

Journal of Information Technology and Computer Science
Volume 2, Number 1, 2017, pp. 41-65

Journal Homepage: www.jitecs.ub.ac.id

Framework Design for Modular Web-based Application

Using Model-CollectionService-Controller-Presenter

(MCCP) Pattern

Aryo Pinandito
1
, Ferdika Bagus Pristiawan Permana

2
, Rizal Setya Perdana

3

1 Information System, Computer Science Faculty,
2 Information and Communication Technology Division,

3 Informatics Engineering, Computer Science Faculty,

Universitas Brawijaya, Malang, Jawa Timur, Indonesia

{aryo, ferdika.bagus, rizalespe}@ub.ac.id

Received 31 January 2017; accepted 22 June 2017

Abstract. Design pattern become an important thing in assisting the development

of web-based application and in handling the problem of dynamically changing

of organization structure and problem domain. Model-View-Controller (MVC) is

a well-known design pattern in web-based application development due to its

nature in the separation of an application into several parts, hence easy to reuse

and maintain. However, integration of such design pattern requires several

improvements in the design phase of information system development since it

handles business process choreography and integration between application.

Modification the interaction style of objects in a particular design pattern become

a challenging problem. An application framework that employ Model-

CollectionService-Controller-Presenter (MCCP) design pattern, which is

resulting from modification of MVC design pattern, was proposed. The proposed

framework also allows different applications to run simultaneously and provides

inter-application data exchange mechanism to improve the data communication

process between applications. The MCCP design pattern application framework

shows that the application framework requires 51% less memory resources than

another similar MVC framework such as CodeIgniter and cope the flexibility

problem in data format presentations by providing a Presenter in the designed

framework.

1. Introduction

Several organizations, which have many divisions or units, use several information

system or computer application programs. The computer programs and information

system were generally used to support their people daily work and organization

business process. Many organizations develop custom applications in their information

system in supporting their business processes by having their own in-house

development team directly working and develop applications on-site. Several

Aryo Pinandito et al., Framework Design for Modular Web-based .. 42

p-ISSN: 2540-9433; e-ISSN: 2540-9824

applications or computer programs were running in their own operating environment to

meet organization or specific requirements of business processes.

In order to accommodate the changing dynamics of user requirements in a currently

running business processes, web-based applications are more appropriate to be

implemented than native desktop applications as users are not required to be manually

install or update the application manually. In a web-based application, any changes

made on the application server will be directly reflected and distributed to all active-

users. As long as application users are using web-application using compatible web

browsers there will be no issues in user's computer platform. Application developers

will have full control in the distribution of developed application even though web-

based application has limitation in programming code optimization, bigger overhead,

and less control in utilizing computation resources of user computer than native desktop

applications [1].

It is very common that applications need to be able to communicate with each

other. There are cases that one application requires data from the output of the other

application. The need of data integrations and business process choreography between

units in organization urge the flexibility, ease of use, ease of access, and ease of

development of information system in the future. The difference between applications

data format, storage, and running environment make data integration between

applications becomes difficult.

Although web-based applications in an information system are offering several

more conveniences over native desktop applications, there are several other problems

faced in a software development life cycle mainly in data integration problem between

applications, user authentication, user authorization towards functionalities and data

access among different applications. People who have several roles in organization

business process may have different authorization towards different applications. That

kind of users are often had to login and logout between applications in order to complete

their tasks that needs to be performed in different applications.

Organization data stored in database are essentially owned and managed by their

own respective application. Application has full control in managing their own data

stored in a database. Such application is essentially not allowed to directly access nor

modify data stored in a database owned by another application. Direct access or direct

modification of other application data may cause high level coupling. Shared data

access between application is categorized as common coupling or content coupling that

is considered as a poor system architecture design [2]. High coupling level such as

common and content coupling would lead to a decrease in terms of software quality.

Therefore, a web-application framework design, which proposed in this research, had

to accommodate data communication interface or Application Programming Interface

(API) between applications that allow applications to exchange data among each other.

Another problem resolved in this research is related with user authentication and

access control. When several users own several roles across applications, they may

perform certain functionalities in several applications associated with their roles. Every

role has their own respective functionalities among applications. Therefore, the

designed application framework should allow users completing their task and perform

several application functionalities in different applications based on associated roles

without them having to re-authenticate while using different applications.

43 JITeCS Volume 2, Number 1, 2017, pp 41-65

p-ISSN: 2540-9433; e-ISSN: 2540-9824

One of popular web-application design pattern is Model-View-Controller (MVC).

MVC become very popular since several web application development frameworks

were built on this pattern [3A]. In MVC design pattern, an application is divided into

three parts, i.e. application logic as Controller, user interface as View, and application

domain as Model. In MVC, reuse of programming code led to reduction in application

code complexity, increasing code flexibility, and reduce coupling in application code

components [4A]. However, MVC design pattern does not solve problem to be solved

by programming code. MVC does help to write application programming code that is

flexible, decoupled, easy to understand, and easy to reuse in another part of code [4A].

This research proposes an enhanced web application development framework

based on MVC design pattern that allow application developers to develop multiple

web-based applications in a single application framework setup in order to simplify the

development process of applications and process of integrating the applications. The

application framework also provides data communication between applications that

allow application to access other application data. Several performance measurements

were conducted to the framework in order to describe its performance characteristics

compared to another similar web application framework.

2. Related Work

There are many choices of use framework in web development. Among of them, there

is Laravel which is recently being very popular web application framework among web

developers, Zend Framework which is devoted to enterprise scale web applications,

Struts, JSF, Ruby on Rails, Grails, CakePHP, Django, Lift Framework, Catalyst, and

many more. Every framework is offering their own advantages and disadvantages in

particular aspects. Several issues faced by web application frameworks were memory

management issues, complex design pattern, execution performance, scalability,

maintainability, reusability, suitability, fitness for a particular purpose, and application

modularity problem. Thus, leading software engineers and researchers to creatively

propose solutions to resolve the issues.

Dragos-Paul Pop [5A] proposed a solid framework that is claimed to be able to

reduce web application development times drastically, thus allowing web application

developers to focus on application specific tasks rather than wasting more time in trying

to implement or extend well-known patterns and practices. However, the performance

of rendering engine and support in several NoSQL systems were require improvements.

Several existing frameworks have complex design patterns whereas the complexity

of framework and application design were not always comparable to its performance.

Some files were included during script execution. To overcome this problem, Umi

Sa’adah [6] uses a simple design pattern, namely Singleton and namespace or package

in Java. This research yields a lightweight PHP framework, with Singleton design

pattern, namespace, AJAX, and multiple databases.

In another research, Hossein Shams [7A] introduces MVCC (Model-View-

Controller-Context) as an architectural pattern solution for software frameworks to

overcome problems that were faced by application programmers in the application

layer. The architectural pattern can be implemented in various frameworks thus yield

Aryo Pinandito et al., Framework Design for Modular Web-based .. 44

p-ISSN: 2540-9433; e-ISSN: 2540-9824

an easy and rapid application development, reusable code, and development flexibility

for the developers.

Application development best practices are activities, technical or important issues,

which are identified by users in a specific context, that render excellent services and

expected to achieve similar results in similar situations. Every framework has its own

best practices whose aim is to facilitate the development of web applications. However,

there are no current comparative analysis that identifies best practices in web

application frameworks. María del Pilar Salas-Zárate [8A] identifies a set of best

practices for web frameworks. Afterwards, these best practices were analyzed and

discussed in terms of developing Lift-based web applications. The identification of

these best practices would allow developers to construct more interactive and efficient

Lift-based web applications, integrating features found in Web 2.0 technologies with

less effort thus exploiting framework's benefits.

3. Literature Review

3.1 Model-View-Controller (MVC)

Web-based Model-View-Controller (MVC) is a well-known design pattern used to

develop a web based application that separates application into three parts based on

business logic (Model), rendering output (View), and glue between Model and View

(Controller). Reusing a Model by several Views is one of major advantages of MVC

design pattern. Therefore, it is possible that an equal data to have multiple different

presentations. MVC design pattern encourages developers to partition their application

code into modular Model, View, and Controller. Therefore, application codes are

relatively easy to reuse, maintain, and developed further.

Fig. 1. Sequence diagram of MVC design pattern in web-based application.

View represents the functionality of presentation layer in an MVC architecture. It

is basically containing user interface (UI) components were data elements were taken

into a particular presentation. Model is responsible in managing all business logic and

data structure that is required by business organization. It also handles all data requests

from Controller through Views. A Controller, which maps application Model and View,

describes the application logic process. Web-based application, which developed based

on specific design pattern like MVC offers several advantages, such as application

45 JITeCS Volume 2, Number 1, 2017, pp 41-65

p-ISSN: 2540-9433; e-ISSN: 2540-9824

components reuse and provide good design consistency [9A]. Developing a web-based

application using MVC design pattern allows easy maintenance and the possibility to

an independent development by several different programmers [10A].

More or less, MVC design pattern is a direct translation to Boundary-Control-

Entity objects in object-oriented analysis and design. In MVC design pattern, attributes

and behaviors of entities or objects were translated into Models. Entities or objects

which handled in a particular operation might be a single object or a collection of

objects. Behaviors related to a single object and a collection of object might be different

and may cause process ambiguity. Several behaviors might be applicable for a single

object but not for a collection of object and vice versa. Therefore, this pattern could be

improved by separating models that process singular object and a collection of object.

3.2 Model-CollectionService-Controller-Presenter (MCCP)

According to sequence diagram of MVC design pattern as depicted in Figure 1, a Model

is responsible to communicate with Database Management System (DBMS) server and

fetches data result from database that is required by business processes logic or

requested by users. The implementation of MVC design pattern in a web application

development still faces a problem related to the Model functionality. Analysis phase in

software development yields class diagrams from the problem domain analysis which

will be translated into Model objects. Single or set of database result object, which

implemented in same object of Model, may difficult to maintain when there is a change

business process domain model. If a single object and object collections were modelled

in the same Model class, then attributes in a class will become conceptually ambiguous

between a single Model object and its collection.

Fig. 2. Sequence diagram of MCCP design pattern in web-based application.

Another problem related to the Controller-View in MVC design pattern is the

implementation of a View presentation codes and Controller codes into a single instance

Controller object. Instead of only organizing an application logic flows, a Controller

also responsible to format the data obtained from Model into a particular document

format. The consequences of this implementation, if a similar data structure from Model

Aryo Pinandito et al., Framework Design for Modular Web-based .. 46

p-ISSN: 2540-9433; e-ISSN: 2540-9824

requires different presentation formats, a change in a Controller class is necessary to

support the change.

A Model-CollectionService-Controller-Presenter (MCCP) design pattern allows

web application developers to overcome these two main problems faced in MVC design

pattern. The basic communication in MCCP design pattern is shown in Fig. 2. Data

structures produced from class analysis will be implemented as Models, whereas

CollectionServices implements Model's behaviors in database. Presenter object on

MCCP design pattern is responsible in data presentation to clients, thus Controller

objects were focused to handle the application and data logic flows of a client's request.

4. Methodology

The methodology used to develop the designed framework is following a standard

software development life cycle (SDLC). It is including requirement analysis to obtain

specific requirements related with common web-based application functionalities for a

single HTTP request and the common pattern in providing services to users. The

framework and its components as the solution were designed based on the analyzed

requirements using object-oriented approach. The designed framework should be able

to run several web applications as modules and allow them to communicate between

each other to exchange data or information. In the implementation phase, the designed

framework was implemented using PHP programming language. Several applications

were also developed using the same programming language that run on top of the

designed framework based on use case scenarios that were specified in previous phase.

The implementation of framework and applications that were developed were tested

against the specified functionalities and scenarios. Several performance measurements

in terms of memory usage and processing speed were conducted and compared to

another similar web application framework to depicts its characteristics.

4.1 Requirement Analysis

Analysis phase in software engineering yields software analysis models, e.g. software

requirements specification, and logical analysis model in form of analysis classes and

objects along with the relationship between classes or objects. Analysis models are

produced by identifying objects in the problem domain along with their attributes,

behaviors, as well as relationships among those.

Like most web-based application framework that uses the MVC design pattern, the

designed web application framework should be able to identify the Controller to use,

method of Controller to execute, and if any, given method parameters from the HTTP

requests. In addition, the framework should be able to identify which web application

to run from the requested URL as it designed to support multiple application to run over

it. However, HTTP is a generic and stateless protocol [11A] that independently process

HTTPS requests without any knowledge of previously executed request. Some web

applications may track and retain user's state information from page to page by the use

of HTTP cookies or server-side sessions. When multiple applications run for a single

user session, it is possible that applications could see state information of user that

belongs to another application for the same user session ID. By default, if an application

knows the session ID of user, they will know session data associated it. Therefore, the

47 JITeCS Volume 2, Number 1, 2017, pp 41-65

p-ISSN: 2540-9433; e-ISSN: 2540-9824

framework should provide a mechanism to manage session data for a particular user

and only allow application to create or modify their own session data.

In MCCP design pattern, identified classes and relationships between classes of

objects in problem domain were modelled into Model classes. However, object

behavior and data operations such as Create, Read, Update, and Delete (CRUD) were

modelled into CollectionService classes. Therefore, there are no specific functionality

requirements for base Model class except for required getter and setter methods of

identified Model attributes. For an instance, there is a class abstraction for car object

namely Car, any attributes related to car object and its relationship with other class were

abstracted into a Model class of Car. Database CRUD operations associated with Car

object or collection of Car objects were abstracted into class of CollectionService, say

CarCollectionService class. However, one CollectionService class does not always

related with one Model class. Depending on the circumstances, one CollectionService

object may be associated with one or more Model class. As of CollectionService classes

are highly related with database operations of Model, the proposed application

framework should provide base class to provide basic database operations and certain

functionalities. Therefore, application's CollectionService classes could simply inherit

CollectionService class of framework to obtain certain database operation and

functionalities.

In terms of data integration, every application might have different database

settings or configurations as they have full authority over data in respective database of

application even in determining the type of Database Management System (DBMS)

used for their respective data operations and functionalities. If there is an application

requires data from another application database, then it is necessary for the application,

which own the required data, to provide a particular way or mechanism to verify the

requests and provide the requested data. Based on the previously stated background

analysis, the proposed framework provided in this research should be able to provide a

uniform data functionality and allowing web-based applications to be designed and

developed using a particular design pattern. In addition, the proposed framework should

be able to provide a mechanism for applications to communicate between each other,

manages user sessions, and manages inter-application sessions.

4.2 Framework Design

The framework was designed to support MCCP design pattern as previously depicted

in Fig. 2. It separates each application functionality into Model, CollectionService,

Controller, and Presenter parts as necessary. An architectural design model of the

designed web application framework that is able to run multiple application is shown

in Fig. 3. An application dispatcher behaves as an execution starting point of an

application and responsible in identifying which application to run, controller to

instantiate, method to execute, and parameters to be given from an HTTP request. The

proposed framework also provides a database interface for common RDBMS used in

web-based application.

Aryo Pinandito et al., Framework Design for Modular Web-based .. 48

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Fig. 3. Application framework high-level architectural diagram

A static view between web application components based on MCCP design pattern,

the application framework, and relationships between them were modelled into class

diagram as shown in Fig. 4. In the designed framework, application output or visual

functionalities were handled by an instance of Presenter object inside a Controller.

Fig. 4. Class diagram of MCCP application framework and class diagram of web application

that runs on top of it.

Every application has their own unique application ID so that framework's

application dispatcher is able to identify which application to run based on the

application ID received request URL. The application ID should be composed of URL-

compatible characters and it shouldn’t be too long for the sake of simplicity. Request

URL format, which application dispatcher could parse for the designed framework, is

shown in Fig. 5.

An application dispatcher main responsibility is to parse the received request URL

and identify application to dispatch in terms of application components and data given

that is separated by a forward slash from the request URL given. The mandatory

components from the request URL is the application ID as the dispatcher requires it to

determine which application to run. Basically, controller name and controller method

to instantiate and execute are also compulsory. However, if the default name of

49 JITeCS Volume 2, Number 1, 2017, pp 41-65

p-ISSN: 2540-9433; e-ISSN: 2540-9824

application controller and method were already preconfigured, then if there are no

controller name and/or method name were defined in the requested URL, the dispatcher

will try to instantiate application’s default controller, which has default controller name,

and call its default method without giving any parameters.

In order to distinguish regular Controller and BridgeController call, application

dispatcher detects in place of the controller name provided in the requested URL

whether it is an “api” keyword. If so, then the application dispatcher will assume that

the arguments right after the “api” keyword will be the bridge controller to instantiate.

Hence, application controller cannot have name “api” as this name is used to distinguish

between regular controller request and bridge controller request.

Fig. 5. Request URL format for a web browser client (top) and another

application controller as client (bottom) that application dispatcher parse in

determining application to run, controller to instantiate, controller method to

call, and parameters to be given. Protocol scheme a used to identify the scheme

used in the request; b is server host name; c is the application identifier; d is

the controller name to instantiate; e is the method of controller to call; f, g, and

so on are the optional method parameters.

Database Interface. The designed framework allows application to have their own

DBMS type to use. However, in order to unify the way application to communicate

with DBMS, CollectionService base class provide an interface to various DBMS

Connector as depicted in Fig. 6. Concrete DBMS Connector class should realize the

DBConnector interface and implements all generic database functionalities as defined

in the interface. Hence, CollectionServices should not really concerned in writing a

specific database code for a particular DBMS type. It is possible to provide further

DBMS functionalities, i.e. transaction, by extending the DBConnector interface with

another interface. However, not every DBMS support all functionalities that another

DBMS have. Fig. 6. shows an application would be able application to perform database

communications with three different DBMS types using a single CollectionService

class without having to worry which DBMS type it connects to.

Aryo Pinandito et al., Framework Design for Modular Web-based .. 50

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Fig. 6. Class diagram of application’s CollectionService in providing generic database

functionalities between different RDBMS.

The application database connectivity design as depicted in Fig. 6 shows the

flexibility of an application to switch to another Relational DBMS type. However, there

are drawbacks faced by the above design. If an application intends to use a non-

relational or NoSQL database, i.e. NoSQL or MongoDB, then the database connectivity

design would not work as expected. because there is no SQL query used in a NoSQL

database engine. To resolve this issue, an application should implement their own

database connectivity library to communicate with a NoSQL database.

Inter-application Communication. In order to communicate between applications,

the designed framework provide a specific Controller to extend namely

BridgeController that allow other application Controller to communicate with and

exchange data. The BridgeController is designed to be separated with Controller as they

both have different purpose even though they have similar behavior in the pattern. The

separation is also intended to avoid confusion between Controller and BridgeController

from the perspective of clients who perform the requests. The Controller is intended to

serve HTTP requests from user's web browser while BridgeController is specifically

intended to serve HTTP requests from Controller of another application. Data

communication between applications diagram is shown in Fig. 7. Application

BridgeController and Controller serve different type of client. They both implement

different session handling method.

51 JITeCS Volume 2, Number 1, 2017, pp 41-65

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Fig. 7. Architecture diagram of inter-application data exchange communication.

Framework architecture diagram in Fig. 7 shows that the dispatched HTTP requests

were served by a dispatched Controller. The Controller logically identify the required

data sources to complete the request whether the data could be obtained from the

database owned by the application or from the other application database. Application

CollectionService responsible to provide data operations request from Controller or

BridgeController. If a dispatched user request requires data from multiple data sources,

then a Controller should be able to perform a data operation request to another

application BridgeController. Communication between application Controller and

another application BridgeController could be simply implemented using an HTTP

Representational State Transfer (REST) architecture and Extensible Markup Language

(XML) or JavaScript Object Notation (JSON) data format.

The sequence diagram for an application activity in processing a single HTTP

request from a single user that requires data from multiple applications or data sources

is shown in Fig. 8. As seen in the diagram, when an application Controller receives an

HTTP request from a web browser client, it has two options in obtaining data. First, the

Controller may obtain the required data from its own managed database using

application’s CollectionService. Second, the Controller could perform an HTTP request

to another application that is served by another application’s BridgeController. When

an application CollectionService receives a data operation requests, it does not

responsible to perform an execution authorization of a Controller. The authorization

process of an HTTP request execution should be performed by application Controller

or BridgeController before the actual CollectionService method is executed. Therefore,

it is possible to reuse database-related methods in an application CollectionService by

more than one Controller or BridgeController.

Aryo Pinandito et al., Framework Design for Modular Web-based .. 52

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Fig. 8. Sequence diagram of multiple data source operation in a single HTTP request.

Communications between an application Controller and another application

BridgeController are treated in a different way as an application Controller is not a web

browser that simply accept cookies from application server to retain its states between

requests. Furthermore, because inter-application communication was designed using

standard HTTP protocol or REST, it is possible another type of clients, e.g. Unix-based

console commands, native desktop applications, and mobile applications, are accessing

the API through BridgeController. Therefore, it is important that an API provided by

application BridgeController to have a particular mechanism in communicating with

varying clients. The framework BridgeController also designed to communicate using

a standard REST and returns a platform-independent plain-text document such as XML

and JSON.

Session Handling. The framework is designed to handle requests to multiple

applications simultaneously. If the session handling mechanism implemented in the

usual single application way, therefore applications able to read or modify each other

session data. Reading and modifying another application session data are certainly

undesirable system behaviors. Therefore, the framework should provide a session

handling mechanism that only allow application to read and modify their own session

data.

53 JITeCS Volume 2, Number 1, 2017, pp 41-65

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Fig. 9. Session handling management for a request from user web browser

The framework proposed a centralized session data storage to put every

applications session data. The data may be stored in form of a DBMS storage or stored

as files in a framework-accessible shared folder. Session data and their storage handling

were managed by a SessionManager helper object. The SessionManager helper object

will be accessible by application Controllers. In order to protect the session data stored

from other applications, the SessionManager will mark any data stored on the session

storage with application's ID of application that own the data. However, in order to

protect the session data from application ID spoofing, therefore the SessionManager

should obtain the application's ID from Application Dispatcher. The sequence on how

the designed framework handles user session is shown in Fig. 10. The sequence diagram

also shows involved objects of framework when they handle web page requests from

web browser.

The design of session handling in inter-application (API) communication requires

several steps. First, the requested application BridgeController should know which

application is currently accessing the service. Each client application should be

registered in a particular service API client database. Client applications should send

their application ID in every request so that service API could identify its client. If a

client identity of an API cannot be identified, then the framework returns an error

message and the process should stop.

Aryo Pinandito et al., Framework Design for Modular Web-based .. 54

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Fig. 10. Sequence diagram of external application data request.

In an API request, a client of an application API send a request URL along with its

application key, application id, access token given, and data to send. If the client is

unauthorized to access the service, then the framework will return authorization error

messages, otherwise its access token will be checked against its validity. An access

token is considered to be valid if its fingerprint is valid and its access token is within a

valid timespan. A fingerprint is a hash value that is computed from client’s hostname

or IP address and client’s application id. If client’s access token given is invalid, i.e. not

exists or expired, then as long as its computed fingerprint is still correct, then a new

access token will be generated and returned to the requesting client. If both client’s

access token and its computed fingerprint is correct, then the application will continue

to proceed client’s requests. Authorization check sequence in an application

BridgeController’s will be processed in framework’s BridgeController base class, thus

application BridgeController just need to extends the class. Detailed sequence of

involved objects inside the designed framework along with its responsibilities of an

inter-application communication between multiple applications are shown in the

sequence diagram in Fig. 9.

4.3 Implementation and Testing

The proposed framework designs were implemented in a virtualization environment of

Linux Centos 7 operating system. A web-based environment was setup to run several

web-based applications using an Apache web server with a PHP library as a module.

Two RDBMS, i.e. PostgreSQL and MariaDB as a replacement for MySQL, were also

55 JITeCS Volume 2, Number 1, 2017, pp 41-65

p-ISSN: 2540-9433; e-ISSN: 2540-9824

setup and configured to represent a multi database server environment. The database

server was setup in the same operating system environment as the web server, therefore

configured data connectivity between web server and database server will be localhost.

The designed application framework, application dispatcher, and the application

itself were implemented using a PHP programming language. Every request received

by web server is converted into a particular URL format which directed to the

application dispatcher to parse using Apache web server rewrite module. This way, the

application dispatcher script will be hidden to the clients, thus creating more secure

application framework.

In the following file and directory structure, the document root that is accessible to

the clients is inside the /var/www/html directory. The framework base classes such as

Controller, CollectionService, Presenter, and database connector classes were located

in /var/www/framework directory. Therefore, it only accessible through application

classes and codes. Application that run over the framework were located in the

/var/www/html/apps directory and all of their application code were placed under their

own application id and the code respective class directory, i.e. model classes in /model

directory, controllers in /controller directory, collection services in /collectionservice

directory, bridge controllers in /bridgecontroller directory, and application’s UI files,

which will be read by framework’s Presenter class, located in /view directory.

Directory structure of the designed application framework that hosts two applications whose

application ID appA and appB.

/var/www/framework/

/var/www/html/appdispatcher.php

/var/www/html/apps/

 /appA/model/

 /collectionservice/

 /controller/

 /bridgecontroller/

 /view/

 /appB/...

 /...

Several implementation test scenarios used in this research were designed to follow

the application testing structure as shown in Fig. 10. This research implements two

applications, i.e. application A and B, that each application uses their own DBMS type.

Application A uses MariaDB, while application B uses PostgreSQL as their data

storage. Application A has one table of Student in MariaDB server. Application B also

has one table of Book in PostgreSQL server. Both Student and Book have similar

columns and numbers in their respective database server.

Aryo Pinandito et al., Framework Design for Modular Web-based .. 56

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Fig. 11. Implementation and test environment setup

By using framework and application setup structure as depicted in Fig. 10, in order

to depicts the application framework characteristics and evaluates its functionalities as

previously designed, several test scenarios used in this research are:

1. Application A receive a request to display a list of students and put another

student data that retrieved or written from/into a MariaDB database server.

This scenario evaluates the Controller and CollectionService components of

Application A functionalities in providing services to user request.

2. Application B receive a request to display a list of books and put another

student data that retrieved or written from/into a PostgreSQL database. This

scenario also evaluates the Controller and CollectionService components of

Application B functionalities in providing services/data to user request from a

different data sources.

3. Application B receive a request to display a list of students that retrieved from

MariaDB database that is provided by Application A. This scenario evaluates

both Controller of Application B and BridgeController of Application A

communication which depicts the capability of one application to be able to

interact with another application to obtain data/information that is owned or

provided by another application or platform.

Test scenario number 1 and 2 from the above test scenarios are depicting the

abilities of the designed framework to simultaneously run several applications and also

showing that applications are able to perform database operations regardless the type

of database used. Test scenario number 3 shows the designed framework abilities in

providing data communication mechanism between different applications.

Below is an example of a Student object representation as Student Model class

57 JITeCS Volume 2, Number 1, 2017, pp 41-65

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Application A Student Model class named Student

<?php

class Student {

 public $id;

 public $name;

 public $email;

}

In the proposed design, a Model is a basic representation of problem domain object

without concerns on how the Model object will communicate with database servers.

Therefore, there is no need to implements data communication code with database

server in a Model class as Model's database manipulation and operation functionalities

will be independently implemented in application CollectionService classes. An

implementation example of an application CollectionService is shown in below code:

Application A CollectionService class named StudentCollectionService

<?php

class StudentCollectionService extends

CollectionService {

 public function __construct() {

 parent::__construct();

 }

 public function readAll() {

 $sql = "SELECT * FROM students";

 $this->dbConnector = new

MySQLConnector($connectParam);

 $this->dbConnector->connect();

 $result = $this->dbConnector->query($sql);

 $students = array();

 foreach($result as $row) {

 $s = new Student();

 $s->id = $row['id'];

 $s->name = $row['name']

 $s->email = $row['email'];

 array_push($students, $s);

 }

 return $students;

 }

 public function save($id, $name, $email) {

 $sql = "INSERT INTO student (id, name, email) "

 $sql.=."VALUES ('$id', '$name', '$email') "

 $sql.=."ON DUPLICATE KEY update name = '$name', "

 $sql.=."email = '$email')";

 $this->dbConnector = new

MySQLConnector($connectParam);

 $this->dbConnector->connect();

Aryo Pinandito et al., Framework Design for Modular Web-based .. 58

p-ISSN: 2540-9433; e-ISSN: 2540-9824

 $result = $this->dbConnector->query($sql);

 return $result;

 }

 }

Application A Controller class named HomeController

<?php

 class HomeController extends Controller {

 public function __construct() {

 parent::__construct();

 }

 public function index() {

 $studentCs = new StudentCollectionService();

 $listOfStudents = $studentCs->readAll();

 $this->presenter->show('studentIndex.php',

 $listOfStudents);

 }

 public function save($id, $name, $email) {

 $studentCs = new StudentCollectionService();

 $status = $studentCs->save($id, $name, $email);

 if($status) $this->index();

 else $this->presenter->showError('Database

Error');

 }

 }

Examples of an implementation codes of an application BridgeController in PHP

programming language, which allow other applications to retrieve all student data

contained in MariaDB database of application, is shown below:

59 JITeCS Volume 2, Number 1, 2017, pp 41-65

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Application A BridgeController class named HomeBridgeController that allow other application

to retrieve student data.

<?php

 class HomeBridgeController extends BridgeController {

 public function __construct() {

 parent::__construct();

 }

 public function getStudents() {

 $studentCs = new StudentCollectionService();

 $listOfStudents = $studentCs->readAll();

 $this->presenter->jsonEncode('studentIndex.php',

 $listOfStudents');

 }

Application B Controller class named HomeController that retrieves student data from

Application A

<?php

 class HomeController extends Controller {

 public function __construct() {

 parent::__construct();

 }

 public function index() {

 $encodedData =

 $this->callApi('appA','home/index/getStudents');

 $listOfStudents =

 $this->presenter->jsonDecode($encodedData);

 $this->presenter->show('studentIndex.php',

 $listOfStudents);

 }

Test Result. Based on the test conducted to the scenario number 1 and 2, it is known

that the proposed framework was able to run multiple applications simultaneously in a

single application framework setup. The dispatcher for the application framework is

able to identify application to run from a request URL given from users. Both

applications are able to obtain and return the requested data in a particular format from

two different DBMS type using MCCP design pattern.

On the test scenario number 3, a request to application B is trying to obtain the

same data as test scenario number 1. However, in order to obtain the requested data

from application A, application B communicates with application A through an API

call. Based on the test, a client request to application B that requires data from

application A can be successfully completed.

In order to measure the application framework performance characteristics, several

runtime execution tests were done based on the test scenario number 1 and 3. During

runtime execution tests, the execution time of a request and its memory usage were

Aryo Pinandito et al., Framework Design for Modular Web-based .. 60

p-ISSN: 2540-9433; e-ISSN: 2540-9824

measured. The measurements were conducted for read-write requests of a single

application and read-write requests that requires inter-application communication. The

application framework execution time measurement results are shown in Table 1. The

measurement tests were performed using Apache JMeter as application's client.

The proposed framework was deployed in a Linux Centos 7 as an Oracle

VirtualBox guest operating system in Windows 10 Professional host. The guest

operating system is configured to run with 1 core of CPU, with 1024 MB of memory.

The host machine is running on a physical Intel Core i7-4790 CPU with 1TB of HDD,

8 GB of DDR3 RAM, and virtualization settings enabled in BIOS. Both application

framework and database servers are installed and running inside guest operating system.

Application framework software testing environment used during testing are Apache

Web Server 2.2, PHP 5.6 library, MariaDB 5.5.50, and PostgreSQL 9.6.1.

Table 1. Application framework execution time performance measurement test results.

No
MCCP MCCP Bridge

Read (ms) Write (ms) Read (ms) Write (ms)

1 49.49 49.59 72.31 81.32

2 49.79 48.55 70.08 83.59

3 39.92 54.13 72.40 83.90

4 45.25 45.11 67.44 84.53

5 40.37 43.59 80.05 87.03

6 39.65 40.57 76.44 81.19

7 53.20 41.32 85.49 78.76

8 39.96 40.27 79.14 69.85

9 40.38 41.63 80.56 70.41

10 40.79 50.82 74.79 69.79

11 49.19 50.58 66.61 72.75

12 54.45 40.32 67.96 69.10

13 42.31 40.12 67.60 75.82

14 41.08 40.97 70.84 69.34

15 41.57 40.95 72.61 71.55

16 40.77 41.39 71.81 71.87

17 41.76 40.68 71.37 71.14

18 46.10 45.73 70.87 72.71

19 40.38 40.18 80.23 70.69

20 41.05 40.05 69.18 69.50

21 40.87 48.03 76.73 75.11

22 42.91 41.04 70.76 70.02

23 41.76 39.97 71.07 72.24

24 38.88 41.67 71.00 69.11

25 45.62 42.44 68.94 67.82

Average 43.50 43.59 73.05 74.37

Table 2. Application framework average memory usage.

 Read (kB) Write (kB)

MCCP 1164.696 1135.240

MCCP Bridge 921.166 907.265

61 JITeCS Volume 2, Number 1, 2017, pp 41-65

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Fig. 12. Memory usage in read and write data operation for a single MCCP and

MCCP Bridge communication scenarios.

Table 3. Read and write execution time comparison between the proposed application

framework and CodeIgniter framework in milliseconds.

No
MCCP Framework CodeIgniter

Read (ms) Write (ms) Read (ms) Write (ms)

1 49.49 49.59 48.89 45.18

2 49.79 48.55 47.18 51.57

3 39.92 54.13 42.37 43.76

4 45.25 45.11 44.55 46.57

5 40.37 43.59 43.72 42.99

6 39.65 40.57 42.10 41.05

7 53.20 41.32 42.04 46.45

8 39.96 40.27 46.40 49.94

9 40.38 41.63 41.52 39.90

10 40.79 50.82 41.48 40.31

11 49.19 50.58 41.11 41.66

12 54.45 40.32 43.61 40.57

13 42.31 40.12 41.74 44.94

14 41.08 40.97 52.03 40.09

15 41.57 40.95 43.76 41.75

16 40.77 41.39 46.14 42.46

17 41.76 40.68 44.33 42.36

18 46.10 45.73 42.58 41.87

19 40.38 40.18 45.16 40.61

20 41.05 40.05 51.68 41.23

21 40.87 48.03 50.81 41.39

22 42.91 41.04 43.63 40.69

23 41.76 39.97 46.39 40.37

24 38.88 41.67 44.35 41.44

25 45.62 42.44 42.79 44.12

Average 43.50 43.59 44.82 42.93

Based on the execution time performance tests and comparison shown in Table 1,

there is an additional 30 milliseconds in average of additional time overhead in an

application request that requires an API call than a request that does not requires

1164.696 1135.24

921.166 907.265

0

200

400

600

800

1000

1200

Read Write

M
e
m

o
ry

 U
sa

g
e
 (
kB

yt
e
s)

Database Operation

Read and Write Operations Memory Usage

MCCP

MCCP Bridge

Aryo Pinandito et al., Framework Design for Modular Web-based .. 62

p-ISSN: 2540-9433; e-ISSN: 2540-9824

external application data. However, there are no significant execution time differences

between read and write data operations for both scenarios. The memory usage between

test scenario number 1 and 3 of the requested application is shown in Table 2 and Fig.

12. It shows that the memory usage in a single MCCP application request in a read or

write data operation, requires around 1.1 MB of memory. A single MCCP application

request that requires external application data uses memory for about 900 kB.

This research also conducts execution time and memory usage comparison

between the proposed framework and the popular CodeIgniter framework. The time

execution and the memory usage comparison between the proposed framework and

CodeIgniter framework is shown in Table 3. Based on the test results shown in Table

3, both the proposed framework and CodeIgniter framework takes around 43ms in

average to perform read or write data operation in a single application request.

However, there are no significant execution time differences between the proposed

MCCP application framework and CodeIgniter framework.

Fig. 13. Memory usage comparison in read and write data operation between MCCP and

CodeIgniter framework in kilobytes.

Based on the application memory usage comparison between the proposed MCCP

application framework and CodeIgniter as shown in Table 1, there are significant

memory usage differences for a single read and write data operation request. The

proposed framework uses 1.1 MB of memory while the CodeIgniter framework requires

more than 2000 kB of memory in both read and write data operation scenarios for a

single request. The software version of CodeIgniter framework used in the comparison

test is v3.1.3.

4. Result and Discussion

In this paper, we have demonstrated the implementation of a new approach web-based

design pattern MCCP. The proposed design pattern is able to communication between

application and more flexible due to the change of the business process requirements.

Such representations are advantageous for many reasons. For example, the proposed

design pattern in this research is designed based on real world organization problems

in a highly changing requirement environment and developed on the basis of the needs

of data integration between different applications within the organization.

2256.547
2083.328

1164.696 1135.24

0

500

1000

1500

2000

Read Write

M
e
m

o
ry

 U
sa

g
e
 (
kB

)

Memory Usage Comparison

CodeIgniter Framework MCCP Framework

63 JITeCS Volume 2, Number 1, 2017, pp 41-65

p-ISSN: 2540-9433; e-ISSN: 2540-9824

The test results in this MCCP design pattern application framework shows that the

application framework use less resources than another similar MVC framework such as

CodeIgniter in terms of memory usage. Furthermore, MCCP design pattern also cope

the flexibility problem in data format presentations by providing a Presenter in the

designed framework. Based on the test conducted, the designed framework is capable

to run multiple applications simultaneously in a single framework setup.

In overall, MCCP-based modular application framework is successfully

implemented and tested with some drawbacks. First, this design pattern requires more

performance, scalability, and several other non-functional evaluations before being

used in a large-scale production environment in order to know the behavior of the

application framework in a large-scale environment. Second, despite the interrelation

is assumed in same organization, it has not implements an authentication mechanism

between application. Third, the possibilities in scaling the application server physical

setup yields session handling and application handling problems. Fourth, when several

applications run by a single application framework and problems occurred in the

application framework itself instead of the application that run on top of it, then every

application that is currently running will be unstable.

Based on the measurement test results, a single application request that requires

external application data requires less memory. This is due to an application Controller

that requires data from external applications, it performs an external API call to obtain

the requested data instead of instantiating a CollectionService. However, despite of

using less memory, the external applications that provide the necessary data from the

API call in the second scenario also uses memory as in the first scenario. Therefore, if

the memory usage of both applications that communicate were summed, then they both

requires more memory than in a single application usage scenario. Security issue in

inter-application communication should be taken into concern. As the proposed

communication mechanism offer several possibilities to access an application API from

different type of application as its clients.

Future enhancements can be performed by adding a particular User Access Control

(UAC) mechanism based on defined application user roles such as Role-Based Access

Control (RBAC) thus improving security in the mechanism of data access. Another

enhancement to the designed framework is the ability in managing running applications

during runtime as multiple applications will run on top of it. Instability of application

will affect the overall stability of other applications. Therefore, a dedicated Operational

and Maintenance (OAM) systems that allow system administrator to monitor the

runtime condition and manage every application that run over the framework would be

highly necessary.

5. Conclusion

This paper presents design of a web application framework that allow multiple

application run on top of it. The framework implements Model-CollectionService-

Controller-Presenter (MCCP) design pattern. It enables application to provide web

services or API and exchanges data between applications through API call mechanism

which handled by BridgeControllers of application. Application request between from

a web browser and an application Controller as clients were handled differently.

Aryo Pinandito et al., Framework Design for Modular Web-based .. 64

p-ISSN: 2540-9433; e-ISSN: 2540-9824

There are no noticeable differences in terms of execution time between the

proposed framework design and CodeIgniter application framework. The proposed

application framework had a similar performance in terms of the execution time

required to process a single request. However, the proposed application framework

requires less memory to process a single data operation request from a client.

Inter-application communication between an application Controller and another

application BridgeController has 30ms execution time overhead on a single application

framework local setup. Despite of less memory usage of the requested application in

this inter-application communication scenario, there is an additional memory

requirement for the other requested application in processing other application the

request. In other words, when an application calls another applications API, it is

basically the same as running two or more applications at the same time, thus requires

more computing resources. However, data exchanges between applications is made

possible with the proposed mechanism in the designed framework.

In larger context, there are possibilities in implementing the proposed framework

design into mobile platform so that a single mobile application could provide different

and modular services as required by its users. However, the implementation of the

designed framework in mobile platform could be analyzed and researched further to

obtain several findings and depicting its characteristics. System scaling in terms of data

capacity and performance-related problems could be an interest of further research,

analysis, and improvement.

Acknowledgments. We would like to convey our biggest appreciation to all members

of Application and Integration System division of Information and Communication

Unit in Universitas Brawijaya and all our colleagues who contributes and share their

thoughts into our works.

References

1. Youngwerth, A.: What are the advantages and disadvantages of web based application

development vs. desktop application development?. Quora,

https://www.quora.com/What-are-the-advantages-and-disadvantages-of-web-based-

application-development-vs-desktop-application-development

2. Vliet, H. v.: Software Engineering: Principles and Practice. Wiley, (2007)

3. Arora, S.: PHP Frameworks: The Best 10 for Modern Web Development, " in

NoeticForce. NoeticForce, http://noeticforce.com/best-php-frameworks-for-modern-

web-development.

4. Meeus, J.: MVC – a Problem or a Solution?. Sitepoint, https://www.sitepoint.com/mvc-

problem-solution/.

5. Pop, D.: Designing an MVC Model for Rapid Web Application Development. (2014)

6. Sa'adah, U.: Implementing Singleton method in Design of MVCBased PHP Framework.

(2015)

7. Shams, H.: MVCC: An Architectural Pattern for Developing Context-aware

Frameworks. (2014)

8. Salas-Zárate, M. d. P.: Analyzing best practices on Web development frameworks: The

lift approach. (2015)

65 JITeCS Volume 2, Number 1, 2017, pp 41-65

p-ISSN: 2540-9433; e-ISSN: 2540-9824

9. Sridaran, R, Padmavathi, G, Iyakutti, K: A Survey of Design Pattern Based Web

Applications. Journal of Object Technology, vol. 8, no. 2. (2009) 61-70.

10. TM Staff: What is MVC Architecture in a Web-Based Application?. Trademark

Productions [https://www.tmprod.com/blog/2012/what-is-mvc-architecture-in-a-web-

based-application/

11. The Internet Society Hypertext Transfer Protocol -- HTTP/1.1,

https://www.w3.org/Protocols/rfc2616/rfc2616.txt

