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Abstract 

The paper deals with the use of mixed Eulerian-Lagrangian displacement in geometrically nonlinear analysis of 
structural system, in which displacement and deformation are observed from a selected referential configuration, 
i.e., a configuration once occupied by the system along the loading process. The displacement measured from initial 
configuration into referential configuration is referred to as Eulerian displacement, and the displacement measured 
from referential configuration into current configuration is referred to as Lagrangian displacement. Geometrical 
nonlinearity of structure occurs when the displacement primarily consists of rigid body displacement, in which the 
choice in referential configuration is of great concern. The same deformation may be observed differently 
according to the choice in referential configuration. Analysis of continuum system is cast in finite element method 
and written in matrix formulation. The geometrical nonlinearity is approached by successive incremental steps in 
which the total loading is divided into several incremental loadings. The process is then linearized and incremental 
global stiffness matrix is used at every iteration step. The proposed mixed displacement is cast in a computer 
package program using Fortran language. The program is applied in several structural analysis, in which the 
conventional Lagrangian displacement may not be appropriate to model the analysis. 

Keywords: Finitesimal displacement, geometrical nonlinearity, finite element method, successive incremental    
loading steps. 

Abstrak 

Makalah membahas penerapan perpindahan campuran Euler-Lagrange dalam analisis nonlinier geometri sistem 
struktur, dalam mana perpindahan dan deformasi diamati dari konfigurasi referensi yang dipilih, yaitu konfigurasi 
yang pernah dilalui oleh sistem selama proses pembebanan. Perpindahan yang diukur dari konfigurasi awal ke 
konfigurasi referensi dinamakan perpindahan Euler, dan perpindahan yang diukur dari konfigurasi referensi ke 
konfigurasi akhir dinamakan perpindahan Lagrange. Nonlinieritas geometri sistem struktur terjadi dalam kasus di 
mana perpindahan terutama mencakup perpindahan badan kaku, dalam mana pemilihan konfigurasi referensi 
menjadi suatu langkah penting. Deformasi yang sama dapat diamati berlainan seturut dengan pilihan konfigurasi 
referensi. Analisis sitem kontinu didekati dengan langkah inkremental berturutan dalam mana beban total dibagi 
atas beberapa beban inkremental. Proses kemudian dilinierisasi dan matriks kekakuan global inkremental 
digunakan pada setiap langkah iterasi. Perpindahan campuran yang diusulkan dituangkan dalam program paket 
komputer yang dituliskan dalam bahasa Fortran. Program diterapkan dalam analisis beberapa sistem struktur, 
dalam mana perpindahan Lagrange konvensional tidak cukup untuk memodelkan perpindahan dalam analisis.    

Kata – kata Kunci: Perpindahan finitesimal, nonlinier geometri, metoda elemen hingga, analisis inkremental   
berturutan. 

1. Introduction 

In the analysis of solid structural systems, engineering 
mechanics is applied using a referential configuration 
from which displacement and deformation as well as 
reaction forces are observed. One may choose initial 
configuration as referential configuration; in this case, 
Lagrangian description is applied. Current configuration 
may also be chosen as referential configuration; in this 
case, Eulerian description is applied. Eulerian and   
Lagrangian descriptions are described in several      
references (Fung, 1965; Malvern, 1969). 

In analysis of infinitesimal displacement, the choice of 
referential configuration is of no concern, since for this 
case, the two descriptions produce practically the same 

results. But this is not the case in finitesimal           
displacement. The same displacement field produces 
different deformations if observed from initial or     
current configuration. 

As an example, consider a prismatic bar with L = 100cm 
in initial length. If the bar is stretched so as to obtain 
101cm in final length, then the strain according to  
Eulerian description becomes ɛ = (101-100)/101 = 
0.0099, and according to Lagrangian description     
becomes ɛ = (101-100)/101 = 0.0100, and the two  
values are practically identical. But if the bar is 
stretched so as to obtain 150cm in final length, then the 
strain according to Eulerian description becomes ɛ = 
(150-100)/150 = 0.3333; and according to Lagrangian 
description becomes ɛ = (150-100)/100 = 0.500. The 
two descriptions result in quite different values of 
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strain for the same deformation. This example clearly 
demonstrates that in case of finite displacement, it 
should be clearly stated from which both displacement 
and deformation are viewed. 

2. Decomposition of Displacement Field 

In addition to what has been described previously, it 
should be explained several additional informations. 
First, in Lagrangian approach, the material and the 
node (in finite element model) undergo the same    
displacement. Another words, the node and the      
pertaining material always be connected at all loading 
stages. However, one may be confronted with the 
problems that the node and pertaining material may 
undergo different displacement during loading       
progress. Example for this case, among others, are 
steel raw material slipping into the mold in hot-rolled 
process; cable slips around pulley; slip between      
interface of two bodies; and so forth. 

Figure 1 depicts a structural system consisting a    
pulley resting on a cable. The loading causess slip of 
pulley along the periphery of pulley, and then the  
cable and the pulley together undergo additional    
vertical and horizontal displacements. The slip       
between the pulley and the cable (point 1 and 1’) may 
be represented as Eulerian displacement, and the      
additional displacement as Lagrangian displacement. 

As another example, Figure 2 depicts a structural   
system consisting of soft layer resting on hard layer 
and a rigid bar is indented upon the soft layer. Loading 
in this case causes uniform vertical displacements in 
nodes on upper boundary of soft layer. If the interface 
between beam and soft layer is frictionless, there will 
exist slip between the two bodies. Portion 1-2-3-4 of 
soft layer will undergo to location 1-2-3’-4’. The   
lower face of beam connects with different soft layer 
materials from time to time. This slip may be best 
modeled by      
   

 

 

 

 

 

 

 

 

 

 

 

Through these examples, a necessity to decompose 
displacement into Eulerian and Lagrangian             
components, arises. Generally, a configuration once 
occupied by structural materials may be chosen as  
referential configuration. The decomposition of the 
displacement into Eulerian and Lagrangian portions is 
described in the following chapter. 

3. Eulerian – Lagrangian Description 

The decomposition of displacement is desribed by 
showing displacement model in Figure 3. A typical 
material point in the structural system at time t       
occupies initial configuration     at location    . After 
loading, the material point eventually occupies current 
configuration    at location    A configuration, which 
may be occupied by structural system at a using Eulerian 
displacement. 

particular time within loading process is chosen as      
referential configuration and denoted by    The            
displacement of a typical material point initially  
occupied location at   , is denoted by   and this         
displacement decomposed into Eulerian displacement               

and Lagrangian displacement  

                 (1) 

Deformation may be observed by inspecting elongation 
experienced by a typical line segment    that mapped 
into       such that 

                     (2) 

following Euler description, and  

                     (3) 

according to Lagrange description. The entity   is 
Green strain tensor given by  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Rigid beam indented on soft layer 

Figure 1. Cable and pulley 
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                  (4) 

and       is Almansi strain tensor given by 

                 (5) 

in which Einstein summation rule applies, i.e., summation 
is to be carried out for repeated index. The Green strain 
tensor gives Piola-Kirchoff stress tensor, while       
Almansi strain tensor gives Cauchy stress tensor 
(Gantmacher, 1975, Hariandja, 1985, Malvern, 1969). 
The displacement gradient may be expressed in term of 
Jacobian  

                  (6) 

in which     is Lagrangian Jacobian and      is Eulerian 
Jacobian given by 

                 (7) 

Since the formulations are arranged in terms of referential 
parameter    then partial derivatives with respect to  

need to be transformed into partial derivatives with 
respect to       First, it is written that   

                  (8) 

which, upon inversion gives 

                 (9) 

in which    is the element of inverted matrix of the    
matrix formed by    Further, partial derivatives with 
respect to     may be inverted to partial derivatives with 
respect to parametric coordinates      by writing  

               (10) 

which, upon inversion gives 

               (11) 

in which    is the element of inverted matrix of the      
matrix formed by      Therefore, the following may be 
obtained, 

               (12) 

4. Incrementation and Linearization Technique 

It may be observed from the form of Equations 4 and 5 
that the governing equilibrium equation is quadratic in 
terms of displacement components. Therefore, the 
problem would be geometrically nonlinear. The      
governing equilibrium equation may be expanded in 
terms of displacement components and the expression 
may be approximated by retaining linear terms. In this 
case, successive iteration scheme is applied. 

The following is incrementation process of terms. First, 
at time   the displacement is decomposed in Eulerian 
and Lagrangian displacement  

                 (13) 

Strain component is given by  

               (14) 

For time            displacement is given by  

               (15) 

in which    is incremental displacement consisting   
Lagrangian incremental displacement      and Eulerian 
incremental displacement   . Correspondingly, total 
Jacobian components are incremented 

               (16) 

in which incremental Jacobian components are given 
by  

               (17) 

which may further be written in terms of Lagrangian 
and Eulerian incremental Jacobians. Strain components 
may also be incremented by writing 

               (18) 

which results in  

                                          (19) 

Equation 19 may be written in matrix form  

               (20) 

in which      is incremental displacement vector containing 
Eulerian and Lagrangian incremental displacements. 
Therefore, the following relationship is established.  

               (21) 

In the following, equilibrium equation is written in      
incremental form. First, at time  , the equilibrium         

x

y

z

Figure 3. Mixed Eulerian and Lagrangian         
displacement  
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condition reads 

              (22)
in which  

              (23) 

At time           ,    

               (24) 

which may be expanded in the following form, 

               (25) 

which, in view of equilibrium condition in Equation 
22, provides linearized form  

              (26) 

where 

              (27) 

In the formulation of global element stiffness, the  
following relationship may be used, 

              (28) 

In the following chapter, incremental matrix stiffness 
of several types of elements, in this case, four node 
isoparametric membrane and bar elements, are           
developed. 

5. Finite Element Formulation  

Due to the limitation on the space, only two types of 
elements are developed, i.e., four node isoparametric 
membrane and bar elements, considered in turn in the 
following. 

5.1 Four node isoparametric membrane 

A four node isoparametric membrane element is    
depicted in Figure 4. Each node contains four degrees 
of freedom, i.e., Eulerian and Lagrangian displacement 
components in     coordinate. Therefore, the element 
has 16 degrees of freedom, arranged in the form 

                      
              (29) 

and displacement and nodal coordinates are interpolated 
by using shape functions, 

               (30) 

               (31) 

First, Lagrangian and Eulerian Jacobian components 
are obtained by applying Equation 7,  

                           (32) 

The         matrix then may be written in the form  

      
                             (33) 

 

 matrix in the form 

   

               (34) 

 

and         matrix in the form 
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in which 

        (36) 

in which 
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for node i. Therefore,       matrix may be constructed 
by inserting Equations 33, 34 and 35 in Equation 21. 
The result reads  
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in which 

 

 

                  (39) 

 

 

 

 

for node i. For flat plane membrane, stress-strain       
relationship is controlled by constitutive equation 

 

                  (40) 

The obtained matrices may be inserted in Equation 27 to 
construct element stiffness matrix. The element stiffness 
matrix is computed by using Gauss numerical integration 
technique. 

5.2 Bar element 

Bar element is depicted in Figure 5. The element has 
two nodes and each node has two degrees of freedom       
arranged in the form 

                  (41) 

 

 

 

The displacement is found by interpolating nodal       
displacement vector with shape functions, 

                          (42) 

in which  

                  (43) 

and                                                                               (44)  

and Jacobian components may be computed and used to 
construct element stiffness matrix. The result is  

 

                  (45) 

 

6. Case Study  

In this case, three examples are carried out as application 
of the proposed method. The first example consists of 
snap-through phenomenon of a simple shallow space 
truss. The second example consists of a bar subjected to 
a pair of rollers at left quarter point location. The last 
case is a problem of half space soft layer resting on hard 
layer with a rigid beam indented on soft layer surface. 
Special computer package program written in Fortran 
code is developed for each case. 

6.1 Snap-through problem 

A space truss shown in Figure 6(a) is subjected to vertical 
load. The ratio between truss height H and half span L is 
set to a small value such that within certain loading 
level, the truss experiences snap-through. The problem 
is analyzed using a bar    to remedy the truss stiffness so 
as to eliminate deteriorating stiffness matrix. The result 
is then extracted by the response of that single bar to 
obtain final load-displacement curve for crown node 6 
as shown in Figure 6(b). 

 

6.2 A bar subjected to a pair of rollers 

A bar, restrained at the two ends, is connected to a pair 
of rollers at quarter point location as shown in Figure 
7. The bar is divided into four equal length of segments. 
The system is modeled using bar element. In this      
example, two cases are considered, i.e., stick case and 
slip case between rollers and bar. In stick case, material 
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point initially connected to a node will undergo the 
same displacement with the node. In this case,   
Lagrangian displacement may be used. In slip case, 
different material points will be mapped onto node 2, 
while the node remains at constant location. According 
to the nature of nodal displacements, Eulerian         
displacement is used for node 2 and Lagrangian     
displacements for nodes 3 and 4. Total prescribed  
displacement exerted on node 2 is 50 cm, divided into 
5 equal incremental steps, i.e., 20, 40, 60, 80, and 
100% of maximum prescribed displacement. Relation 
between Lagrangian displacement at node 2 is plotted 
against longitudinal stress at node 2, the result is 
shown in Figure 8. In case of slip, Eulerian displacement 
and force at node 2 of element 1 is plotted with the result 
being shown in Figure 8. The plotted curve demonstrates 
geometrical nonlinearity of the system. It is demonstrated 
that slip between rollers and bar reduces the intensity 
of axial force. 

6.3 Rigid bar indented on half-space soft layer  

The last example consists of a rigid bar indented on 
half-space soft layer resting on hard layer. Due to   
symmetry, only half of the system is considered, taking 
100 cm in thickness and 200 cm in width to be       
represented by a discrete model. Discrete model with 
32 four node isoparametric membrane elements shown 
in Figure 9(a) is used to represent real structure. Upon 
indenting of rigid bar, node 5, 10, 15 and 20 undergo 
uniform vertical negative displacements. In this      
example, two cases are considered, i.e., stick and slip 
case. In stick case, material points and embedded 
nodes undergo equal displacement, hence Lagrangian 
displacement is used. In slip case, node 10, 15 and 20 
will be associated with different material points of soft 
layer along loading stage.. These movements may be 
modeled by using horizontal Eulerian displacements, 
and the vertical movement of node 5, 10, 15 and 20 by 
Lagrangian displacements. 

A computer package program is written to analyze this 
problem. The external force on bar exerts total        
indentation on the soft layer. The total indentation is 5 
cm which is divided into five incremental steps, 0.2, 
0.4, 0.6, 0.8 and 1.0 times total indentation. The result 
is utilized to plot curve between vertical displacement 
and vertical stress component at node 20. The results 
are performed for two cases, stick  condition and slip 
condition between bar and soft layer. The two results 
are also compared to elastic linear case. The curves are 
depicted in Figure 9(b). The curves manifest           
geometrical nonlinearity of the system, and the      
comparison indicates that the slippage between bar and 
soft layer reduces the intensity of stress at soft layer 
around bar edge. 

 

7. Conclusions  

The paper has already presented the development and 
the formulation of the mixed Eulerian - Lagrangian  
displacement. Several conclusions are drawn as      
follows. 

1. The use of the new concept of displacement       
provides some tools for modeling and analyzing 
structures in which displacement may not properly be 
modeled by conventional Lagrangian displacement. 
Specifically, slip between contacting bodies. 

2. The three example cases exhibit the novelty of the 
use of mixed displacement, in the case of finitesimal 
displacement cases. Figure 7. Structural model of structure, case 2 

Figure 8. Displacement - force curve, case 2 

(a) Discrete model of structure                

(b) Displacement - stress curve               

Figure 9. Rigid bar indented on half - space      
soft layer 
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3. In geometrically nonlinear structural system, the 
stresses exerted by external forces may not deviate 
much from stresses in linear system; however, the 
displacements differ significantly. Therefore, in 
geometrically structural system, the system may 
experience excessive displacements before attaining 
external forces level. 
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