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Abstract— The financial industry has been becoming more and more dependent on advanced computing technologies in order to 

maintain competitiveness in a global economy. Hence, the stock price prediction problem using data mining techniques is one of the 

most important issues in finance. This field has attracted great scientific interest and has become a crucial research area to provide a 

more precise prediction process. Fuzzy logic (FL) and Artificial Neural Network (ANN) present an exciting and promising technique 

with a wide scope for the applications of prediction. There is a growing interest in both fields of fuzzy logic computing and the 

financial world in the use of fuzzy logic to predict future changes in prices of stocks, exchange rates, commodities, and other financial 

time series. Fuzzy logic provides a way to draw definite conclusions from vague, ambiguous or imprecise information. Artificial 

Neural Network is one of data mining techniques being widely accepted in the business area due to its ability to learn and detect 

relationships among nonlinear variables. The ANN outperforms statistical regression models and also allows deeper analysis of large 

data sets, especially those that have the tendency to fluctuate within a short of time period. In this paper, we investigate the ability of 

Fuzzy logic and multilayer perceptron (MLP), which is a kind of the ANN, to tackle the financial time series stock forecasting 

problem. The proposed approaches were tested on the historical price data collected from Yahoo Finance with different companies. 

Furthermore, the comparison between those techniques is performed to examine their effectiveness. 

 
Keywords— Fuzzy Logic, Fireworks algorithm, Back-propagation algorithm, stock price forecasting, Multilayer Perceptron Neural 

Network, Wavelet transform. 

 

 

I. INTRODUCTION 

The problem of stock price prediction is one of essential 

topics in the fields of finance and business economics. A 

smart system would be able to predict the stock price and 

give a guide to investors to buy a stock before the price rises, 

or sell it before its value declines. Although it is very 

difficult to substitute the role of experts, an accurate 

prediction algorithm can directly result in high profits for 

investment firms. However, the stock market tendencies are 

non-linear, uncertain, non-stationary, and they seem to 

contain more significant risks than ever before in forecasting 

the stock price [1, 2]. 

The purpose of investors is to attain the high and stable 

profit. Therefore, a number of methods have been proposed 

to generate more accurate estimation results in which multi-

layer perceptron (MLP) Neural Network [3] is one of 

techniques which are widely used for computing the stock 

price. Several studies indicated that MLP is more efficient 

than statistical regression models and also allows deeper 

analysis of large data sets, especially those that have the 

tendency to fluctuate within a short of period of time [4-6]. 

To enhance the effectiveness of prediction models, the pre-

processing methods and optimization algorithms are often 

combined with ANN [6] and Fuzzy Logic [7]. In this paper, 

the close price will be predicted by using two approaches 

including MLP with input data being historical close prices 

and the type-2 fuzzy time series model with input data being 

historical close, high, low, and open prices. In both methods, 

Haar Wavelet Transform is employed for the pre-processing 

and the Fireworks algorithm (FA) [8] is utilized to optimize 

the weights and biases of MLP before training MLP using 

the back propagation algorithm. The FA is also used for 

optimizing the lengths of intervals in the type-2 fuzzy time 

series model. The Wavelet transform (WT) is to decompose 

the stock price time series and to eliminate noise, because 

the representation of a wavelet can tackle the non-stationary 

involved in the economic and financial time series [9]. The 

Fireworks algorithm is a novel swarm intelligence proposed 

by Ying Tan [10] with promising results in the accuracy of 

optimization and the speed of convergence. This algorithm 

can seek optimal solutions and create the balance between 

exploration and exploitation as well as giving accurate 

outcomes of estimated stock prices. 

The goal of this study is to assess the efficiency of MLP 

and the type-2 fuzzy time series model improved by 
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applying the pre-processing and the FA in solving regression 

problems for a specific field such as the stock market. 

The rest of this paper is organized as follows: section 2 

presents about the proposed methodology. The experiments 

and results are shown in the section 3. Section 4 is 

conclusion and future work. 

II. MATERIAL AND METHOD 

In the stock price prediction, there are two main analysis 

techniques: technical and fundamental analyses. Technical 

analysis uses historical time-series to give the outcomes, 

while fundamental analysis focuses on the forces of supply, 

the past performance of the company, and the earnings 

forecast.  

In this paper, we use the technical analysis in combination 

with MLP, Haar Wavelet Transform, the FA, and the type-2 

fuzzy time series model. Fig. 1 shows the overview of the 

proposed method. 

Eliminating noise by using Wavelet 
Transform

Optimizing weights and biases 
of MLP by the FA

Training MLP using the back 
propagation algorithm

Optimizing the lengths of intervals in 
the type 2 fuzzy time series model by 

the FA

Applying the type 2 fuzzy time series 
model for predicting

Evaluating the effectiveness of the 
Wavelet Transform and the FA

Comparing the estimated results of MLP 
and type 2 fuzzy time series model
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Fig. 1  The overview of proposed approach 

A. Choosing data formatting and prediction targets 

In the problem of predicting stock prices, there are some 

factors being used to analyse such as moving average (MA), 

relative strength index (RSI), Boilinger bands, close/open 

prices, and volume oscillator. The selection of appropriate 

indexes and factors depends on experiences of traders and 

kinds of shares. 

This paper uses the close price as a target of prediction. 

As for MLP, the input data include historical close prices, 

while with regard to the type-2 fuzzy time series model the 

historical close, open, high, and low prices are used for input 

data. 

B. Noise filtering using Haar wavelet transforms 

The first step of the data pre-processing is the use of 

wavelet transform to decompose the financial time series and 

eliminate noise as the representation of a wavelet can resolve 

the non-stationary involved in the economic and financial 

time series [9]. 

Wavelets are mathematical tools that can break data into 

various frequency components, and then each element is 

considered with a resolution matched to its scale. The 

wavelet transform might overcome the limitations of Fourier 

transform when coping with unexpected and unforeseen 

disruptions [11]. 

There are a wide range of popular wavelet algorithms 

including Daubechies wavelets, Mexican Hat wavelets and 

Morlet wavelets. These wavelet algorithms have the 

advantage of better resolution for smoothly changing time 

series. Nonetheless, their computational expense is much 

higher than the Haar wavelets. 

The Haar wavelet algorithm works on time series whose 

size is a power of two (e.g., 32, 64, 128...). Each step of the 

wavelet transform creates two sets of values: a set of 

averages and a set of differences known as wavelet 

coefficients. Each set is a half of the size of the input data. 

For instance, if the time series has 128 elements, the first 

step will generate 64 averages and 64 coefficients. The set of 

averages then becomes the input for the next step (e.g., 64 

averages creating a new set of 32 averages and 32 

coefficients). This process is iterated until one average and 

one coefficient are obtained. 

The strength of two coefficient spectrums generated by a 

wavelet calculation reflects the change in time series at 

different resolutions. The first coefficient band describes the 

highest frequency changes. This is noisiest part of the time 

series. This noise can be removed by employing threshold 

techniques. Each later band reflects changes at lower and 

lower frequencies. 

C. Fireworks Algorithm 

1)  The introduction of Fireworks algorithm 

 
 

Fig. 2  A framework of the fireworks algorithm 

 

The Fireworks algorithm is a novel swarm intelligence 

algorithm inspired by observing the fireworks explosion and 

is proposed for global optimization of complex functions [8]. 
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When a firework explodes, a shower of sparks will be 

created around the firework. The explosion process of 

fireworks can be considered as a local search around a 

specific point. To seek a point xi such that f(xi) = y, 

‘fireworks’ are continually set off in potential space until 

reaching one ‘spark’ target or one target being fairly close to 

the point xi. Imitating the explosion process of fireworks, a 

rough framework of the FA is described in Fig. 2. 

2)  Types of Fireworks Explosion 

In the process of observation of fireworks, the fireworks 

explosion is divided into two specific types. A good firework 

explosion generates numerous sparks which centralize the 

explosion center. In contrast, a bad firework explosion 

generates quite a few sparks which scatter around the 

explosion center as shown in Fig. 3. 

 

 
Fig. 3  Two kinds of fireworks explosion 

 

Number of Sparks: Suppose that the FA is designed for 

the general optimization problem: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) ∈ 𝑅, 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥   (1) 

where 𝑥 =  [𝑥1, 𝑥2, … , 𝑥𝐷]  is a position in the potential 

space of solutions, 𝑓(𝑥) is an objective function, 𝑥𝑚𝑖𝑛  and 

𝑥𝑚𝑎𝑥 are lower and upper bounds of the potential space, 𝐷 is 

the dimensionality of vector 𝑥. 

The number of sparks generated by each firework 𝑥𝑖  is 

defined as in Eq. (2). 

 𝑠𝑖 = 𝑡×
𝑦𝑚𝑎𝑥−𝑓(𝑥𝑖)+𝜉

∑ (𝑦𝑚𝑎𝑥−𝑓(𝑥𝑗))+𝜉𝑛
𝑗=1

 (2) 

where 𝑡 is a parameter controlling the total number of sparks 

generated by n fireworks, 𝑦𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑓(𝑥𝑖)) (𝑖 =

1, 2, … , 𝑛)  is the maximum or minimum value of the 

objective function among n fireworks, and ξ  denotes the 

smallest constant being used to avoid zero-division-error. 

In order to avoid overwhelming effects of gorgeous 

fireworks, bounds are defined for 𝑠𝑖 as specified in Eq. (3). 

 �̂�𝑖 = {

𝑟𝑜𝑢𝑛𝑑(𝑎×𝑡) 𝑖𝑓 𝑠𝑖 < 𝑎×𝑡              

𝑟𝑜𝑢𝑛𝑑(𝑏×𝑡)       𝑖𝑓 𝑠𝑖 < 𝑏×𝑡, 𝑎 < 𝑏 < 1

𝑟𝑜𝑢𝑛𝑑(𝑠𝑖)      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

  (3) 

where 𝑎 and 𝑏 are constant parameters. 

Amplitude of Explosion: In contrast to the design of 

sparks number, the amplitude of a good firework explosion 

is smaller than that of a bad one. Amplitude of the explosion 

for each firework is defined as in Eq. (4). 

 𝐴𝑖 = �̂�×
𝑓(𝑥𝑖)−𝑦𝑚𝑖𝑛+𝜉

∑ (𝑓(𝑥𝑗)−𝑦𝑚𝑖𝑛)+𝜉𝑛
𝑗=1

 (4) 

where �̂� is the maximum explosion amplitude, and 𝑦𝑚𝑖𝑛 =

𝑚𝑖𝑛(𝑓(𝑥𝑖)) (𝑖 = 1, 2, … , 𝑛)  denotes the minimum or best 

value of the objective function among n fireworks. 

Generating Sparks: In the process of explosion, sparks 

might be affected by the explosion from random 𝑧 

dimensions. In the FA, the dimensionality 𝑧 is shown as in 

Eq. (5). 

 𝑧 = 𝑟𝑜𝑢𝑛𝑑(𝐷×𝑟𝑎𝑛𝑑(0, 1)) (5) 

where 𝐷  is the number of dimensions of vector 𝑥 , and 

𝑟𝑎𝑛𝑑(0, 1) is a random number in the range of [0, 1]. 
The location of a spark of the firework 𝑥𝑖 is obtained by 

using Algorithm 1. Imitating the explosion process, a spark’s 

location �̃�𝑗  is initially produced. Then, if the obtained 

location is out of the potential space, it is mapped to the 

potential space. 

Algorithm 1. Obtain the location of a spark 

Initialize the location of the spark: �̃�𝑗 = 𝑥𝑖; 

𝑧 = 𝑟𝑜𝑢𝑛𝑑(𝐷×𝑟𝑎𝑛𝑑(0, 1)); 
Randomly choose z dimensions of �̃�𝑗; 

Compute 𝑑 = 𝐴𝑖×𝑟𝑎𝑛𝑑(−1, 1); 

for each �̃�𝑘
𝑗
 ∈ { pre-selected z dimensions of �̃�𝑗} do 

�̃�𝑘
𝑗

= �̃�𝑘
𝑗

+ 𝑑; 

if  �̃�𝑘
𝑗

< 𝑥𝑘
𝑚𝑖𝑛 or �̃�𝑘

𝑗
> 𝑥𝑘

𝑚𝑎𝑥  then 

Mapping �̃�𝑘
𝑗
into the potential space: �̃�𝑘

𝑗
= 𝑥𝑘

𝑚𝑖𝑛 +

|�̃�𝑘
𝑗
 | % (𝑥𝑘

𝑚𝑎𝑥 − 𝑥𝑘
𝑚𝑖𝑛); 

end if 
end for 

To maintain the diversity of sparks, there is another way 

of generating sparks called Gaussian explosion, which is 

shown in Algorithm 2. Function 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(1, 1) which is a 

Gaussian distribution with mean 1 and standard deviation 1 

is used to define the coefficient of the explosion. �̂� sparks of 

this kind are generated in each explosion generation. 

Algorithm 2. Find the position of a specific spark 

Initialize the location of the spark: �̂�𝑗 = 𝑥𝑖; 

𝑧 = 𝑟𝑜𝑢𝑛𝑑(𝐷×𝑟𝑎𝑛𝑑(0, 1)); 

Randomly choose z dimensions of �̂�𝑗; 

Compute the coefficient of Gaussian explosion:  𝑔 =
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(1, 1); 

for each �̂�𝑘
𝑗
 { pre-selected z dimensions of �̂�𝑗} do 

�̂�𝑘
𝑗

= �̂�𝑘
𝑗
×𝑔; 

if  �̂�𝑘
𝑗

< 𝑥𝑘
𝑚𝑖𝑛 or �̂�𝑘

𝑗
> 𝑥𝑘

𝑚𝑎𝑥 then 

Mapping �̂�𝑘
𝑗
 to the potential space: �̂�𝑘

𝑗
= 𝑥𝑘

𝑚𝑖𝑛 +

|�̂�𝑘
𝑗
 | % (𝑥𝑘

𝑚𝑎𝑥 − 𝑥𝑘
𝑚𝑖𝑛); 

end if 

end for 

3)  Selection of Locations 

At the beginning of each explosion generation, 𝑛 

locations will be selected for the fireworks explosion. In the 

FA, the current best position 𝑥∗ is always kept for the next 

explosion generation. After that, 𝑛 − 1  other locations are 

chosen based on their distance to other locations in order to 

keep the diversity of sparks. The general distance between a 

location 𝑥𝑖 and other locations is defined as in Eq. (6). 

 𝑅(𝑥𝑖) = ∑ 𝑑(𝑥𝑖 ,  𝑥𝑗) = ∑ ‖𝑥𝑖 − 𝑥𝑗‖𝑗𝜖𝐶𝑗𝜖𝐶  (6) 

where 𝐶 is the set of all current locations of both fireworks 

and sparks. 

The selection probability of a location 𝑥𝑖 is then specified 

as in Eq. (7). 
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 𝑝(𝑥𝑖) =
𝑅(𝑥𝑖)

∑ 𝑅(𝑥𝑗)𝑗𝜖𝐾
  (7) 

When assessing the distance, any distance measure can be 

used including Manhattan distance, Euclidean distance, 

Angle-based distance, etc. In this paper, Euclidean distance 

is used for computing the distance. 

4)  Summary contents of the algorithm 

Algorithm 3 shows the framework of the FA. In each 

generation, two types of sparks are created respectively as 

shown in Algorithm 1 and Algorithm 2. In the first type, 

explosion amplitude and the number of sparks rely on the 

quality of the corresponding firework. In contrast, the second 

kind is created using a Gaussian explosion process, which 

carries out seeking in a local Gaussian space around a 

firework. 

Algorithm 3.  Fireworks algorithm 

Randomly choose n locations for fireworks; 

while stopping criteria is not met do 

Set off n fireworks respectively at n locations: 

for each firework 𝑥𝑖 do 

Compute the number of sparks that the firework produces: 

�̂�𝑖, using Eq. (2) and Eq. (3); 

Find locations of �̂�𝑖 sparks of the firework 𝑥𝑖 using 

Algorithm 1 

end for 

for 𝑘 = 1 → �̂� do 

Randomly choose a firework 𝑥𝑗; 

Create a specific spark for the firework using Algorithm 2; 

end for 

Choose the best location and keep it for next explosion 

generation; 

Randomly select n - 1 locations from the two types of sparks 

and the current fireworks according to the probability Error! 

Reference source not found. 

end while 

D. Multilayer Perceptron for the stock price prediction 

problem 

ANN is one of techniques that are widely used in trade 

and finance because of its capability of learning and 

identifying the relationships among non-linear variables. 

Some studies proved that ANN is more efficient than 

statistical regression models and allows deeper analysis of 

large data sets, especially those that tend to oscillate within a 

short of period of time [4-6]. However, in the problem of 

finance prediction with huge time series data, specific pre-

processing techniques and optimization algorithms have to 

be used to enhance the accuracy of predicted results. 

In this study, a multilayer perceptron, which is a kind of 

ANNs, is combined with the Haar wavelet transform and the 

FA [8] to construct a stock price prediction system. The 

Haar wavelet mentioned before will be employed to analyse 

stock price data and to filter noise. The wavelet transform 

can handle unstable signals in the fields of economics and 

finance [9]. The FA is used for optimizing weights and 

biases of MLP in order to improve the accuracy and learning 

ability of MLP. 

1)  Neural Network Setting 

In general, a multilayer perceptron might have many 

hidden layers with unlimited number of neurons of each 

layer. However, theoretical works have shown that an MLP 

with one hidden layer is good enough to approximate any 

complex non-linear functions [12]. In addition, many studies 

and experimental results also indicate that one hidden layer 

is sufficient for most forecasting problems [4, 13, 14]. 

Therefore, this work uses the architecture of MLP neural 

network with one hidden layer. 

Other difficult tasks when selecting good parameters for 

MLP are the number of hidden neurons and the activation 

function. Setting an appropriate architecture of MLP for a 

particular problem is an important task because the network 

topology directly affects to its computational complexity and 

generalization ability. If the training data set is divided into 

groups with similar features, the number of these groups can 

be used for the number of hidden neurons. In the case that 

training data distribute scattered and do not contain the same 

features, the number of connections may be quite equal to 

the number of training samples to maintain the convergence 

ability of MLP.  

However, too much hidden layers or hidden neurons will 

drive MLP to the over-fitting which means that MLP 

performs well on training data but poorly on data it has not 

seen. This leads to the inability of generalization of MLP. 

Based on conducted experiments and other studies as in [7, 

15], the MLP with 8 neurons for the hidden layer and a 

bipolar Sigmoid function (Fig. 4) as an activation function 

for both hidden and output layers is suitable for forecasting 

the stock price. 

 

 
Fig. 4  Bi-polar sigmoid function 

 

Fig. 5 describes the architecture of the MLP used in our 

work. The input layer contains 30 neurons corresponding to 

30 close prices of 30 latest days. The output layer including 

one neuron is the close price of the next day. 

 
Fig. 5  An architecture of the MLP for the stock prediction system – 
windowSize-8-1 
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2)  Optimizing Weights and Biases of the MLP using the 

FA 

In this paper, the FA is applied to optimize the weights 

and biases of the MLP before the training process. A 

firework individual is shown in Fig. 6. 

The FA was presented in the section 2.3 in which 𝐷 being 

the dimensionality of vector 𝑥 is computed as in Eq. (8) and 

its description is shown in Table I. 

 𝐷 = 𝐼𝑊{1, 1} + 𝑏{1, 1} + 𝐿𝑊{2, 1} + 𝑏{2, 1} (8) 

TABLE I 

PARAMETERS FOR PROPOSED ANN (WINDOWSIZE-8-1) 

Value Symbol Description 

windowSize×8 IW{1, 1} 
Weights of connections from the 

input layer to the hidden layer 

8 b{1, 1} 
Biases of neurons in the hidden 

layer 

8×1 LW{2, 1} 

Weights of the connections 

between the hidden layer and 

output 

1 b{2, 1} The bias of the output neuron 

3)  Training the MLP by Back-propagation Algorithm 

After optimizing the MLP by using the FA, the training 

process is continued with back -propagation algorithm in 

about 1000 cycles more. 

E. Type-2 Fuzzy time series Model for the problem of stock 

price prediction 

1)  Some definitions of fuzzy sets and fuzzy time series 

Definition 1: Fuzzy set 

Fuzzy set 𝐴 of the universe of discourse U is represented 

by all pairs of elements (𝑥, 𝜇𝐴(𝑥)) as follows: 

𝐴 = {(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ 𝑈} 

where: 

𝑈: is the universe of discourse of the fuzzy set A, which is 

discrete and finite 

𝜇𝐴: is the membership function of the fuzzy set 𝐴 

𝜇𝐴(𝑥): is the level of the dependence of x on the fuzzy set 𝐴 

Definition 2: Fuzzy time series 

Let 𝑌(𝑡) (𝑡 = ⋯ , 0, 1, 2, … ) be a subset of R and 𝑌(𝑡) be 

the universe of discourse on which fuzzy sets 𝑓𝑖(𝑡)  are 

defined. If 𝐹(𝑡) is a collection of 𝑓1(𝑡), 𝑓2(𝑡), …, then 𝐹(𝑡) is 

called a fuzzy time series defined on 𝑌(𝑡). 

Definition 3: Fuzzy logical relationship (FLR) 

Assume that 𝐹(𝑡)  is caused by 𝐹(𝑡 − 1)  only. The 

relationship is shown as: 

𝐹(𝑡) = 𝐹(𝑡 − 1) ∗ 𝑅(𝑡, 𝑡 − 1) 

where: 

𝑅(𝑡, 𝑡 − 1) : is the fuzzy logical relationship between 

𝐹(𝑡 − 1) and 𝐹(𝑡) 

*:represents an operator in the fuzzy set 

Let 𝐹(𝑡 − 1) = 𝐴𝑖  and 𝐹(𝑡) = 𝐴𝑗 . The relationship 

between 𝐹(𝑡 − 1) and 𝐹(𝑡) (referred to as the FLR [16]) can 

be denoted by: 

𝐴𝑖 → 𝐴𝑗 

where: 

𝐴𝑖: is called the left-hand side (LHS) 

𝐴𝑗: is called the right-hand side (RHS) 

Definition 4: Fuzzy logical relationship group (FLRG) 

Suppose there are the following FLRs with the same LHS: 

𝐴𝑖 → 𝐴𝑗1 

𝐴𝑖 → 𝐴𝑗2 

… 

𝐴𝑖 → 𝐴𝑗𝑚 

Following Chen’s model [17], these FLRs can be grouped 

into an FLRG as: 

𝐴𝑖 → 𝐴𝑗1, 𝐴𝑗2, … , 𝐴𝑗𝑚 

2)  A type-2 fuzzy time series for the stock price prediction 

problem 

The type-2 fuzzy time series model was proposed by 

Huarng and Yu [18]. This model is the expansion of the 

type-1 model for using more observations. It has two 

important improvements which are the definition of 

operations for utilizing extra observations and the method to 

compute the forecasts. 

a. Some definitions for the type-2 model 

A number of type-1 fuzzy time series models in the past 

used only one variable for forecasting, and only some of the 

observations related to that variable were applied. We refer 

to these observations as type-1 observations, such as the 

closing of the stock index. The type-2 model uses extra 

observations such as open, high, and low prices. 

Definition 5: Type-2 fuzzy time series model 

Type-2 fuzzy time series model can be considered as an 

expansion of a type-1 fuzzy time series model. The type-2 

fuzzy time series model utilizes the FLRs established by a 

type-1 model relied on type-1 observations. Fuzzy operators 

such as union and intersection are used to establish the new 

FLRs obtained from type-1 and type-2 observations. Type-2 

forecasts are obtained from these FLRs [18]. 

Definition 6: Union (∨) and intersection (∧) operators 

FLRG for type-1 observation 

𝐴𝑎 → 𝐴𝑥1, 𝐴𝑥2, … , 𝐴𝑥𝑚 

FLRG for type-2 observation 

{
𝐴𝑏 → 𝐴𝑦1, 𝐴𝑦2, … , 𝐴𝑦𝑚

𝐴𝑐 → 𝐴𝑧1, 𝐴𝑧2, … , 𝐴𝑧𝑚

…

 

Union (∨) and intersection (∧) are defined for FLRG as 

follows: 

∨ (𝐴𝑎 , 𝐴𝑏 , 𝐴𝑐 , … ) = ((𝐴𝑥1, 𝐴𝑥2, … , 𝐴𝑥𝑚)
∪ (𝐴𝑦1, 𝐴𝑦2, … , 𝐴𝑦𝑚)

∪ (𝐴𝑧1, 𝐴𝑧2, … , 𝐴𝑧𝑚)) 

∧ (𝐴𝑎 , 𝐴𝑏 , 𝐴𝑐 , … ) = ((𝐴𝑥1, 𝐴𝑥2, … , 𝐴𝑥𝑚)
∩ (𝐴𝑦1, 𝐴𝑦2, … , 𝐴𝑦𝑚)

∩ (𝐴𝑧1, 𝐴𝑧2, … , 𝐴𝑧𝑚)) 

where ∪  and ∩  are the union and intersection operators 

respectively for set theory. 

Definition 7: Exception case of definition 6 

If ∨ (𝐴𝑎, 𝐴𝑏 , 𝐴𝑐 , … ) = ∅, then let ∨ (𝐴𝑎, 𝐴𝑏 , 𝐴𝑐 , … ) = 𝐴𝑥. 

where 𝐴𝑥  is the LHS of FLRG established by type-1 

observations. 

If ∧ (𝐴𝑎, 𝐴𝑏 , 𝐴𝑐 , … ) = ∅, then let ∧ (𝐴𝑎, 𝐴𝑏 , 𝐴𝑐 , … ) = 𝐴𝑥. 

b. Applying the type-2 fuzzy time series model for the 

stock price prediction problem 

Step 1: Choose a type-1 fuzzy time series model. 

In this paper, Chen’s model [17] is chosen.
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Weights of the connections from  input 

(windowSize neurons) to the hidden layer 

(8 neurons) 

Biases of neurons in the 

hidden layer (8 neurons) 

Weights of the connections 

between the hidden layer (8 

neurons) and output (1 neuron) 

Bias of the 

output 

neuron (1 

neuron) 

Fig. 1  A firework individual is used for optimizing weights and biases of ANN 

Step 2: Pick variables and type-1 observations. 

This work uses the close price for the problem, so the 

close price is selected as type-1 observation. 

Step 3: Apply the type-1 model to type-1 observations and 

obtain FLRGs 

Following Chen’s model, the process of forecasting is 

carried out as follows: 

+ Step 3-1: Define the universe of discourse 𝑈  on 

historical time series data 

𝑈 = [𝑓𝑚𝑖𝑛 − 𝐹1, 𝑓𝑚𝑎𝑥 + 𝐹2] 
where 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥  are minimum and maximum values 

of time series data respectively, 𝐹1 and 𝐹2 are two positive 

numbers. 

+ Step 3-2: Divide the universe of discourse 𝑈  into 𝑛 

equal lengths of intervals 𝐼1, 𝐼2, … , 𝐼𝑛 

There are many previous works on introducing the 

approach to compute the lengths of intervals [19-21]. In this 

paper, the number of intervals n will be calculated by using 

the distribution-based technique [19], then the length of each 

interval will be optimized by the FA. 

+ Step 3-3: Define fuzzy sets for observations 

Fuzzy sets 𝐴𝑖  are defined through the membership 

functions, and we use a triangular fuzzy set (0, 0.5, and 1) as 

a degree of membership. 

𝐴1 = 1/𝐼1 + 0.5/𝐼2 + 0/𝐼3 + ⋯ + 0/𝐼𝑛−1 + 0/𝐼𝑛 

𝐴2 = 0.5/𝐼1 + 1/𝐼2 + 0.5/𝐼3 + ⋯ + 0/𝐼𝑛−1 + 0/𝐼𝑛 

𝐴3 = 0/𝐼1 + 0.5/𝐼2 + 1/𝐼3 + ⋯ + 0/𝐼𝑛−1 + 0/𝐼𝑛 

… 

𝐴𝑛 = 0/𝐼1 + 0/𝐼2 + 0/𝐼3 + ⋯ + 0.5/𝐼𝑛−1 + 1/𝐼𝑛 

+ Step 3-4: Fuzzify the observations. Some fuzzy values 

are shown in Table II. 

TABLE II 

FUZZIFY THE DATA 

Date Close price Fuzzified price 

4/3/2016 710.89 𝐴3 

7/3/2016 695.16 𝐴1 

8/3/2016 693.97 𝐴1 

9/3/2016 705.24 𝐴2 

10/3/2016 712.82 𝐴3 

11/3/2016 726.82 𝐴4 

14/3/2016 730.49 𝐴4 

15/3/2016 728.33 𝐴4 

… … … 

+ Step 3-5: Establish fuzzy relationships based on 

definition 3. Some fuzzy relationships are listed in Table III. 

+ Step 3-6: Establish FLRGs based on Definition 4 and 

are shown in Table IV. 

Step 4: Pick type-2 observations and fuzzify these 

observations. 

Step 5: Map out-of-sample observations to FLRGs for 

type-1 and type-2 observations and obtain forecasts. 

Suppose 𝐹(𝑡 − 1) = 𝐴𝑖  and 𝐴𝑖 → 𝐴𝑖1, 𝐴𝑖2, … , 𝐴𝑖𝑘  then 

𝐹(𝑡) = 𝐴𝑖1, 𝐴𝑖2, … , 𝐴𝑖𝑘. 

For example, the close price at 4/3/2016 is 𝐴3 and FLRG 

is 𝐴3 → 𝐴1, 𝐴4, the close price at 7/3/2016 is 𝐴1, 𝐴4. 

TABLE III 

FUZZY RELATIONSHIPS 

Fuzzy logical relationship 

𝐴3 → 𝐴1 

𝐴1 → 𝐴1 

𝐴1 → 𝐴2 

𝐴2 → 𝐴3 

𝐴3 → 𝐴4 

𝐴4 → 𝐴4 

… 

 

TABLE IV 

FUZZY LOGICAL RELATIONSHIP GROUP 

Fuzzy logical relationship group 

𝐴3 → 𝐴1, 𝐴4 

𝐴1 → 𝐴1, 𝐴2 

𝐴2 → 𝐴3 

𝐴4 → 𝐴4 

… 

Step 6: Apply operators in definition 6 to the FLRGs for 

all the observations. 

For example: 

At 7/3/2016: 

Close price 𝐴3 → 𝐴1, 𝐴4 

Open price 𝐴2 → 𝐴3 

High price 𝐴1 → 𝐴1, 𝐴2 

Low price 𝐴2 → 𝐴3  
Applying the union operator, we have: 

∨ (𝐴3, 𝐴2, 𝐴1, 𝐴2) = {𝐴1, 𝐴4} ∪ {𝐴3} ∪ {𝐴1, 𝐴2} ∪ {𝐴3}
= {𝐴1, 𝐴4, 𝐴3, 𝐴2} 

Applying the intersection operator, we obtain: 

∧ (𝐴3, 𝐴2, 𝐴1, 𝐴2) = {𝐴1, 𝐴4} ∩ {𝐴3} ∩ {𝐴1, 𝐴2} ∩ {𝐴3} = ∅ 

As ∧ (𝐴3, 𝐴2, 𝐴1, 𝐴2) = ∅  and 𝐴3  is the LHS of type-1 

observation, so ∧ (𝐴3, 𝐴2, 𝐴1, 𝐴2) = 𝐴3  following definition 

7. 

Step 7: Defuzzify the forecasts 

Supposing the forecast when using the operator 𝑦 (union 

or intersection) is 𝐴𝑖1, 𝐴𝑖2, … , 𝐴𝑖𝑘, the arithmetic average of 

intervals 𝐼𝑖1, 𝐼𝑖2, … , 𝐼𝑖𝑘  are 𝑚𝑖1, 𝑚𝑖2, … , 𝑚𝑖𝑘  respectively [17] 

the defuzzified forecast when using the operator 𝑦  is 

computed as follows: 

𝐷𝑦(𝑡) =
∑ 𝑚𝑖𝑗

𝑘
𝑗=1

𝑘
 

Step 8: Calculate forecasts for the type-2 model 
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𝐷(𝑡) =
𝐷𝑢𝑛𝑖𝑜𝑛(𝑡)+𝐷𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑡)

2
 

3)  Improved the type-2 fuzzy time series model using the 

FA 

With regard to the time series model, the selection of 

interval lengths is extremely essential. The intervals with 

suitable lengths can increase the forecasting accuracy of the 

model. The lengths of intervals should not be too large or 

small. When an effective length of intervals is too large, 

there will be no fluctuations in the fuzzy time series. By 

contrast, when the length is too small, the meaning of fuzzy 

time series will be diminished [19]. In this paper, the FA is 

used to optimize the lengths of intervals without modifying 

the number of intervals in order to improve the forecasting 

accuracy of the proposed type-2 model. 

The FA used to optimize the lengths of intervals is similar 

to the optimization of weights and biases of the ANN. 

Let n be the number of intervals, 𝑥0 and 𝑥𝑛 be the lower 

and upper bounds of the universe of discourse 𝑈. Intervals 

are specified as follows: 𝐼1 = (𝑥0, 𝑥1] , 𝐼2 = (𝑥1, 𝑥2] , …, 

𝐼𝑛 = (𝑥𝑛−1, 𝑥𝑛] . To adjust the lengths of intervals 𝐼𝑖 , we 

need to tune 𝑥1, 𝑥2, … , 𝑥𝑛−1. 

Let 𝐷 = 𝑛 − 1 be the dimensionality of the vector 𝑥 , a 

firework individual are shown in Fig. 7. 

 

𝑥1 𝑥2 … 𝑥𝑖 … 𝑥𝐷 
Fig. 7  The graphical representation of a firework individual 

III. RESULTS AND DISCUSSION 

A. Test suites 

Test suites contain historical data of Google Inc. (GOOG), 

Apple Inc. (AAPL) and Yahoo! Inc. (YHOO) in the period 

of 2011-2016, which is taken from Yahoo Finance [22]. The 

data from 1/2011 to 5/2015 are used for training and the data 

from 6/2015 to 12/2015 are employed for testing. The close 

price is chosen for the type-1 observation and open, high, 

and low prices are selected for type-2 observations. 

B. Evaluation criteria 

The proposed approaches were evaluated according to the 

root mean squared error (RMSE), the mean absolute error 

(MAE) and the mean absolute percentage error (MAPE) 

criteria. These criteria are defined as Eqs. (9)-(11): 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
× ∑ (𝑂𝑗 − 𝑌𝑗)2𝑁

𝑗=1   (9) 

  𝑀𝐴𝐸 =
1

𝑁
× ∑ |𝑂𝑗 − 𝑌𝑗|𝑁

𝑗=1  (10) 

  𝑀𝐴𝑃𝐸 =
1

𝑁
× ∑ |

𝑂𝑗−𝑌𝑗

𝑌𝑗
|𝑁

𝑗=1  (11) 

where N is the size of testing sets. 
These criteria measure how the predicted value O is close 

to the real value Y. The lower these measures, the better 

result is. 

C. Evaluation the efficiency of proposed methods 

1)  The effect of data pre-processing 

As mentioned above, the Haar wavelet transform is 

capable of removing noise. Therefore, this transform suits to 

oscillating and aperiodic time series in the finance field. 

a. On the MLP neural network 

Using data being removed noise to train the network gives 

results with fewer rates of errors and faster speed of 

convergence when compared to the original data containing 

a lot of jags. 

Table V shows that when using Wavelet transform the 

values of evaluation criteria reduce about 10% on three data 

sets. Fig. 8 illustrates that MLP converges faster with the use 

of Wavelet as well as fewer errors. 

 
Fig. 8  RMSE of the training stage using and non-using Wavelet (GOOG) 

 

b. On the type-2 fuzzy time series model 

Using data being removed noise for the type-2 fuzzy time 

series model generates less rate of errors compared with 

utilizing original data. Table 6 shows that evaluation criteria 

are lower about 4% on three data sets when using the 

Wavelet transform. 

2)  The effect of the FA on obtained results 

a. An experimental result for the MLP 

The FA is used for optimizing weights and biases of MLP. 

Table VII indicates that the use of the FA contributes to the 

decrease of the rate of error 4% for three data sets. Fig. 9 

shows that the speed of convergence of MLP using FA is 

faster than the figure without using FA. 

 
Fig. 9  RMSE of the training stage using and non-using the FA (GOOG) 

 

b. Experimental results for the type-2 fuzzy time series 

model 

The FA is employed to optimize the lengths of intervals in 

the type-2 fuzzy time series model. Table VIII shows that all 
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evaluation criteria decrease approximately 14% on three data 

sets. 

3)  The comparison of effectiveness of the MLP and the 

type-2 fuzzy time series model 

Some predicted and actual stock prices are presented in 

Table IX. It can be seen that the results of both methods are 

quite close to the actual values. Table X compares both 

approaches on evaluation criteria. On the GOOG and YHOO 

data sets, the type-2 fuzzy time series model outperforms the 

MLP, but with regard to the APPL data set the results of the 

MLP is better. These outcomes point out that both methods 

operate positively on the stock price prediction problem

TABLE V 

EXPERIMENTAL RESULTS OF USING WAVELET AND NON-USING WAVELET FOR MLP 

Data 

RMSE MAE MAPE 

Non-using 

Wavelet 
Using Wavelet 

Non-using 

Wavelet 
Using Wavelet 

Non-using 

Wavelet 
Using Wavelet 

GOOG 16.179096034 15.583675622 10.996050585 9.8007136873 0.01681707763 0.01513746464 

YHOO 1.4107560087 1.0782307416 1.2330175587 0.8996423068 0.03606867283 0.02616432261 

AAPL 2.2140730306 1.8988680080 1.6700202678 1.2966802561 0.01435722456 0.01117525385 

 

TABLE VI 

EXPERIMENTAL RESULTS OF USING WAVELET AND NON-USING WAVELET FOR THE TYPE-2 FUZZY TIME SERIES 

Data 

RMSE MAE MAPE 

Non-using 

Wavelet 
Using Wavelet 

Non-using 

Wavelet 
Using Wavelet 

Non-using 

Wavelet 
Using Wavelet 

GOOG 14.755959495 14.573109611 9.3625158962 9.3009008324 0.01470145796 0.01467308764 

YHOO 0.7709360263 0.7361407690 0.5970207073 0.5620274508 0.01725476518 0.01631951684 

AAPL 2.5433957075 2.3565977119 1.8862876687 1.7978730607 0.01613542310 0.01533547895 

 

TABLE VII 

EXPERIMENTAL RESULTS OF USING AND NON-USING FA FOR MLP 

Data 
RMSE MAE MAPE 

MLP-WT FA-MLP-WT MLP-WT FA-MLP-WT MLP-WT FA-MLP-WT 

GOOG 15.583675622 15.097525202 9.8007136873 9.3064012117 0.01513746464 0.01428814224 

YHOO 1.0782307416 0.9823318462 0.8996423068 0.7917688713 0.02616432261 0.02297524598 

AAPL 1.8988680080 1.7424727978 1.2966802561 1.0355117575 0.01117525385 0.00893198666 

 

TABLE VIII 

EXPERIMENTAL RESULTS OF THE TYPE 2 FUZZY TIME SERIES MODEL USING FA AND WITHOUT USING FA 

Data 
RMSE MAE MAPE 

FL-WT FA-FL-WT FL-WT FA-FL-WT FL-WT FA-FL-WT 

GOOG 14.573109611 12.644674238 9.3009008324 8.3658208050 0.01467308764 0.01318352093 

YHOO 0.7361407690 0.6695918696 0.5620274508 0.5041202840 0.01631951684 0.01468910967 

AAPL 2.3565977119 1.9322778836 1.7978730607 1.4570245705 0.01533547895 0.01252927716 

 

TABLE IX 

THE ESTIMATION PRICES AND ACTUAL PRICES USING TWO METHODS (GOOG) 

Date 
Actual 

price 

Estimation price 

using MLP 

Estimation 

price using FL 

7/1/2015 521.84 523.2709 522.414 

7/2/2015 523.4 526.4202 522.414 

7/6/2015 522.86 525.6905 522.9141 

7/7/2015 525.02 526.6143 522.9141 

7/8/2015 516.83 526.9593 526.5342 

7/9/2015 520.68 521.7441 521.2576 
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7/10/2015 530.13 522.6101 521.2576 

7/13/2015 546.55 539.155 532.8907 

7/14/2015 561.1 538.6853 545.6281 

7/15/2015 560.22 556.7093 553.5436 

7/16/2015 579.85 558.3197 553.8097 

7/17/2015 672.93 572.007 579.2478 

7/20/2015 663.02 660.8878 666.7435 

7/21/2015 662.3 656.3988 663.5317 

7/22/2015 662.1 646.8647 663.6847 

7/23/2015 644.28 649.8848 665.6566 

7/24/2015 623.56 643.4145 646.4002 

7/27/2015 627.26 622.5959 626.1949 

7/28/2015 628 623.5853 624.0232 

7/29/2015 631.93 614.7239 632.7493 

7/30/2015 632.59 619.9512 631.4984 

7/31/2015 625.61 624.8217 631.4984 

RMSE 15.097525202 12.644674238 

 

TABLE X 

A COMPARISON OF EXPERIMENTAL RESULTS USING THE ANN AND THE TYPE 2 FUZZY TIME SERIES MODEL 

Data 
RMSE MAE MAPE 

FA-MLP-WT FA-FL-WT FA-MLP-WT FA-FL-WT FA-MLP-WT FA-FL-WT 

GOOG 15.097525202 12.644674238 9.3064012117 8.3658208050 0.01428814224 0.01318352093 

YHOO 0.9823318462 0.6695918696 0.7917688713 0.5041202840 0.02297524598 0.01468910967 

AAPL 1.7424727978 1.9322778836 1.0355117575 1.4570245705 0.00893198666 0.01252927716 

 

 

IV. CONCLUSIONS 

A mathematical modeling of a stock price prediction 

problem is a process of determining the variation pattern of 

variables of the problem from the analysis of figures and 

historical data. Due to the complexity of the problem with 

many practical factors, the common mathematical modeling 

techniques expose a large number of limitations. Therefore, 

this paper explores the soft computing methods such as 

fuzzy logic and artificial neural network to deal with the 

stock price prediction problem, resulting in the suggested 

and reference values for traders. 

As for MLP, though the obtained results and estimation 

effectiveness are quite positive, the stock price prediction 

problem usually requires more reliable approaches to 

enhance the efficiency of the training process. 

Simultaneously, we need to use the open, high, and low 

prices in comparison with the close price to improve the 

quality of estimation results. However, the current MLP can 

use only the close price and this is a main drawback of the 

MLP. 

Fuzzy logic might overcome a number of disadvantages 

of conventional techniques and MLP. The generations of a 

fuzzy prediction system can rely on both the expert 

knowledge and time series data to produce the results. Fuzzy 

logic provides a flexible approach with fewer assumptions 

for time series data in the field of finance. In addition, fuzzy 

logic is proved as a great substitute for tools that need real 

time data in stock prices. Moreover, the type-2 fuzzy time 

series model in this work used four factors including the 

open, high, low, and close prices to give the estimation 

results, so the outcomes are better when compared with the 

MLP using only the close price. 

NOMENCLATURE 

ANN Artificial Neural Network 

FL Fuzzy Logic  

MLP Multilayer Perceptron  
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