐸𝑇 ≥ 0  (17) 

 [
𝐴𝑃 + 𝑃𝑇𝐴𝑇 𝐵 𝑃𝑇𝐶𝑇

∗ −𝛾𝐼 0
∗ ∗ −𝛾𝐼

] < 0 (18) 

The conditions of convergence of the proposed observer are 
then formulated by the following result. 

Theorem 1: The estimation error dynamics (10) are stable and 

the H  performance index is guaranteed with attenuation level , 

if there exists a symmetric positive definite matrix P1  

R(n+p+q+r)(n+p+q+r), P2  R(n+p+q+r)(n+p+q+r), P3  R(n+p+q+r) (n+p+q+r) 

and non singular matrix Y1  Rh(n+p+q+r), Y2  Rh(n+p+q+r) such 
that: 

min  subject to 

[
 
 
 
𝑃2 + 𝑃2

𝑇 𝑃1𝐴̃ − 𝑃2
𝑇 − 𝑌1

𝑇𝐶̃ + 𝑃3 0 𝑃1𝐵𝑜
∗ −𝑃3 − 𝑃3

𝑇 − 𝑌2
𝑇𝐶̃ − 𝐶̃𝑇𝑌2 𝐼 0

∗ ∗ −𝛾𝐼 0
∗ ∗ ∗ −𝛾𝐼 ]

 
 
 

< 0  

 (19) 

where 𝐴̃ and 𝐶̃ are given in (12) and (13) respectively, * denotes 
the symmetric elements in a symmetric matrix. 

Proof:  

Consider the descriptor system whose the error state equation 
is described in (10), i.e: 

 (𝐼 + 𝐿𝑑𝐶̃)𝑒̇ = (𝐴̃ − 𝐿𝐶̃)𝑒 + 𝐵𝑜𝑑𝐷 (20) 

 𝑦𝑒 = 𝑒 (21) 

The dual of system (20) and (21) is given as: 

 (𝐼 + 𝐶̃𝑇𝐿𝑑
𝑇 )𝑧̇ = (𝐴̃𝑇 − 𝐶̃𝑇𝐿𝑇)𝑧 + 𝑑𝐷 (22) 

 𝑦𝑧 = 𝐵𝑜
𝑇𝑧  (23) 

Introducing 𝑧𝑎 = 𝑧̇, then it is obtained the augmented 
equation of (22)-(23): 

[
𝐼 0
0 0

] [
𝑧̇
𝑧̇𝑎
] = [

0 𝐼
𝐴̃𝑇 − 𝐶̃𝑇𝐿𝑇 −𝐼 − 𝐶̃𝑇𝐿𝑑

𝑇 ] [
𝑧
𝑧𝑎
] + [

0
𝐼
] 𝑑𝐷 (24) 
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 𝑦𝑧 = [𝐵𝑜
𝑇    0] [

𝑧
𝑧𝑎
] (25) 

The compact form of (24)-(25) can be written as: 

 𝐸𝑒𝑎 𝑥̇𝑒𝑎 = (𝐴𝑒𝑎 − 𝐵𝑒𝑎𝐿𝑒𝑎)𝑥𝑒𝑎 + 𝐷𝑒𝑎𝑑𝐷 (26) 

 𝑦𝑧 = 𝐶𝑒𝑎𝑥𝑒𝑎  (27) 

where 

𝑥𝑒𝑎 = [
𝑧
𝑧𝑎
] ; 𝐸𝑒𝑎 = [

𝐼 0
0 0

] ; 𝐴𝑒𝑎 = [
0 𝐼
𝐴̃𝑇 −𝐼

] ; 𝐵𝑒𝑎 = [
0
𝐶̃𝑇
] 

𝐿𝑒𝑎 = [𝐿𝑇    𝐿𝑑
𝑇 ]; 𝐷𝑒𝑎 = [

0
𝐼
] ; 𝐶𝑒𝑎 = [𝐵𝑜

𝑇    0]; 

Hereafter, Lemma 1 is applied for the system (26)-(27) so it is 
obtained this matrix inequality: 

 𝐸𝑒𝑎𝑃 = 𝑃𝑇𝐸𝑒𝑎
𝑇 ≥ 0     (28) 

[
(𝐴𝑒𝑎 − 𝐵𝑒𝑎𝐿𝑒𝑎)𝑃 + 𝑃

𝑇(𝐴𝑒𝑎 − 𝐵𝑒𝑎𝐿𝑒𝑎)
𝑇 𝐷𝑒𝑎 𝑃𝑇𝐶𝑒𝑎

𝑇

∗ −𝛾𝐼 0
∗ ∗ −𝛾𝐼

] < 0 

  (29) 

The presence of the terms LeaP let the inequality (29) 
nonlinear. To linearize it, introduce a new variable Y = LeaP. The 
inequality (29) can then be written as: 

 [
𝐴𝑒𝑎𝑃 + 𝑃

𝑇𝐴𝑒𝑎
𝑇 − 𝐵𝑒𝑎𝑌 − 𝐵𝑒𝑎

𝑇 𝑌𝑇 𝐷𝑒𝑎 𝑃𝑇𝐶𝑒𝑎
𝑇

∗ −𝛾𝐼 0
∗ ∗ −𝛾𝐼

] < 0(30) 

Thus the observer gains can be calculated from the solution for 

P and Y in (30) using 

 𝐿𝑒𝑎 = [𝐿𝑇    𝐿𝑑
𝑇 ] = 𝑌𝑃−1 (31) 

Considering the specific structure of Eea, (28) can be satisfied 
by setting: 

 𝑃 = [
𝑃1 0
𝑃2 𝑃3

]  (32)  

then the new variable: 

 𝑌 = [𝑌1 𝑌2] (33)
  

Therefore, by (30) and the definition of the related variables, (19) 
is obtained.  

  

B. Observer Structure  

The proposed observer (8) can be rewritten as: 

{
  
 

  
 [
𝐼 + 𝐿𝑋𝑑𝐶𝑎 0
𝐿𝑓𝑑𝐶𝑎 𝐼] [

𝑋̇̂

𝑓̇
] = [

𝐴𝑎 𝐹
0 0

] [
𝑋̂
𝑓
] + [

𝐵𝑎
0
] 𝑢

                                       + [
𝐿𝑋
𝐿𝑓
] (𝑌 − 𝑌̂) + [

𝐿𝑋𝑑
𝐿𝑓𝑑

] 𝑌̇

𝑌̂ = [𝐶𝑎 0] [
𝑋̂
𝑓
]

 (34) 

The simplified form of (34) is: 

 {
𝐸𝑜 𝑥̇̃ = 𝐴̃𝑥̃ + 𝐵̃𝑢 + 𝐿(𝑌 − 𝑌̂) + 𝐿𝑑𝑌̇

𝑌̂ = 𝐶̃𝑥̃
 (35) 

where 𝑥̃ = [
𝑋̂
𝑓
] ;  𝐵̃ = [

𝐵𝑎
0
]; 𝐴̃, 𝐶̃, 𝐿, 𝐸𝑜, 𝐿𝑑 are given in (12), (13), 

(14), (15) and (16) respectively. 

In order to remove the derivatives of the output in the 
proposed observer (35), it is introduced a new state  

 𝜉 = 𝑥̃ − 𝐿𝑑(𝑌 − 𝑌̂) (36)
  

then the PID-ESO can be formulated as: 

 {

𝜉̇ = 𝐴̃𝑥̃ + 𝐵̃𝑢 + 𝐿(𝑌 − 𝑌̂)

𝑥̃ = (𝐼 + 𝐿𝑑𝐶̃)
−1
{𝜉 + 𝐿𝑑𝑌}

𝑌̂ = 𝐶̃𝑥̃

 (37) 

The derivative term of the output Y does not appear in the 
proposed observer (37) thus it is more applicable in practical 
systems than the original form (35). The observer (37) can give 
the accurate asymptotic estimates of the system state and the 
fault. The fault signal may be in any form and even unbounded as 
long as its first derivative is bounded. From this point of view, 
the present observer (37) gains an advantageous aspect over the 
results given by [22][23].  

Note, in accordance with observability requirement, the 
number of faults to be detected must be less or equal with the 

number of the output, or r + q  p. Because of that, it is 
necessary to determine first the appropriate state space model of 
the considered system.   

IV. Simulation Results 

Consider a linear model of the DC-motor speed control 
system described in [24]. This example is concerned only with 
the rotational speed of the shaft as the output and the armature 
voltage as the input. Its state space representation is given by 
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𝑥̇ =

[
 
 
 −

𝑏

𝐽

𝐾𝑡
𝐽

−
𝐾𝑒
𝐿

−
𝑅

𝐿]
 
 
 
𝑥 + [

0
1

𝐿

] 𝑢 

𝑦 = [1 0]𝑥 

where the rotational speed and electric current are chosen as the 
state variables. The nominal values of the physical parameters are 
given in table 1.  

TABLE VII.  THE NOMINAL VALUES OF THE PARAMETERS IN THE LINEAR 

MODEL OF THE DC-MOTOR 

Parameters  Symbol Value 

moment of inertia of the rotor J 0.01 kg.m2 

motor viscous friction constant b 0.1 N.m.s 

electromotive force constant Ke 0.01 V/rad/sec 

motor torque constant Kt 0.01 N.m/Amp 

electric resistance R 1 Ohm 

electric inductance L 0.5 H 

 

The system is subjected to a reference signal r in the form of 
unit pulse with a period of 4 sec. The control signal is given by 

𝑢 = −𝐾𝑐𝑥 + 𝐾𝑖 ∫(𝑦 − 𝑟)𝑑𝑡 

where Kc is the state feedback gain, and Ki is the error integral 
gain. Both those controller gains are computed by using the pole 
placement technique in order to obtain the settling time of less 
than 2 sec and the maximum overshoot of less than 5% in the 
step response. 

It is supposed that this control system is subject to a sensor 
fault fa and an actuator fault fs, so 𝐹𝑠 = [1 0]

𝑇 , 𝐸 = 𝐵. Because 
there are two faults, the output matrix C must have two rows, that 
is I2. It is easy to verify that A is a stable matrix, and the pair 
(A,C) is observable, so the proposed method is applicable. 
Furthermore, to show that the proposed method is superior to the 
PI observer as in [10], this paper compares them with the 
following simulation. 

The faults are simulated as follows: 

𝑓𝑠 = {

0 , 𝑡 < 1.5
0.1 , 1.5 ≤ 𝑡 < 4

10−2𝑡𝑠𝑖𝑛(0.5𝜋𝑡) , 4 ≤ 𝑡 < 10
0.2 , 𝑡 ≥ 10

 

𝑓𝑎 = {
0 , 𝑡 < 1.5

5 × 10−2𝑡𝑠𝑖𝑛(0.25𝜋𝑡) , 1.5 ≤ 𝑡 < 15
0.2 , 𝑡 ≥ 15

 

In order to show that the proposed observer is robust against 
disturbances and noise, it is introduced 

 𝐷𝑑 = [
1 0
0 2

] and 𝐷𝜔 = [
1
0
]  

The disturbances are uniformly distributed random signals whose 

the minimum and maximum values are [0.2 0.1] and [0.2 0.1] 
respectively. The noise is a normal distributed random signal 
with the noise power of 10-4. The system is subjected to only the 
disturbances in the first simulation. Next the system is subjected 
to both the disturbances and the noise in the second simulation.  

By implementing the algorithm in Theorem 1, it is obtained 
P1, P2, P3, Y1, and Y2. Next they are arranged to form P and Y as 
in (32) and (33). Then the gains observer are computed using 
(31), i.e: 

[
𝐿
𝐿𝑑
] = 𝐿𝑒𝑎

𝑇  

Therefore the PD/PI ESO in the form (37) has been designed. 

The estimates of the actuator and sensor faults using the 
classical PI observer and the PD/PI ESO for no noise case are 
shown in Fig. 1-2. It can be seen that excellent estimates of the 
faults have been obtained using the two methods for constant 
fault. But for time-varying fault, the PD/PI ESO can improve the 
rapidity of fault estimation. Furthermore, the effects of 
disturbances have been attenuated by the two methods in the 
same level. These effects appear in the actuator fault estimation 
as well as in the sensor fault estimation.  

 

Fig. 2. Actuator fault and its estimate for no noise case 

 

Fig. 3. Sensor fault and its estimate for no noise case 
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Fig. 4. Actuator fault and its estimate for noise case 

 

 

Fig. 5. Sensor fault and its estimate for noise case 

Remark: The classical PI observer does not have capability to 
track any fast dynamic faults because its observer gains are 
obtained through feasibility problem of the related LMI, not 
optimization problem with subject to the related LMI as in the 
PD/PI ESO described in (19). If the observer gains of the PI 
observer are found by using optimization problem with subject to 
the appropriate LMI, the estimation results of the PI observer are 
the same with ones of the PD/PI ESO. However the proofs are 
not shown in this paper.   

The simulation results for noise case are shown in Fig. 3-4. 
There is no noise effect in the actuator fault estimate of both 
methods as seen in Fig. 3. Meanwhile the noise effect appears in 
the sensor fault estimate of both methods as seen in Fig. 4. But 
the noise attenuation level of the PI observer is better than one of 
the PD/PI ESO. The noise is not attenuated nor amplified in the 
PD/PI ESO, and appears together with the sensor faults estimate. 
However, for control purpose, the information of noise need to be 
known in order to obtain the true value of measurement. So the 
PD/PI ESO is still acceptable to be used. In addition, a filter can 
be applied to remove the noise.        

V. Conclusions 

In this paper, by adding the derivative action in both state and 
fault estimation, a descriptor system approach has been 
introduced to reconstruct the sensor and actuator faults 
simultaneously for LTI systems. There is no constrain imposed 
on the faults. The simulation has shown that the proposed 
observer allow us to reconstruct the fault in any forms even when 
the sensor and actuator faults occur simultaneously and the 
disturbance and noise are present. This approach will be extended 
to T-S fuzzy model viewed as nonlinear system representation. 
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