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Abstract— Programming on a shared memory multi-

processor platforms in an efficient way is difficult as locked 

based synchronization limits the efficiency. Transactional 

memory (TM) is a promising approach in creating an abstraction 

layer for multi-threaded programming. However, the 

performance of TM is application-specific. In general, the 

configuration of a TM is divided into version management and 

conflict management. Each scheme has its strengths and 

weaknesses depending on executing application. Previous TM 

implementations for embedded system were built on fixed 

version management configuration which results in significant 

performance loss when transaction behaviour changes. In this 

paper, we propose a hardware transactional memory (HTM) 

with interchangeable version management. Random requests at 

different contention levels are used to verify the performance of 

the proposed TM. The proposed architecture is targeted for 

embedded applications and is area-efficient compared to current 

implementations that apply cache coherence protocols. 

Keywords— Hardware transactional memor, Embedded system, 

Multi-processor  

I. INTRODUCTION 

Parallel programming model partitions a singular task to be 
executed into several smaller tasks. Message passing and 
shared memory are the most common parallel programming 
models. Message passing needs explicit communication, in 
which programmers are required to synchronize memory 
access. On the other hand, shared memory requires blocking 
synchronization or lock which are usually done implicitly by 
hardware [1]. Fine-grained lock yields better performance but 
requires expert programmers to tap to its full potential. 
Meanwhile, coarse-grained lock is simpler to implement but 
performs poorly since it limits parallelism.  

Transactional Memory (TM) provides non-blocking wait-
free synchronization among memory sections. Each transaction 
is atomic, isolated, and consistent. It is aimed to simplify multi-
threaded programming while making full use of multi-
processor hardware capacity. The magnitude of simplification 
was quantified by Rossbach et al. [2] on a multi-player game 
programming assignment. In TM, changes made by conflicting 

transactions are undone and the transactions are either aborted 
or restarted. On the other hand, changes from successful 
transaction become permanent. 

Several hardware transactional memory (HTM) 
architectures have been proposed [3-7]. However, most are 
aimed for high performance system with cache coherence 
protocols [8]. Nonetheless, there are many embedded 
applications such as network processing that use multiple light-
weight Reduced Instruction Set Computer (RISC) or micro-
engines. References [8-10] have proposed HTM for embedded 
systems. The performance of the HTM is dependent on both 
the configuration and its application. In general, HTM 
configuration is divided into version and conflict management, 
and the application is categorized based on its contention level. 
Previous implementations on embedded system, e.g. [8] 
focused only on conflict management. 

In this work, we propose a light-weight HTM architecture 
for embedded system with both version management schemes 
to give maximum performance depending on the application. 
We propose a similar approach to Configurable Transactional 
Memory (CTM) [8], but in addition, we integrate 
interchangeable version management to cater for different kind 
of applications. The fully associative cache within CTM [8] 
architecture allows both version managements to be deployed 
without much additional hardware resources. In our work, we 
verify our HTM with random requests at different contention 
levels to model various types of applications. 

The rest of this paper is organized as follows. Section II 
presents related works in transactional memory with hardware 
support. Section III presents the HTM configuration overview. 
Section IV shows the system architecture of the proposed 
configurable version management HTM. Section V discusses 
the performance evaluation towards random request with 
different contention levels. This paper is concluded in Section 
VI together with suggestions for future work. 

II. RELATED WORKS 

Currently, lock-based synchronization schemes are widely 
used for synchronizing multi-processor. The increasing 
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application programming complexity has created the need for 
research on TM. Software implementations of transactional 
memory (STM), e.g. [11] give poor performance. Most of 
current works focus on HTM are based on cache coherent 
protocols. References [3, 4] are some of the earliest works that 
introduced additional instruction set by adding additional cache 
line for TM. 

HTM placed at the cache level are bounded by the 
maximum cache size, and software programmers need to take 
this into consideration. References [5] and [6] proposed HTM 
schemes to provide better abstraction layer for programmers at  
the cost of performance loss in certain conditions. DynTM [7] 
and FlexTM [12] were proposed with an interchangeable HTM 
configuration in order to adapt to changes in application 
behaviour. ZEBRA [13] proposed a new approach by 
associating contention with data accessed by transactional 
codes rather than the code block itself, thus allowing a more 
efficient partitioning between eager and lazy managements. 
The aforementioned works focus on building HTMs for high 
performance cache coherent systems. These architectures were 
implemented and tested in simulation environment. Several 
other works targeted the implementation of HTM for field 
programmable gate array (FPGA) platform. ATLAS [14], Real 
Time Transactional Memory (RTTM) [15] and NetTM [9] 
were all hardware implementations that were built based on 
fixed configurations. Their performance are highly dependent 
on running applications. 

CTM [8] was introduced with a generic approach in 
building HTM for embedded system. In this design, the system 
can be configured to lazy or eager conflict management to suit 
the application demand (probability of conflict). Its architecture 
consists of a unified cache for all processors, eliminating the 
need for coherence protocol. However in this work [8], version 
management context was not exploited since on transaction 
commit, the transactional memory cache inside CTM still 
needs to update main memory one word at a time. Another 
architecture that was targeted for embedded system is 
Embedded-TM [10]. Its focus is to reduce power consumption 
on HTM. However, it also uses cache coherent protocols that is 
usually absent in multi-processor FPGA platform [8]. 

III. HTM CONFIGURATION OVERVIEW 

A. HTM criteria 

Various architectures proposed by [5, 8, 9, 16] can be 

categorized into two main aspects: Version Management and 

Conflict Management [7]. Fig. 1 is a generic depiction of the 

HTM architecture, where n is the number of processors. 

TM_buffer and Main_memory are both running at similar 

frequency and thus, the access time of both memories are 

similar. This paper proposes a HTM architecture based on [8]. 

The CTM architecture is resource-lean and is able to work in a 

Multi-Processor System on Chip (MPSoC) system with or 

without cache coherence support. It can also work with 

heterogeneous core accelerators making it ideal for embedded 

system implementation. 

P1

P2

P(n)

HTM

TM_
buffer

Main_
memory

 
 

Fig. 1: System Overview of HTM in MPSoC 

 
1) Version Management: Version management is cate-

gorized based on the location of the modified transaction [7]. 
For the eager version management,  old data are kept in the 
TM_buffer and updates are written directly on the 
Main_memory. For the lazy version management, it is vice 
versa. Additional clock cycles are needed when the TM_buffer 
updates the Main_memory regardless with new or old data. 
Consequently, eager version management would have lower 
Tcommit  lazy version management has lower Tabort (3). 

2) Conflict Management:  Conflict management defines 
how conflicts are detected and managed [7]. The eager conflict 
management detects conflicts during read or write phases and 
then resolves them immediately. On the other hand, the lazy 
conflict management detects conflicts in the read, write or 
commit phases, but they will only be resolved during the 
commit phase. Both management schemes resolve conflicts by 
aborting and restarting transactions to avoid dead-lock. For 
eager conflict management, processors will be given random 
delay before it can restart in order to avoid live-lock. 

B. HTM criteria 

The processing time needed for HTM can be defined as 
follow.  

 abortcommitaccessprocess TTT _=                    (1) 

   snTT writereadaccess _=                         (2) 

From (1), Tprocess represents the total clock cycles needed 

by HTM to handle a finite amount of transactions, whereas 

Tcommit_abort  is the additional processing time needed for HTM 

to handle commit and abort. It is similar to the hit miss penalty 

in a cache system. Taccess from (2) is the total time taken for 

read/write request, regardless whether it is useful or otherwise. 

n  represents the number of transaction, whereas s  is the size 

of transaction. Tread_write depends on the architecture of the 

memory. In our design, we use a fully associative buffer to 

reduce the address search time to one clock cycle. The 

TM_buffer can hold either the old or new transaction values, 

and the access flag for each address. 

In HTM, penalty occurs during commit and abort. During 

the update period, other processors are not allowed to access 

the memory.   
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Tcommit and Tabort  depend on the configuration of the HTM. 

From (3), at higher contention (high Pabort),  Tabors  needs to be 

reduced to get a lower penalty, and vice versa for low conflict 

situations. Reference [8], the HTM structure uses lazy version 

management but it does not integrate fast abort. The 

CTM_cache and Main_memory update their memory one 

word at a time during commit and abort phases based on the 

address FIFOs. During an abort or commit, each entry needs 

to check with the shared flag to make sure that it does not 

remove flag of ongoing transactions. In order to have fast 

abort for lazy version management or fast commit for eager 

version management, each entry would require its own shared 

flag. 

For low contention situation, lazy conflict management is 

preferred. Overheads caused by processors to check conflict 

status can be avoided. On the other hand, eager conflict 

management can minimize penalty caused by conflicting 

transactions accessing the memory (zombie transactions), 

making it suitable for high contention applications [8]. If the 

total random delay (of aborted transactions in the eager 

conflict management) in addition to the delay for processor to 

update its conflict status is greater then the delay of zombie 

transaction, lazy conflict management will perform better. 
    

TABLE I: Contention level preference towards HTM Configuration 

 

 
Conflict Management 

Lazy Eager 

Version 

Management 

Lazy High/Low High/High 

Eager Low/Low Low/High 

 
 Lazy version management is suitable for high contention 
condition as it allows faster abort, while eager version man-
agement is more appropriate for low conflict condition. Table 1 
shows the relationship of the configuration (version and 
conflict management) towards the contention level preference. 
In our implementation, we focus on version management. The 
architecture of CTM [8] detects conflicts eagerly by default 
since all memory entries are shared. However, lazy conflict 
management is done by notifying the processor during commit 
phase only. Variances in performance for different conflict 
management schemes may also be due to different pathology 
[17], processor delay, and also the random delay after a 
conflict. Therefore, in our proposed architecture, we fixed the 
conflict management to lazy in order to obtain a fair 
comparison between the two version management schemes. 

 

 

Table II: Contention policy for attacker and defender 

 

Transaction Conflict Status 

Attacker Defender Attacker Defender 

Read Read   

Read Write   

Write Read   

Write Write   

IV. HTM ARCHITECTURE 

Fig. 4 shows the overview of the proposed HTM system 

architecture for four processors that have access to a shared 

memory. Round robin arbitration is used to give each 

processor equal priority. The HTM architecture is divided into 

four parts : TM_buffer, Control unit, Address_FIFO, and 

Main_memory. 

The TM_buffer consists of several sub-parts: Valid, 

Address, Read Write Set and Data. Each processor is given 2 

flags to keep track on its transactions. The Valid bit is asserted 

to notify that the location is already in used. A conflict is 

detected when the TM_buffer is being updated. Read Write Set 

for the current address is compared with the flags of the 

current access. Write-on-write, read-after-write, and write-

after-read from two different transactions are the conditions 

that resulted in conflict [4]. Table 2 shows the policy of the 

attacker towards the defender when a conflict occurs. An 

attacker represents a transaction that wants to have access to a 

memory location that belong to different transactions 

(defenders). The tick in Table 2 shows that the transaction is 

still valid whereas the cross is vice versa. When a transaction 

is already in conflict, all its future transactions will become 

zombie transactions. 

The Control Unit determines the behaviour of the proposed 

HTM. During the eager mode, the updated data (new) is kept 

in the Main_memory, whereas the old data (old) is kept in the 

TM_buffer; and vice versa for lazy mode. For the lazy version 

management’s read and write phases, the TM_buffer is 

updated. If a miss occurs, the TM_buffer data will be modified 

and flags will be updated. The Main_memory will hold the old 

data, while the address_FIFO will hold the location of 

memory access. If it is a hit, the TM_buffer data and flags will 

be updated. During a commit request, the corresponding 

processor checks its conflict flag. If there is no conflict, the 

transaction commit is successful. The old data from 

Main_memory will be replaced with the TM_buffer data 

corresponding to the address_FIFO of that transaction. If the 

location is shared, only the corresponding processor flag is 

removed, else the whole entry is removed. However, if there is 

an abort, the modified data from TM_buffer will be removed. 

Similarly if the location is shared, only the corresponding 

processor flag is removed, else the whole entry is removed. 

An array of shared flag comparator is used to allow TM_buffer 

to update itself within one clock cycle. A similar process takes 

place with eager version management, but the modified data is 

now kept in Main_memory whereas the old data in TM_buffer. 
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Fig. 2: Top level of proposed HTM architecture 

 

Based on [8], the defender must always win during a 

conflict and the conflicted processor needs to undo all of its 

transactions before the next request can be processed. In our 

architecture, we allow either attacker or defender to win. The 

policy of attacker and defender can be seen in Table 2. This 

can be further extended by determining the winner based on 

the age of the transaction [4]. However, this may cause an 

entry to have both flags from an aborting and committing 

transaction. The abort will undo the commit if the commit 

takes place earlier since the shared flag protects the aborting 

transaction flags. 

Therefore, we introduce internal and external abort flags 

for each processor. When a transaction is flagged as conflict, 

the internal and external abort flags are asserted. The internal 

abort flag will be given higher priority compared to request 

coming from the processor, allowing the transaction to abort 

first. The external abort flag remains asserted and the 

transaction will be considered as zombie until the processor 

commits. Besides, removing an early aborted transaction 

protects other transactions from conflicting with it. This 

feature also allows the version management to be changed at 

run time, by aborting all previous transactions and restarting 

with a different management scheme. 

V. PERFORMANCE EVALUATION 

The performance evaluation is done by comparing the 

proposed architecture with two different version 

managements. The aim is to observe the performance of 

different version management at different levels of contention. 

We alter the distribution of memory accesses to represent 

applications at different contention levels. The experiment has 

been carried out with four identical processors models 

pumping in random requests to the HTM. All requests are 

normally distributed, and the contention level is adjusted by 

changing the standard deviation. A smaller standard deviation 

would result in a higher contention rate. We used Quartus 2 

v13.0 to evaluate the system. The HTM is modelled in Verilog 

and the RTL simulation in Quartus is done using ModelSim 

6.6 to obtain cycle accurate results. We implemented the 

system on Cyclone 4 EP4CE115F29C7 device 

 
TABLE II:  Area and Max frequency comparison 

 

Processors Size Logic element Max Frequency (Mhz) 

2 

64 3,220 96.81 

128 6,096 84.67 

256 11,778 70.58 

4 

64 4,882 90.81 

128 9,244 83.97 

256 17,423 67.05 

 

The resources usage and maximum frequency of the 
proposed HTM with different sizes is shown in Table 3. The 
sizes represent the maximum number of memory entries in the 
TM_buffer. In this analysis, each entry is one byte and the 
Main_memory has 256 bytes. Having a large fully-associative 
cache would results in a high critical path delay during 
memory access due to the comparator array. 
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Fig. 2: Clock cycle versus standard deviation of memory access for eager and 

lazy version management 

 
 Fig. 2 shows the difference in performance (in the number 
of clock cycles) that HTM requires for lazy and eager version 
management schemes for the size of transaction of 8 at 
different contention levels. Each processor performs 500 
successful transactions. Fail transactions are retried until all the 
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transactions are committed. Different standard deviation 
represents different contention levels of any application. From 
this experiment, we observe that eager management scheme 
performs better in most cases, even for high contention, and the 
eager performance is comparable to lazy. This is because the 
abort penalty is smaller than the commit penalty in our case 
study. If a transaction has been flagged as conflict early in its 
transaction, the entries that have to be undone up to this point. 
The penalty of zombie transactions after a conflict has been 
detected is similar for both version managements. On the other 
hand, for a successful commit to occur, all memory accesses 
within that transaction needs to be updated. This makes the 
overall penalty of abort to be insignificant and the advantage of 
eager version management less compelling. However, this 
scenario also happens for commit if the processor request 
locale addresses, making the improvement during commit for 
eager version management less significant. 

VI. CONCLUSION AND FUTURE WORK 

This paper proposed a HTM architecture with configurable 
version management for multi-processor platform targeted for 
embedded application. Eager version management is for low 
conflict, while lazy version management is for high conflict 
application. On a shared memory system, the total size of data 
being committed and aborted determines the best HTM version 
management. Since the main objective of applying HTM is to 
create an abstraction layer for programmers to do multi-
threaded programming, having the system configurable is 
inadequate. The hardware must be able to adapt its 
configuration based on the application without the need for 
programmer to manually specify it. An integrated decision 
making system is needed to determine the optimized version 
configuration based on the application contention. These are 
the topics of our future research. 
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