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Abstract A clinical trial simulation of Boron Neutron Capture Therapy (BNCT) for breast cancer was conducted 

at National Nuclear Energy Agency Yogyakarta, Indonesia. This was motivated by high rate of breast cancer in the 

world, especially in Indonesia. BNCT is a type of therapy by nuclear reaction 10B(n,α)7Li that produces kinetic energy 

totaling 2.79 MeV. High Linear Energy Transfer (LET) radiation of α-particle and recoil 7Li would locally deposit 

their energy in a range of 5-9 μm, which corresponds to the human cell diameter. Fast neutron coming out of Compact 

Neutron Generator (CNG) was moderated using Fe and MgF
2
 material. A collimator, along with breast cancer and the 

corresponding organ at risk were designed compatible to Monte Carlo N-Particle X (MCNPX). The radiation were 

simulated by the MCNPX software and the physical quantities were counted by tally MCNPX codes. The highest neutron 

thermal flux was found at a depth of 1.4 cm on fat tissue. En face and upward intersection radiation techniques were 

adopted for the breast cancer radiation. The average dose rate of radiation used on breast cancer was 1.72×10-5 Gy/s 

for the en face method and 8.98×10-6 Gy/s for the upward intersection method. Dose 50±3 Gy was given into cancer 

cell, (4.18±0.06) ×10-2 Gy into heart and (8.16±0.06) ×10-2 Gy into lung for 806.34 hours irradiation.
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INTRODUCTION

BNCT has been regarded as a potential 

method for cancer treatment (Anonim C, 2001; 

Jenkins, 2012; Andoh et al., 2014; Capoulat 

el al., 2014; Aihara et al., 2014). The neutron 

capture therapy concept was implemented 

for the first time after Chadwick neutron 

invention in 1932, followed by cross-section 

invention between 10B and thermal neutron 

by Golhaber in 1934 (Anonim C, 2001). 

Golhaber showed that thermal neutron reacts 

with10B  producing7Li, alpha particle, and 

gamma radiation. This invention became the 

foundation for BNCT.

Boron Neutron Capture Therapy (BNCT) 

is a radiotherapy that utilizes 10B(n,α)7Li  nuclear 

reaction resulting High Linear Energy Transfer 

(LET) of α-particle and recoil 7Li to destruct 

cancer cells. The reaction cross-section between 

Boron-10 and thermal neutron is ~3837 barn. 

The reaction between Boron-10 and thermal 

neutron is shown as:

 

 

   

where the α-particle LET is ~150 keV/μm 

and the7Li LET is ~175 keV/μm. These heavy 

particles locally deposit their energy in a range 

of 5-10 μm, which corresponds to the human 

cell diameter (Shaaban et al., 2015). BNCT is 

a promising method for selective cancer cells 

destruction.
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MATERIALS AND METHODS

This research consists of three parts: 

collimator design; breast cancer and organ at 

risk modeling; and radiation dose calculating. 

The simulation method used in this work is a 

Monte Carlo method, implemented using the 

MCNPX software by Los Alamos National 

Laboratory. Visual editor 5-4.23-12N software 

is used to visualize the collimator design and 

breast cancer model.

The collimator design is made taking 

into account the shape of the neutron source. 

Materials with high inelastic scattering cross-

section are chosen as moderator. Material 

with high scattering cross-section and low 

absorption cross-section is chosen as reflector. 

Material with high thermal neutron absorption 

is chosen as thermal neutron filter. Material with 

high gamma absorption is chosen as gamma 

absorption. Then, all the chosen materials are 

designed into a collimator. The IAEA criteria are 

the standard for the collimator output. The IAEA 

criteria for collimator are shown in Table 1.The 

breast cancer and organ at risk are designed 

based on cross-section view from computed 

At first, BNCT was applied for high-grade 

brain cancer such as glioblastoma. However, 

along with the development of research, some 

researchers have investigated application of BNCT 

for breast cancer treatment. Some researches has 

been conducted to produce a breast cancer therapy 

protocol based on BNCT. Some of the researches 

related to breast cancer treatment are radiation 

dose evaluation (Yanagie et al., 2009; Loong et 

al., 2014), optimal radiation technique (Horiguchi 

et al., 2011) and a feasibility study evaluating 

BNCT for potential role (Jenkins, 2012). If the 

boron atoms accumulate in the cancer cells, then 

inflammatory breast cancer is easily invaded 

(Yanagie, 2012).

D-D coaxial Compact Neutron Generator 

(CNG) is a safe neutron source because it does 

not use radioactive material, so that it is widely 

available in the market. D-D coaxial CNG 

generates neutron strength of ~1012 n/s. D-D 

reaction that generates neutron is expressed as:

with  and .

Table 1. IAEA criteria for output collimator

Design

Source 

strength 

(n/s)

 (n.cm-

2.s-1)

 (Gy.

cm2.n-1)

 (Gy.

cm2.n-1)

IAEA - >1,0× 109 < 2,0 × 10-13 < 2,0 × 10-13 > 100 > 20 > 0,7

Figure 1.  The CT cross section view imaging 

(Alanyah et al., 2013)

Figure 2.  The ORNL phantom cross section view  

(Krstic et al., 2014)
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tomography imaging and ORNL phantom. The 

tomography imaging and ORNL phantom cross-

section views are shown in Fig.1 and Fig.2, 

respectively. Finally, physical quantities needed 

for radiation dose calculation are counted by 

MCNPX tally. Dose calculating is conducted for 

two techniques, en face and upward intersection 

radiation techniques.

The BNCT doses calculations made are 

as follows:

The neutron scattering involves thermal 1. 

neutron, epithermal neutron, and fast 

neutron scatterings obtained from MCNPX 

computation. The scattering doses are 

obtained using the tally code “DE” and 

converted to Gy/s unit using the tally code 

“DF”.

Recoil proton dose is obtained from thermal 2. 

neutron reaction with nitrogen-14 with 

reaction equation: 

The amount of energy released in this 

reaction is 0.66 MeV.

Photon dose consists of:3. 

photon dose from the collimator (obtained a. 

from MCNPX computation)

photon dose from the reaction of thermal b. 

neutron with hydrogen with reaction 

equation:

 The amount of photon energy released 

from this reaction is 2.23 MeV.

photon dose from the reaction of thermal c. 

neutron with boron is 0.48 MeV, with 

reaction probability of 93.9% (this 

reaction is involved in the boron dose 

mentioned in no. 4 below).

Boron dose is obtained from the reaction of 4. 

boron with neutron with reaction equation:

 there are two kinds of reaction of boron-

10 with neutron. First, with probability 

of 93.9%, it results in alpha particle (1.47 

MeV), lithium (0.84 MeV), and photon 

(0.48 MeV). Second, with probability of 

6.1%, it results in alpha particle (1.01 MeV) 

and lithium (1.78 MeV). So, an average 

energy amount of 2.33 MeV is involved in 

resulting alpha particle and lithium.

The BNCT total dose is formulated as:

          (1)

 (boron dose),  (photon dose),  (neutron 

scattering dose),  (recoil proton dose) are 

calculated using the following formulas:

 ; +             (2)

where  (flux),  (photon induction 

from collimator),and D
n
 (neutron scattering 

energy) are obtained using MCNPX. The 

values  are thermal neutron cross-sections of 

the corresponding atoms ,  is the number of 

particles of the corresponding atom  and  is 

the energy resulting from reaction between the 

particles with thermal neutron,  is the fraction 

of gamma energy deposited at the local site, and 

 is the gamma energy of thermal reactions of 

boron and thermal neutron with nitrogen.

RESULTS AND DISCUSSION

Collimator design

Reflector

The materials tested as reflector are 64Ni, 
206Pb, 209Bi, BeO and PbF

2
 as IAEA recommends. 

The neutron current output on a fixed aperture is 

shown in Fig.3. Based on Fig.3, BeO and 209Bi 

produce high amount of thermal neutron, which 

is not desirable. So, PbF
2
 and 64Ni are chosen as 

the best materials for the reflector. Further, the 
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best one is chosen by calculating neutron flux 

at different thicknesses of the materials. The 

result is given in Fig.4.

The highest neutron flux is given by PbF
2
. 

Therefore, PbF
2 
is chosen as the material of the 

reflector in this research. 

Moderator

The materials tested as moderator are 56Fe, 
27Al, AlF

3
, LiF, Al

2
O

3
, MgF

2
 and TiF

3
 as IAEA 

recommends. Fast neutron (2.5 MeV) needs to 

be moderated to epithermal neutron level (0.025 

eV < E < 10 keV).Most materials have inelastic 

scattering cross-section starting at energy ≥100 

keV, but Iodine atom has inelastic scattering 

cross-section starting at lower neutron energy 

(< 50 keV). AlI
3
is used as part of the moderator 

in this research. D-D Coaxial Compact Neutron 

Generator produce low neutron source strength, 

~1012 n/s at radius 14 cm. So, the collimator has 

to be short to obtain higher neutron flux. The 

result obtained at the fixed aperture for some 

physical quantities is shown in Table 2 and the 

collimator design based on Table 2 is shown in 

Fig. 5. Thermal neutron filter and gamma filter 

use6Li and 209Bi, respectively. Intermittent material 

design is used to absorb thermal neutron, so that 

low thermal neutron flux is obtained.

The collimator output from the proposed 

collimator design and other Beam 

Breast cancer and organ at risk modeling

Breast cancer and organ at risk are modeled 

based on Fig.1 and Fig.2.  The model is shown 

in Fig.6. The breast cancer and organ at risk 

shapes are limited by MCNPX capability. So, 

the made-up model was a simple model.

Radiation techniques

There are two radiation techniques used, en 

face radiation technique and upward intersection 

radiation technique, as shown in Fig. 7.

Radiation Dosimetry

Thermal neutron flux

Thermal neutron flux at various depths 

are measured to determine maximum thermal 

neutron flux depth, as shown in Fig. 8. Best 

Figure 3.  Neutron current reflector materials 

calculated on a fixed aperture

Figure 4.  Neutron flux reflector materials calculated 

on a fixed aperture
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Table 2. Collimator aperture outcome using different moderator, thermal neutron filter and gamma filter materials

Design

(materials arranged sequentially)

Source 

strength

(n/s) (n.cm-2.s-1) (Gy.cm2.n-1) (Gy.cm2.n-1)

IAEA >1.0× 109 < 2.0 × 10-13
< 2.0 × 

10-13
> 100 > 20 > 0.7

Al (69.8 cm)

2.0× 1012

5.0 × 107 3.8 × 10-25 1.4 × 10-26 64.2 2.8 71.7

Fe(69.8 cm) 3.2 × 106 2.6 × 10-25 1.2 × 10-26 167.2 0.8 62.9

AlF
3
(69.8 cm) 1.5 × 107 8.4 × 10-25 2.8 × 10-26 6.1 29.4 72.1

Al
2
O

3
(69.8 cm) 9.6 × 106 2.1 × 10-25 1.4 × 10-24 4.1 2.0 68.8

LiF(69.8 cm) 7.0 × 105 7.2 × 10-26 7.9 × 10-27 - 9.5 69.1

Fluental(69.8 cm) 2.0 × 107 5.0 × 10-26 1.7 × 10-26 39.7 18.1 71.5

MgF
2
(69.8 cm) 8.6 × 106 1.7 × 10-26 4.6 × 10-26 2.3 85.2 71.2

TiF
3
(69.8 cm) 6.91× 106 2.8 × 10-26 2.6 × 10-25 30.8 72.1 72.2

Fe (10.8 cm)+MgF
2
(59 cm) 9.1 × 106 1.5 × 10-26 4.6 × 10-27 3.2 67.3 69.1

Fe (10.8cm)+MgF
2
(62cm)+Bi 

(1cm)+MgF
2 
(0.1cm)+Bi (0.9cm)

7.1 × 106 1.6 × 10-26 2.1 × 10-26 3.14 63 69.6

Fe(10.8cm)+MgF
2
(10cm)+6Li(1cm) 

MgF
2
(4cm)+IF

3
(1cm)+MgF

2

(43cm)+6Li(0.2cm)+MgF
2
(2

.4cm) +6Li(0.2cm)+Bi(1cm) 

+6Li(0.1cm)+Bi(0.9cm)  

2.1 × 106 6.7 × 10-26 3.2 × 10-26 230 21 71.4

Table 3. Comparison between this proposed design and some published works

Design

Source 

strength

(n/s) (n.cm-2.s-1) (Gy.cm2.n-1) (Gy.cm2.n-1)

IAEA - >1.0× 109 < 2.0 × 10-13 < 2.0 × 10-13 > 100 > 20 > 0.7

Fantidis et al., 2013 1011 1.17x106 1.11x10-17 2.32x10-17 128.81 20.81 -

Durisi et al., 1011 1.8x106 1,82x10-12 2.98 x10-13 - - -

This proposed 

collimator design
1012 2.1 × 106 6.7 × 10-26 3.2 × 10-26 230 21 71.4

Figure 5.  Proposed collimator design 
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Figure 6.a.  Breast cancer and organ at risk 3D 

Vised visualization, cross-section view

Figure 7.a.  En face radiation technique Figure 7.b. Upward intersection radiation technique

Figure 8.  Thermal neutron flux versus depth Figure 9.  Radiation dose at cancer cell and organ at risk

Figure 6.b.  Breast cancer and organ at risk 3D 

Vised visualization, en face view
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radiation technique will be determined by 

maximum thermal neutron depth. Neutron flux 

is calculated by MCNPX tally for en face and 

upward intersection radiation techniques, then 

dose radiation is calculated. The dose radiation 

comparison between the two techniques is given 

in Fig.9.

Exposure time

Exposure time is calculated based on 

maximum dose at healthy tissue 12.5 Gy/s, 

maximum dose at skin 8 Gy/s and minimum 

dose to destruct breast cancer~50 Gy/s. Exposure 

time calculation based on the three criteria is 

shown in Fig. 10.

Based on exposure time calculated on 

diagram, 806.34 hours is the acceptable 

exposure time. This result is chosen for skin 

and healthy tissues exposure safety. But, 806.34 

hours irradiated produce 50 ± 3 Gy on breast 

cancer cell, (4.18±0.06) ×10-2 Gy on heart and 

(8.16±0.06) ×10-2 Gy on lung.

CONCLUSION AND REMARKS

 The low radiation dose on cancer cells 

shows that the result obtained in this research 

is still inadequate. The main factor resulting in 

the low dose is a low amount of neutron source 

strength. To obtain high neutron flux, neutron 

source with high source strength is needed. 

Other efforts to optimize the result are trying 

varying radiation techniques and optimizing 

the collimator design.
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