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Abstract—This paper proposes a technique to improve the 

accuracy of recommender system result which employ 

collaborative filtering technique. The proposed method 

incorporates structural equivalence score of items in affinity 

network into collaborative filtering technique. Structural 

equivalence is one of important concept in social network 

analysis which captures the similarity of items regarding their 

structural position on the affinity network. Nowadays, various 

concepts within social network analysis are widely use in many 

domains to provide better analytical framework. In this paper, 

we will use structural equivalence of items to enhance the 

calculation of items similarity as a part of collaborative filtering 

method. We tested our approach on Netflix database. Then, 

based on our results we can conclude that considering the 

structural information of item in affinity network is indeed 

beneficial.   

Keywords—Recommender System, Collaborative Filtering, 

Structural Equivalence, Social Network Analysis  

I.  INTRODUCTION 

Nowadays, with the development of information 
technology, the number of accessible information is also 
increase rapidly. The wide variety of information can be used 
to support the decision making process but at the same time 
leads the users into confusion. Recommender system is a 
popular solution to overcome this information overload 
problem. Recommender system have been widely used by 
popular website like Amazon, YouTube, Netflix, etc to 
improve the user experience that in turns increasing the web 
traffic and for e-commerce website, possibly increase the 
sales.  

Recommender System (RS) is a software tool or technique 
that provides interesting and useful suggestions of items to 
users in a personalized way [1]. Item can be any product, such 
as movie, song, news, book, and etc.  User who utilizes the 
recommender system will be presented with a set of items 
which are new, useful and relevant to his personal taste. This 
“personalized” recommendation distinguishes recommender 
system from the rest of information retrieval techniques which 
are commonly found in a search engine. The main benefit of 
using RS is to help users find the relevant or desired items 

efficiently and effectively. Provided by thousands of items, 
it’s almost impossible for users to look at the item one by one. 
Correct recommendation will save them from spending a lot of 
time for searching over the catalogue. 

There are a lot of techniques to generate a 
recommendation, one of the most popular is collaborative 
filtering. At glance, collaborative filtering is the process of 
information filtering based on collaboration pattern among 
involving agents (e.g. item, people, etc) [2]. For example, on 
the e-commerce context, the collaboration pattern of a user 
can be defined based on purchase and browsing behaviors. 
Collaborative filtering techniques use a data of preferences for 
items by users (commonly represented by rating) to predict 
additional topics or products a new user might like [3]. 

The existing collaborative filtering techniques can be 
improved in a various way [4]. One of the promising 
technique to improve recommendation method is comes from 
Social Network Analysis (SNA). SNA is a analytical tool for 
measuring the relationship of things or entities (e.g people, 
group, computer, web page, etc) in terms of network theory 
which consist of nodes for representing entities and ties for 
representing relationship between entities [5][6]. On the past 
few years, many researchers have used SNA  to study complex 
systems in a wide variety of scientific, social and engineering 
domains. Examples include organization network [7], software 
development process [8], supply chain management [9], etc.  

In the field of recommender system, some researchers also 
have attempts to put the information generated from a product 
network to improve the quality and accuracy of 
recommendation output. Cho & Bang [10] used the concept of 
centrality in SNA to produce various version of products 
ranking than recommend top rank products to the customers. 
Another work done by Liu & Lee [11] who developed a 
mechanism based on social network information of users to 
improve nearest neighbor estimation in computing similarity 
of two items which is the beginning part of collaborative 
filtering. They have showed that their method provide a better 
performance in terms of accuracy. Similar kind of work done 
by Kim and Ahn [12] by utilizing community detection 
technique in social network analysis to find the cohesive 
subgroups of users. This cohesive subgroups addressing the 
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group of users which share same interest. They claimed that 
their study overcome the limitation of collaborative filtering in 
recognizing the social relation of users which may affect the 
recommendation results. 

In this paper, we address structural equivalence [13] as one 
of unexplored concept in social network analysis to improve 
the recommendation resulted by collaborative filtering. 
Structural equivalence  is one of the important concept on the 
network analysis which measures the similarity of two nodes 
based on the immediate shared neighbors. Two nodes are 
considered to be similar if they connected to the same nodes as 
illustrated in following fig. 1. 

We argue that incorporating structural information into 
collaborative filtering will enhance the recommendation. We 
came up with this hypothesis by looking at the nature of 
affinity network. On the affinity network of items, a node 
represents item while the edge between two node is represents 
co-purchasing relationship, for example item A is likely to be 
purchased by user who purchase item B. Therefore, inferring 
items’ similarity over the affinity network means we harvest 
the items which have similar environment in which they 
bought by customers. 

II. RESEARCH METHOD 

Our method begin with the construction of affinity 
network. Afterward, we employ SimRank algorithm to infer 
structural equivalence score of every items and incorporate 
them into the calculation of item-to-item similarity. We then 
use the similarity scores of all pair of items to construct user-
item similarity matrix. Finally, we simply apply item-based 
collaborative filtering method to generate the 
recommendation. 

As we stated previously, the affinity network of product is 
constructed by inspecting the occurrence of co-purchasing of 
particular products which derived from purchasing data [14]. 
Hence, the node represents product and the link established 
between two nodes represents the occurrence of co-purchasing 
between them, then we normalize co-purchasing frequency 
with range value between 0 and 1. 

Fig 1. Structural equivalence of nodes. Node A and B is 
structurally equivalent as E and F. 

 Once we have an affinity network, we use the most widely 
used algorithm called SimRank to calculate the structural 
equivalence of item within the network of items. SimRank is 
an algorithm to measures the similarity of a pair of entities 
based on their relationship with another entities beyond them 
[15]. The intuition behing this algorithm is “two entities are 
considered to be similar if they have shared relation to the 
similar entities”. The formulation of SimRank algorithm is 
state as folows, first we define a node v in a graph, the 
neighbor of v are addressed by Error! Reference source not 
found.. Individual neighbors are detoded as Error! Reference 
source not found. for Error! Reference source not found.. 
Then structural equivalence score (seqv) between objects 
Error! Reference source not found. and Error! Reference 
source not found. with Error! Reference source not found.. 
If Error! Reference source not found. then Error! 
Reference source not found. should be defined as 1. 
Otherwise, the structural equivalence score can be defined by 
equation (1). In equation (1), Error! Reference source not 
found. is a constant between 0 and 1. In special condition 
where Error! Reference source not found. or Error! 
Reference source not found.may have no neighbor, then 
Error! Reference source not found. is set to be 0, because 
there is no way to infer any similarity between Error! 
Reference source not found.and Error! Reference source 
not found.. 

 

(1) 

 After inferring structural equivalence score, the next step is 
to incorporate the score into item-to-item similarity 
calculation. In collaborative filtering there are a number of 
methods that can be used to calculate item-to-item similarity. 
In this paper, we use correlation based similarity by 
computing pearson product moment correlation or Pearson-r 
correlation for short, which is the most widely used technique 
in collaborative filtering. Pearson-r correlation considers the 
initial item-to-item similarity. We use Error! Reference 
source not found.to defines the similarity of item Error! 
Reference source not found. and Error! Reference source 
not found. and calculates by following equation (2) [16]. In 
equation (2) U denotes the user who give a rating of both item 
Error! Reference source not found.and Error! Reference 
source not found., then Error! Reference source not 
found.represent rating of user u on item Error! Reference 
source not found. Lastly, Error! Reference source not 
found. is the average rating given by users to item Error! 
Reference source not found.. 

 

(2) 

 In our approach, incorporating structural equivalence into 
Pearson-r correlation is pretty straightforward by taking the 
weighted average as defined on the following equation (3).In 
equation (3), Error! Reference source not found. is a trade 
off between Pearson-r correlation and structural equivalence. 
We define Error! Reference source not found. as a constant 
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between 0 and 1 for tuning the measures, which one between 
Pearson-r correlation and structural equivalence will have 
bigger portion to the final result. Afterward, user-item matrix 
was built based on Error! Reference source not found. 
value. After defining user-item matrix we simply follow the 
rest of collaborative filtering procedure to generate final 
recommendation list. 

 (3) 

III. RESULT AND ANALYSIS 

For investigating the results of our proposed method we 
used Netflix movie dataset from www.netflix.com. This 
dataset contains a rating data from year 1999 to 2005. We then 
divided data into training set and test set. We employed data 
from 1999 to 2003 as training set and 2004 and 2005’s as test 
set. Our proposed method was run over the training set and the 
quality of the results was investigated over the test set. Since 
the Netflix movie dataset contains information about “what 
movie borrowed by whom” we can easily create affinity 
network of a movie from the co-borrowed relationship 
between movies. Furthermore, this dataset was specifically 
provided by Netflix for a recommender system competition to 
improve Netflix's recommender system accuracy. Therefore, 
this dataset is indeed addressed for recommender system 
evaluation purpose. 

To show the improvement made by our method, we 
compare the recommendation results of our method to the 
conventional collaborative filtering method. We use two kind 
of evaluation: accuracy and serendipity. Accuracy measures 
how consistent the recommendation result will be taken by the 
users, whereas serendipity measure how surprising the 
recommendation results so that it make users interesting. 
Serendipity gives to the users an interesting shopping 
experience in terms of surprise and unexpectedness [17]. 

For evaluating the accuracy, we then used the popular 
measures named precision [18]. The origin of precision is 
comes from information retrieval which is defined as the 
fraction of retrieved documents that are relevant to search. For 
the recommender system’s evaluation purpose, precision can 
be defined as the ratio of relevant items selected to the number 
of items which are recommended to the users. Then, we can 
calculate precision equation (4). 

 
(4) 

The second evaluation method is serendipity. For 
calculating serendipity score we follow an approach defined in 
[14]. The calculation of serendipity start by calculating the 
unexpectedness score. The unexpectedness score is merely the 
ratio of items generated by recommender systems (RS) to the 
number of items generated by primitive models/naïve method 
(PM) and depicted by equation (5). 

 
(5) 

 A common example for primitive models is we just 

recommend the item which is mostly bought by customers, 

etc. If the unexpected item Error! Reference source not 

found. recommended to the user is relevant to the user 

preference then we define Error! Reference source not 

found., and Error! Reference source not found. otherwise. 

Then, serendipity can be defined as following equation (6). In 

equation (6), N is the total number of elements in UNEXP.  

 
(6) 

 Finally, table 1 shows the results of our proposed method 

and the comparison to conservative collaborative filtering as 

well. From table 1, we can see that the accuracy of 

conservative collaborative filtering (CF) and our proposed 

method (collaborative filtering with structural equivalence or 

CFSE for short) is pretty close each other. Nevertheless, our 

proposed method shows a slightly better result in terms of 

serendipity. 

TABLE I.  THE EVALUATION RESULTS 

Evaluation Method CF CFSE 

Accuracy 0.32891 0.32887 

Serendipity 0.00176 0.00297 

 

 The evaluation result come up as depicted above in table 1 

due to the nature of  structural equivalence calculation based 

on affinity network is close to the basis of pearson correlation 

calculation. Pearson-r correlation calculates items which rate 

together by same user. Similar things happen to the 

construction of affinity network which based on the 

occurrence of co-purchased items, therefore the top results of 

both calculations will be close each other. Then the our 

serendipity score raise a better result because unlike Pearson-r 

correlation which simply ignores two items which rated by 

different users from the calculation, structural equivalence 

consider the whole networks. Therefore, two items which not 

directly purchased by same user still have a high correlation 

score if their neighborhood is similar.  

  

IV. CONCLUSION 

 The previous researches in recommender system based on 

social network analysis were focused  to two popular concept: 

centrality and cluster/community. Centrality concept was used 

to determined n-top items in various context, while 

cluster/community was used as pre-processed steps before 

going into main process of recommendation. Another 

utilization of community is to enrich the recommender system 

calculation by considering user preference which not 

accessible by conventional recommender system approach like 

collaborative filtering. 

 This paper have introduced structural equivalence as one 

of the important concept in social network analysis which 

never been explored before in social network based 

recommender systems. We use structural equivalence concept 

to enhance the calculation of item-to-item correlation in item-
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based collaborative filtering. Practically, we take the 

normalized mean of Pearson-r correlation and structural 

equivalence score. We have showed that considering structural 

equivalence will affect the serendipity of recommendation. 

That means, the recommendation results will suggest items 

that never been though before but relevant to the 

users/customers. 
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