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Abstract—This paper addresses energy-aware application 

mapping for large-scale Network-on-chip (NoC). The increasing 

number of intellectual property (IP) cores in multi-processor 

system-on-chips (MPSoCs) makes NoC application mapping 

more challenging to find optimum core-to-topology mapping. 

This paper proposes an application mapping technique that 

incorporates domain knowledge into genetic algorithm (GA) to 

minimize the energy consumption of NoC communication. The 

GA is initialized with knowledge on network partition whereas 

the genetic crossover operator is guided with inter-core 

communication demands. NoC energy estimation is based on 

analytical energy model and cycle-accurate Noxim simulation. 

For large-scale NoC, application mapping using knowledge-based 

genetic operator saves up to 28% energy compared to the one on 

conventional GA. Adding knowledge-based initial mapping 

speeds up convergence by 81% and further saves energy by 5% 

compared to only knowledge-based crossover GA. Furthermore, 

cycle-accurate simulations of applications with traffic 

dependency show the effectiveness of the proposed application 

mapping for large-scale NoC.  

Keywords—Application mapping, bit energy model, cycle-

accurate simulation, domain knowledge, genetic algorithm, 

network-on-chip  

I. INTRODUCTION  

Network-on-chip (NoC) has emerged as a promising on-
chip communication architecture providing modularity and 
scalability for multi-processor System-on-Chips (MPSoCs). 
Application mapping determines the placement of intellectual 
property (IP) cores to routers on NoC tiles such that the 
performance or cost metrics of interest are optimized [1]. Large 
MPSoC requires an effective mapping algorithm to reduce the 
large search space to obtain optimum mapping.  

 Domain-knowledge has been used in crossover and 
mutation operators to improve GA mapping and convergence 
[2] by checking each gene’s communicating distances with 
other cores. However, this increases computation time 
drastically for highly communicating applications and large-

scale NoCs. Large-scale MPSoCs are mostly combinations of 
several subsystems. Network partitioning (NP) can be utilized 
to narrow down application mapping search space. 

Analytical energy models commonly used in application 
mapping are bit energy model [3] and communication cost [4]. 
Both analytical models are hop-count based that offer fast cost 
or performance estimation. Cycle-accurate simulation gives 
more accurate estimation but is time consuming. Thus, it is 
important to analyse NoC energy accurately to obtain mapping 
with minimum energy. The accuracy of cost and performance 
estimation is equally important especially during NoC design 
stage. 

This paper proposes an application mapping technique that 
incorporates domain knowledge into genetic algorithm (NP-
DKGA) to minimize the energy consumption of NoC 
communication. NP-DKGA operates in two phases: network 
partitioning knowledge as initial population; and knowledge-
based crossover to search for near optimum mapping. This 
technique is verified with several benchmarks. The proposed 
energy-aware application mapping is verified with both 
analytical energy model and cycle-accurate simulation using 
Noxim [5]. With only knowledge-based crossover, the GA 
converges well for all small communicating benchmarks. For 
highly communicating benchmarks, knowledge-based initial 
mapping can further optimize energy consumption and speeds 
up the GA convergence. 

The rest of this paper is organized as follows. Section II 
discusses related works mainly on crossover and partitioning in 
application mapping. Section III presents the proposed 
application mapping technique based on the combination of 
knowledge-based initial mapping and crossover in GA as well 
as their formal definitions. Section IV discusses the simulation 
tools and parameters. Section V discusses the experiment 
results. Finally, Section VI concludes the paper and presents 
suggestion for future works. 
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II. RELATED WORK 

Different GA crossover techniques have been proposed 
such as hotspot remap [6, 7] and communicating cores swap 
with neighbouring cores [8]. These techniques do not combine 
both parent chromosomes’ features. More effective genetic 
operators with useful knowledge have a great impact on the 
final mapping [6]. In the domain-knowledge evolutionary 
algorithm [2], mapping similarity crossover (MS) has been 
proposed to maintain the common characteristic in genes 
between parents and the rest of the genes using greedy 
mapping. Mapping similarity is able to handle symmetric 
problems in mesh topology by computing every gene’s 
communication cost in term of hop count. 

Large MPSoC system can be divided into several clusters 
(partitions). A mapping algorithm based on Kernighan-Lin 
(KL) partitioning, called LMAP, has been proposed to explore 
search space via flipping the partitions and cores in a 
hierarchical fashion [4]. Cluster-based relaxation for integer 
linear programming [9] and partition-based with near-convex 
[10] application mapping techniques do not allow cross 
partition movement. Although they show shorter runtime, the 
final mapping quality is affected [10]. Given a random initial 
mapping, Optimized Simulated Annealing (OSA) [11] 
improves SA by clustering communicating cores during 
swapping process. OSA shows better mapping quality 
compared to CSA. 

Cycle-accurate simulation for NoC performance evaluation 
has been proposed in [6] but it is time consuming for large 
NoC. Therefore, different analytical models have been 
proposed, e.g. bit energy model [3] and communication cost 
[4]. These models have trade-off between performance and 
accuracy. A mapping algorithm based on a modified bit energy 
model [12] was proposed by Hu and Marculescu using branch 
and bound technique such that energy consumption can be 
minimized with bandwidth reservation [3]. Reference [13] 
compares few application mapping algorithms using bit energy 
model which is targeted for low energy consumption. Genetic 
algorithm (GA) [2] technique was also proposed to optimize 
energy consumption using the bit energy model. In references 
[4, 9], the proposed application mapping optimization are based 
on communication cost in term of the distance among 
communicating cores.  

 

 

 
 

Fig. 1: Overview of the proposed technique, NP-DKGA. 

 

III. DOMAIN-KNOWLEDGE GENETIC ALGORITHM 

APPLICATION MAPPING 

This paper proposes an application mapping technique that 

incorporates domain knowledge into genetic algorithm (NP-

DKGA) with the aim to minimize the energy consumption of 

NoC communication. The overview of the proposed technique 

is shown in Fig. 1. Some definitions used in this paper are 

defined next. 

A. Problem Formulation 

Definition 1: An application characteristic graph (APCG), 
𝐺(𝑉,𝐸)  is a directed graph, where each vertex 𝑣𝑖 ∈ 𝑉 

represents an IP core and each directed edge 𝑒(𝑖 ,𝑗 ) ∈ 𝐸 

characterizes the total communication volume in bits from 
vertex 𝑣𝑖  to vertex 𝑣𝑗 . Application tasks are assumed to be 

assigned to all vertices, 𝑣𝑖   and scheduled to each IP core. 

Definition 2: NoC mesh-based network, T(R,Ch) is a labelled 
graph, where each 𝑟𝑖 ∈ 𝑅 denotes a router and each    𝑐ℎ𝑖 ∈ 𝐶ℎ 
denotes a channel. 

Definition 3: Given an input APCG, network partitioning 
decomposes APCG into smaller m partitions or subsystems. NP 
is to obtain 𝑃(𝑁, 𝜆)  where N is number of cores in each 
partition and  𝜆  is inter-partition traffic. The objective of NP is 
to reduce inter-partition traffic 𝜆 , subject to constraints 
𝐶𝑜𝑛𝑠𝑡(𝑉)  to obtain a balanced number of cores for all 
partitions. 

B. Network Partitioning as Knowledge-based GA Initial 

Mapping 

The inter-partition traffic reduction technique groups 
heavily communicating IP cores closer (in the same cluster) 
that increases the probability for GA to converge. Network 
partitioning is implemented in two stages: mesh-based network 
partitioning and application characteristic graph (APCG) 
partitioning. The mesh topology and APCG are partitioned 
with equal number of tiles and cores in each partition. Each 
partition are randomly-mapped within the randomly mapped 
partition on the mesh topology.  

C. Knowledge-based Genetic Algorithm 

Our proposed domain-knowledge genetic algorithm applies 
NP as initial population and knowledge-based crossover (NP-
DKGA) instead of utilizing conventional genetic algorithm 
(CGA). The proposed knowledge-based crossover technique is 
shown in Algorithm 1. If the same integer is assigned to two 
genes in the resulting chromosome, the latter gene is labelled as 
InvalidGene. Cores that are not assigned to any gene are 
labelled as UnmappedCores. In CGA, all InvalidGenes are 
randomly remapped with UnmappedCores. However, in the 
proposed DKGA, we apply a knowledge-based crossover 
technique. The UnmappedCores will determine its 
communication with the adjacent router of the InvalidGene. 
The UnmappedCores are remapped to the InvalidGene that has 
the highest communication cost with the NeighborCore. This 
crossover algorithm is done iteratively until the number of 
generated children chromosomes reaches the population size. 

Network 
Partitioning

Partition 
Placement

& 
Core 

Placement

DKGA
Optimization

G (V, E)
P (N,λ)

T (R, Ch)

Const(V)

Ω (V)
Optimal 
mapping

T (R, Ch)
Initial
population

Bit energy model

Noxim
(Cycle-accurate 

simulator)

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

87



Based on previous works [2, 3], this paper applies the bit 

energy model as the fitness function. 𝐸𝑏𝑖𝑡
𝑉𝑆 ,𝑉𝐷  is the required 

energy to transfer a bit from a source core to a destination core.  
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Where 𝑛ℎ𝑜𝑝𝑠  is the number of hops from the source to the 

destination using XY deterministic routing. 𝐸𝐿𝑏𝑖𝑡   is the energy 

consumption for a link between adjacent routers and 𝐸𝑅𝑏𝑖𝑡  is 

the router energy consumption [3]. The overall energy 

consumption 𝐸𝐴  is the summation of all energy bit consumed 

by all bit transmissions.  
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where 𝑒𝑆,𝐷  is the total communication traffic (in bits) from the 

source core to the destination core. 

To validate the analytical energy estimation, a cycle-
accurate NoC simulation is used. Noxim [5] provides cycle-
accurate energy estimation based 2mm×2mm tiles size. The 
total energy includes the energy for transmitting flit, receiving 
flit, routing, selection and standby energy. Besides, for detail 
energy use for link, arbitration and crossover is also included. 
The energy consumption of NoC is evaluated for each 
simulation cycles in network interfaces and routers. 

 

Algorithm 1  Knowledge-based Crossover Algorithm 
Population is the population size 
TotalParent is total parent chromosomes 
𝐵 is the length of chromosome 
For  i = TotalParent +1 to Population  do 
 Select parent chromosome using roulette wheel, P1 and P2.   

 Select random crossover point, 𝐶𝑝 ∈ 𝐵.   

 Child(i)   Crossover between P1 and P2. 

 Check InvalidGene. 

 Check UnmappedCores.   

 NeighborCore = GetAdjacentCore(InvalidGene)   

 CommunicatingCore=GetCommCore(NeighborCore, 

UnmappedCores)   

 InvalidGene   max(CommunicatingCore)     

end for 

 

IV. SIMULATION METHODOLOGY  

Six real applications included in MSCL [14]: FFT, FPPPP, 
SPARSE, ROBOT, RSenc and RSdec are used. A 12×12 
mesh-based architecture in MSCL is chosen for assessing the 
scalability of the proposed algorithm. Additionally, we also 
implement VOPD (video object plane decoder) [15] for 4×4 
mesh-based network. 

For all the benchmarks, network partitioning is 
implemented using Chaco [16] to generate the NP-DKGA 
initial population. Chaco performs bisection partitioning by 
grouping highly communicating cores in the same partition and 
at the same time, reduces the inter partition traffic. 

 

 

TABLE 1. Connectivity degree for all benchmark applications. 
  

Benchmarks Range of connectivity degree 

  RSenc  0-14 

  ROBOT  0-15 

  FFT  60-116 

  RSdec  0-43 

  SPARSE  0-9 

  FPPPP  0-80 

  VOPD  1-4 

   

  This work does not analyse the optimal parameters for 
DKGA but rather to assess the effectiveness of the knowledge-
based in initial population and genetic crossover operator. The 
NP-DKGA crossover probability is fixed to 0.8, population-
based mutation rate to 0.3, and population size to 100 for 
12×12 network size and 50 for the 4×4 network respectively. 
The termination of GA is set to 1000 generations for MCSL 
applications and 300 generations for VOPD application.   

 TABLE 1 shows the connectivity degree for all benchmarks 
used in the experiments. The connectivity degree is defined as 
the total incoming and outgoing communication pairs for each 
core in each benchmark application. The FFT cores have the 
connectivity degree between 60 and 116. Other benchmark 
applications contain at least one IP core that are not 
communicating to other cores. The relationship between the 
connectivity degree and the GA convergence will be analysed 
in the next section. 

 We analyse the convergence speed of GA with knowledge-
based crossover and NP initial mapping for all benchmarks and 
compared them with CGA. The convergence of GA is defined 
in (3). GA is defined to have converged only if the convergence 
index C is less than 1% for the last 100 generations. 

1%
100][

][100][
= 





iE

iEiE
C

A

AA  (3) 

 Lastly, we analyse the accuracy of energy estimation using 
analytical model (bit energy model) and compare it with cycle-
accurate simulation using Noxim. Analytical energy model 
provides faster estimation but it is not cycle-accurate. MSCL 
benchmark applications used in evaluation provides traffic 
incoming dependency, traffic outgoing dependency and 
computation time for each core. These real world criteria may 
incur congestion and longer packet waiting time in routers. 
These dependencies are not easily captured in analytical energy 
models. A cycle-accurate NoC simulator (Noxim) [5] has been 
used in this paper to evaluate the accurate energy cost of the 
proposed techniques with cycle-accurate energy model. The 
result is compared to the bit energy model [3]. 

V. RESULTS AND DISCUSSION 

All these benchmark applications converge within 100 
generations with knowledge-based crossover. Fig. 2 shows that 
NP-based initial mapping highly reduces the energy 
consumption by grouping highly communicating cores and 
assists DKGA to potentially low energy mapping space in the 
first generation. For all the benchmarks, highly communicating 
applications always give lower average energy consumption as 
the FFT benchmark in Fig. 2. 
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Fig. 2. Average energy consumption over generation for FFT benchmark with 

and without NP-based initial mapping. 

 

 TABLE 2 shows that convergence speed and energy saving 
improve significantly in all benchmark application regardless if 
the NP initial mapping is applied to DKGA. These metrics are 
benchmarked against CGA. The highlighted cells show better 
improvement between R-DKGA and NP-DKGA. Five out of 
seven benchmarks show better convergence speed 
improvement when NP-based initial mapping is applied. For 
highly communicating applications FFT, FPPPP and RSdec, 
simulation results show that NP knowledge initial mapping 
helps DKGA converges up to 81% faster compared to DKGA. 

 TABLE 2 shows that advanced NP-based initial mapping 
helps to improve convergence and assist DKGA to obtain high 
quality mapping especially for highly communicating 
applications. In addition, VOPD application optimized using R-
DKGA and NP-DKGA achieved the global minimum identical 
to the one reported in reference [17]. 

 
TABLE 2. The percentage improvement on convergence speed and energy 

saving of the best case for R-DKGA and NP-DKGA with conventional GA 
(CGA) as the reference point.  

 

Benchmark 
Convergence Improvement Energy Improvement  

R-DKGA NP-DKGA R-DKGA NP-DKGA 

RSenc 65% 62% 2% 2% 

ROBOT 56% 65% 14% 16% 

FFT 14% 67% 28% 29% 

RSdec 5% 86% 10% 10% 

SPARSE 33% 44% 25% 27% 

FPPPP 38% 47% 10% 15% 

VOPD 69% 55% 1% 1% 

  
   Several best mappings generated using R-DKGA and NP-
DKGA optimization process are selected and evaluated using 
bit energy model as well as using cycle-accurate simulation 
model. The input of cycle-accurate Noxim simulation includes 
traffic dependency, which is hard to be modelled analytically. 
The result is compared with analytical bit energy model. Fig. 3 
shows the accuracy of the bit energy model against the cycle-
accurate simulation model. The results show that the analytical 
energy model always gives lower energy estimation compared 
to the one based on cycle-accurate simulation. The best 
estimated energy-optimized mappings in bit energy model also 

give the lowest energy in Noxim simulation. The results show 
that the proposed knowledge-based initial mapping and 
crossover operator in GA that is based on clustering highly 
communicating cores is able to reduce energy consumption 
even when traffic dependency is included.  

 

 
 

Fig. 3. Comparison between analytical bit energy model and cycle-accurate 

simulation model (Noxim energy model) [5]. 

VI. CONCLUSION 

 This paper presented the NP-DKGA technique that uses 
network partitioning knowledge as the GA initial mapping and 
knowledge-based crossover to optimize NoC application 
mapping. We performed analysis on several real benchmark 
applications. The effectiveness of the knowledge-based 
crossover gives significant energy reduction compared to the 
GA with NP-based initial mapping. For less communicating 
applications, knowledge-based crossover GA (DKGA) can 
converge well comparable to CGA. For highly communicating 
application, our experiment shows that NP-based initial 
mapping can further improve both the application mapping 
quality and speed up the mapping convergence. Grouping 
highly communicating cores with NP-initial mapping and 
knowledge based crossover operator result in energy 
minimization even when the traffic dependency is included in 
the energy estimation. 

 For future works, we plan to consider multi-objective 
application mapping environment. Thermal balance is an issue 
to reduce faults in NoC and to increase NoC reliability. For 
energy and thermal balanced, network partitioning may need to 
be done with balanced load and reduced inter-partition traffic. 
This work can also be extended to integrate DKGA with cycle-
accurate NoC simulator for better multi-objective optimization. 
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