
Configurable Version Management Hardware

Transactional Memory for Multi-processor Platform

Jeevan Sirkunan
1
, Chia Yee Ooi

2
, N. Shaikh-Husin

3
, Yuan Wen Hau

4
, Trias Andromeda

5
, M. N. Marsono

6

[1,3,6]

Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
2
Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, 54100 KL, Malaysia

4
 IJN-UTM Cardiovascular Engineering Center, Faculty of Biosciences and Medical Engineering,

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
5
 Department of Electrical Engineering, Diponegoro University, Semarang, Indonesia, 50275.

Email:
1
jeevan2@live.utm.my,

2
ooichiayee@ic.utm.my,

3
nasirsh@fke.utm.my,

4
hauyuanwen@biomedical.utm.my,

5
triasandromeda@undip.ac.id,

6
nadzir@fke.utm.my

Abstract— Programming on a shared memory multi-

processor platforms in an efficient way is difficult as locked

based synchronization limits the efficiency. Transactional

memory (TM) is a promising approach in creating an abstraction

layer for multi-threaded programming. However, the

performance of TM is application-specific. In general, the

configuration of a TM is divided into version management and

conflict management. Each scheme has its strengths and

weaknesses depending on executing application. Previous TM

implementations for embedded system were built on fixed

version management configuration which results in significant

performance loss when transaction behaviour changes. In this

paper, we propose a hardware transactional memory (HTM)

with interchangeable version management. Random requests at

different contention levels are used to verify the performance of

the proposed TM. The proposed architecture is targeted for

embedded applications and is area-efficient compared to current

implementations that apply cache coherence protocols.

Keywords— Hardware transactional memor, Embedded system,

Multi-processor

I. INTRODUCTION

Parallel programming model partitions a singular task to be
executed into several smaller tasks. Message passing and
shared memory are the most common parallel programming
models. Message passing needs explicit communication, in
which programmers are required to synchronize memory
access. On the other hand, shared memory requires blocking
synchronization or lock which are usually done implicitly by
hardware [1]. Fine-grained lock yields better performance but
requires expert programmers to tap to its full potential.
Meanwhile, coarse-grained lock is simpler to implement but
performs poorly since it limits parallelism.

Transactional Memory (TM) provides non-blocking wait-
free synchronization among memory sections. Each transaction
is atomic, isolated, and consistent. It is aimed to simplify multi-
threaded programming while making full use of multi-
processor hardware capacity. The magnitude of simplification
was quantified by Rossbach et al. [2] on a multi-player game
programming assignment. In TM, changes made by conflicting

transactions are undone and the transactions are either aborted
or restarted. On the other hand, changes from successful
transaction become permanent.

Several hardware transactional memory (HTM)
architectures have been proposed [3-7]. However, most are
aimed for high performance system with cache coherence
protocols [8]. Nonetheless, there are many embedded
applications such as network processing that use multiple light-
weight Reduced Instruction Set Computer (RISC) or micro-
engines. References [8-10] have proposed HTM for embedded
systems. The performance of the HTM is dependent on both
the configuration and its application. In general, HTM
configuration is divided into version and conflict management,
and the application is categorized based on its contention level.
Previous implementations on embedded system, e.g. [8]
focused only on conflict management.

In this work, we propose a light-weight HTM architecture
for embedded system with both version management schemes
to give maximum performance depending on the application.
We propose a similar approach to Configurable Transactional
Memory (CTM) [8], but in addition, we integrate
interchangeable version management to cater for different kind
of applications. The fully associative cache within CTM [8]
architecture allows both version managements to be deployed
without much additional hardware resources. In our work, we
verify our HTM with random requests at different contention
levels to model various types of applications.

The rest of this paper is organized as follows. Section II
presents related works in transactional memory with hardware
support. Section III presents the HTM configuration overview.
Section IV shows the system architecture of the proposed
configurable version management HTM. Section V discusses
the performance evaluation towards random request with
different contention levels. This paper is concluded in Section
VI together with suggestions for future work.

II. RELATED WORKS

Currently, lock-based synchronization schemes are widely
used for synchronizing multi-processor. The increasing

corresponding author: M. N. Marsono, nadzir@fke.utm.my

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

236

application programming complexity has created the need for
research on TM. Software implementations of transactional
memory (STM), e.g. [11] give poor performance. Most of
current works focus on HTM are based on cache coherent
protocols. References [3, 4] are some of the earliest works that
introduced additional instruction set by adding additional cache
line for TM.

HTM placed at the cache level are bounded by the
maximum cache size, and software programmers need to take
this into consideration. References [5] and [6] proposed HTM
schemes to provide better abstraction layer for programmers at
the cost of performance loss in certain conditions. DynTM [7]
and FlexTM [12] were proposed with an interchangeable HTM
configuration in order to adapt to changes in application
behaviour. ZEBRA [13] proposed a new approach by
associating contention with data accessed by transactional
codes rather than the code block itself, thus allowing a more
efficient partitioning between eager and lazy managements.
The aforementioned works focus on building HTMs for high
performance cache coherent systems. These architectures were
implemented and tested in simulation environment. Several
other works targeted the implementation of HTM for field
programmable gate array (FPGA) platform. ATLAS [14], Real
Time Transactional Memory (RTTM) [15] and NetTM [9]
were all hardware implementations that were built based on
fixed configurations. Their performance are highly dependent
on running applications.

CTM [8] was introduced with a generic approach in
building HTM for embedded system. In this design, the system
can be configured to lazy or eager conflict management to suit
the application demand (probability of conflict). Its architecture
consists of a unified cache for all processors, eliminating the
need for coherence protocol. However in this work [8], version
management context was not exploited since on transaction
commit, the transactional memory cache inside CTM still
needs to update main memory one word at a time. Another
architecture that was targeted for embedded system is
Embedded-TM [10]. Its focus is to reduce power consumption
on HTM. However, it also uses cache coherent protocols that is
usually absent in multi-processor FPGA platform [8].

III. HTM CONFIGURATION OVERVIEW

A. HTM criteria

Various architectures proposed by [5, 8, 9, 16] can be

categorized into two main aspects: Version Management and

Conflict Management [7]. Fig. 1 is a generic depiction of the

HTM architecture, where n is the number of processors.

TM_buffer and Main_memory are both running at similar

frequency and thus, the access time of both memories are

similar. This paper proposes a HTM architecture based on [8].

The CTM architecture is resource-lean and is able to work in a

Multi-Processor System on Chip (MPSoC) system with or

without cache coherence support. It can also work with

heterogeneous core accelerators making it ideal for embedded

system implementation.

P1

P2

P(n)

HTM

TM_
buffer

Main_
memory

Fig. 1: System Overview of HTM in MPSoC

1) Version Management: Version management is cate-

gorized based on the location of the modified transaction [7].
For the eager version management, old data are kept in the
TM_buffer and updates are written directly on the
Main_memory. For the lazy version management, it is vice
versa. Additional clock cycles are needed when the TM_buffer
updates the Main_memory regardless with new or old data.
Consequently, eager version management would have lower
Tcommit lazy version management has lower Tabort (3).

2) Conflict Management: Conflict management defines
how conflicts are detected and managed [7]. The eager conflict
management detects conflicts during read or write phases and
then resolves them immediately. On the other hand, the lazy
conflict management detects conflicts in the read, write or
commit phases, but they will only be resolved during the
commit phase. Both management schemes resolve conflicts by
aborting and restarting transactions to avoid dead-lock. For
eager conflict management, processors will be given random
delay before it can restart in order to avoid live-lock.

B. HTM criteria

The processing time needed for HTM can be defined as
follow.

 abortcommitaccessprocess TTT _= (1)

 snTT writereadaccess _= (2)

From (1), Tprocess represents the total clock cycles needed

by HTM to handle a finite amount of transactions, whereas

Tcommit_abort is the additional processing time needed for HTM

to handle commit and abort. It is similar to the hit miss penalty

in a cache system. Taccess from (2) is the total time taken for

read/write request, regardless whether it is useful or otherwise.

n represents the number of transaction, whereas s is the size

of transaction. Tread_write depends on the architecture of the

memory. In our design, we use a fully associative buffer to

reduce the address search time to one clock cycle. The

TM_buffer can hold either the old or new transaction values,

and the access flag for each address.

In HTM, penalty occurs during commit and abort. During

the update period, other processors are not allowed to access

the memory.

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

237

)))((

))(((=

0=

_

abortabort

commitcommit

n

i

abortcommit

PT

PTT (3)

)(1= abortcommit PP (4)

Tcommit and Tabort depend on the configuration of the HTM.

From (3), at higher contention (high Pabort), Tabors needs to be

reduced to get a lower penalty, and vice versa for low conflict

situations. Reference [8], the HTM structure uses lazy version

management but it does not integrate fast abort. The

CTM_cache and Main_memory update their memory one

word at a time during commit and abort phases based on the

address FIFOs. During an abort or commit, each entry needs

to check with the shared flag to make sure that it does not

remove flag of ongoing transactions. In order to have fast

abort for lazy version management or fast commit for eager

version management, each entry would require its own shared

flag.

For low contention situation, lazy conflict management is

preferred. Overheads caused by processors to check conflict

status can be avoided. On the other hand, eager conflict

management can minimize penalty caused by conflicting

transactions accessing the memory (zombie transactions),

making it suitable for high contention applications [8]. If the

total random delay (of aborted transactions in the eager

conflict management) in addition to the delay for processor to

update its conflict status is greater then the delay of zombie

transaction, lazy conflict management will perform better.

TABLE I: Contention level preference towards HTM Configuration

Conflict Management

Lazy Eager

Version

Management

Lazy High/Low High/High

Eager Low/Low Low/High

 Lazy version management is suitable for high contention
condition as it allows faster abort, while eager version man-
agement is more appropriate for low conflict condition. Table 1
shows the relationship of the configuration (version and
conflict management) towards the contention level preference.
In our implementation, we focus on version management. The
architecture of CTM [8] detects conflicts eagerly by default
since all memory entries are shared. However, lazy conflict
management is done by notifying the processor during commit
phase only. Variances in performance for different conflict
management schemes may also be due to different pathology
[17], processor delay, and also the random delay after a
conflict. Therefore, in our proposed architecture, we fixed the
conflict management to lazy in order to obtain a fair
comparison between the two version management schemes.

Table II: Contention policy for attacker and defender

Transaction Conflict Status

Attacker Defender Attacker Defender

Read Read

Read Write

Write Read

Write Write

IV. HTM ARCHITECTURE

Fig. 4 shows the overview of the proposed HTM system

architecture for four processors that have access to a shared

memory. Round robin arbitration is used to give each

processor equal priority. The HTM architecture is divided into

four parts : TM_buffer, Control unit, Address_FIFO, and

Main_memory.

The TM_buffer consists of several sub-parts: Valid,

Address, Read Write Set and Data. Each processor is given 2

flags to keep track on its transactions. The Valid bit is asserted

to notify that the location is already in used. A conflict is

detected when the TM_buffer is being updated. Read Write Set

for the current address is compared with the flags of the

current access. Write-on-write, read-after-write, and write-

after-read from two different transactions are the conditions

that resulted in conflict [4]. Table 2 shows the policy of the

attacker towards the defender when a conflict occurs. An

attacker represents a transaction that wants to have access to a

memory location that belong to different transactions

(defenders). The tick in Table 2 shows that the transaction is

still valid whereas the cross is vice versa. When a transaction

is already in conflict, all its future transactions will become

zombie transactions.

The Control Unit determines the behaviour of the proposed

HTM. During the eager mode, the updated data (new) is kept

in the Main_memory, whereas the old data (old) is kept in the

TM_buffer; and vice versa for lazy mode. For the lazy version

management’s read and write phases, the TM_buffer is

updated. If a miss occurs, the TM_buffer data will be modified

and flags will be updated. The Main_memory will hold the old

data, while the address_FIFO will hold the location of

memory access. If it is a hit, the TM_buffer data and flags will

be updated. During a commit request, the corresponding

processor checks its conflict flag. If there is no conflict, the

transaction commit is successful. The old data from

Main_memory will be replaced with the TM_buffer data

corresponding to the address_FIFO of that transaction. If the

location is shared, only the corresponding processor flag is

removed, else the whole entry is removed. However, if there is

an abort, the modified data from TM_buffer will be removed.

Similarly if the location is shared, only the corresponding

processor flag is removed, else the whole entry is removed.

An array of shared flag comparator is used to allow TM_buffer

to update itself within one clock cycle. A similar process takes

place with eager version management, but the modified data is

now kept in Main_memory whereas the old data in TM_buffer.

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

238

P0

P1

P2

P3

request_FIFO

data_out_FIFO

req_selector

out_selector

Arbiter

TM_buffer

Control_unit

Main_
memory

Address_FIFO

REQUEST_HANDLER

OUTPUT_HANDLER

HTMMODEL_PROCESSOR

Internal_conflict_flag

Fig. 2: Top level of proposed HTM architecture

Based on [8], the defender must always win during a

conflict and the conflicted processor needs to undo all of its

transactions before the next request can be processed. In our

architecture, we allow either attacker or defender to win. The

policy of attacker and defender can be seen in Table 2. This

can be further extended by determining the winner based on

the age of the transaction [4]. However, this may cause an

entry to have both flags from an aborting and committing

transaction. The abort will undo the commit if the commit

takes place earlier since the shared flag protects the aborting

transaction flags.

Therefore, we introduce internal and external abort flags

for each processor. When a transaction is flagged as conflict,

the internal and external abort flags are asserted. The internal

abort flag will be given higher priority compared to request

coming from the processor, allowing the transaction to abort

first. The external abort flag remains asserted and the

transaction will be considered as zombie until the processor

commits. Besides, removing an early aborted transaction

protects other transactions from conflicting with it. This

feature also allows the version management to be changed at

run time, by aborting all previous transactions and restarting

with a different management scheme.

V. PERFORMANCE EVALUATION

The performance evaluation is done by comparing the

proposed architecture with two different version

managements. The aim is to observe the performance of

different version management at different levels of contention.

We alter the distribution of memory accesses to represent

applications at different contention levels. The experiment has

been carried out with four identical processors models

pumping in random requests to the HTM. All requests are

normally distributed, and the contention level is adjusted by

changing the standard deviation. A smaller standard deviation

would result in a higher contention rate. We used Quartus 2

v13.0 to evaluate the system. The HTM is modelled in Verilog

and the RTL simulation in Quartus is done using ModelSim

6.6 to obtain cycle accurate results. We implemented the

system on Cyclone 4 EP4CE115F29C7 device

TABLE II: Area and Max frequency comparison

Processors Size Logic element Max Frequency (Mhz)

2

64 3,220 96.81

128 6,096 84.67

256 11,778 70.58

4

64 4,882 90.81

128 9,244 83.97

256 17,423 67.05

The resources usage and maximum frequency of the
proposed HTM with different sizes is shown in Table 3. The
sizes represent the maximum number of memory entries in the
TM_buffer. In this analysis, each entry is one byte and the
Main_memory has 256 bytes. Having a large fully-associative
cache would results in a high critical path delay during
memory access due to the comparator array.

10 20 30 40 50 60 70

0

500000

1000000

1500000

2000000

2500000

Lazy Version Management

Eager Version Management

Standard deviation

C
lo

c
k
 c

y
c
le

s

Fig. 2: Clock cycle versus standard deviation of memory access for eager and

lazy version management

 Fig. 2 shows the difference in performance (in the number
of clock cycles) that HTM requires for lazy and eager version
management schemes for the size of transaction of 8 at
different contention levels. Each processor performs 500
successful transactions. Fail transactions are retried until all the

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

239

transactions are committed. Different standard deviation
represents different contention levels of any application. From
this experiment, we observe that eager management scheme
performs better in most cases, even for high contention, and the
eager performance is comparable to lazy. This is because the
abort penalty is smaller than the commit penalty in our case
study. If a transaction has been flagged as conflict early in its
transaction, the entries that have to be undone up to this point.
The penalty of zombie transactions after a conflict has been
detected is similar for both version managements. On the other
hand, for a successful commit to occur, all memory accesses
within that transaction needs to be updated. This makes the
overall penalty of abort to be insignificant and the advantage of
eager version management less compelling. However, this
scenario also happens for commit if the processor request
locale addresses, making the improvement during commit for
eager version management less significant.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a HTM architecture with configurable
version management for multi-processor platform targeted for
embedded application. Eager version management is for low
conflict, while lazy version management is for high conflict
application. On a shared memory system, the total size of data
being committed and aborted determines the best HTM version
management. Since the main objective of applying HTM is to
create an abstraction layer for programmers to do multi-
threaded programming, having the system configurable is
inadequate. The hardware must be able to adapt its
configuration based on the application without the need for
programmer to manually specify it. An integrated decision
making system is needed to determine the optimized version
configuration based on the application contention. These are
the topics of our future research.

ACKNOWLEDGMENT

This work is supported in part by Ministry of Education of
Malaysia Fundamental Research Grant (UTM Vote No 4F327).

REFERENCES

[1] M.L. Navazo, “Hardware approaches for transactional memory,”
M.Sc.Thesis, Technical University of Catalonia, 2008.

[2] C. J. Rossbach, O. S. Hofmann, and E. Witchel, “Is transactional
programming actually easier?” in Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Bangalore, India, Jan 2010, pp. 47–56.

[3] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” SIGARCH Comput. Archit. News,
vol. 21, no. 2, pp. 289–300, May 1993.

[4] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B.
Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun,
“Transactional memory coherence and consistency,” SIGARCH
Comput. Archit. News, vol. 32, no. 2, Mar 2004.

[5] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S.
Lie, “Unbounded transactional memory,” in Proceedings of the 11th
International Symposium on High-Performance Computer Architecture,
Washington, DC, USA, Feb 2005, pp. 316–327.

[6] L. Yen, “Signatures in transactional memory systems,” Ph.D.
Dissertation, University of Wisconsin, 2009.

[7] M. Lupon, G. Magklis, and A. Gonz´alez, “A dynamically adaptable
hardware transactional memory,” in Proceedings of the 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, Dec 2010,
pp. 27–38.

[8] C. Kachris and C. Kulkarni, “Transactional memories for multiprocessor
FPGA platforms,” Journal of Systems Architecture, vol. 57, no. 1, pp.
160–168, Jan 2011.

[9] M. Labrecque and J. G. Steffan, “The case for hardware transactional
memory in software packet processing,” in Proceedings of the 6th
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, La Jolla, California, USA, Oct 2010, p. 37.

[10] C. Ferri, S. Wood, T. Moreshet, R. I. Bahar, and M. Herlihy,
“Embedded-TM: Energy and complexity-effective hardware
transactional memory for embedded multicore systems,” Journal of
Parallel and Distributed Computing, vol. 70, no. 10, pp. 1042–1052, Oct
2010.

[11] N. Shavit and D. Touitou, “Software transactional memory,” in
Proceedings of the 14th Annual ACM Symposium on Principles of
Distributed Computing, Ottowa, Ontario, Canada, Aug 1995, pp. 204–
213.

[12] A. Shriraman, S. Dwarkadas, and M. L. Scott, “Flexible decoupled
transactional memory support,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture, Beijing, China,
June 2008, pp. 139–150.

[13] R. Titos-Gil, A. Negi, M. Acacio, J. Garcia, and P. Stenstrom, “ZEBRA:
Data-centric contention management in hardware transactional
memory,” IEEE Transactions on Parallel and Distributed Systems, vol.
25, no. 5, pp. 1359–1369, May 2014.

[14] N. Njoroge, J. Casper, S. Wee, Y. Teslyar, D. Ge, C. Kozyrakis, and K.
Olukotun, “ATLAS: A chip-multiprocessor with transactional memory
support,” in Proceedings of the Conference on Design, Automation and
Test in Europe, Nice, France, Apr 2007, pp. 3–8.

[15] M. Schoeberl and P. Hilber, “Design and implementation of realtime
transactional memory,” in Proceedings of the 20th International
Conference on Field Programmable Logic and Applications (FPL),
Milan,Lombardy,Italy, Aug/Sept 2010, pp. 279–284.

[16] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III, “Software
transactional memory for dynamic-sized data structures,” in Proceedings
of the 22nd Annual Symposium on Principles of Distributed Computing,
Boston, MA, USA, July 2003, pp. 92–101.

[17] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift, and
D. A. Wood, “Performance pathologies in hardware transactional
memory.” in Proceedings of the 34th Annual International Symposium
on Computer architecture (ISCA), New York, NY, USA, June 2007, pp.
81–91.

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

240

