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Abstract
This study proposes a way to involve technology in the area of teaching mathematics. The
technology tool is Geogebra4, which is computer software in the teaching and learning
mathematics. This technology emphasizes on the use of multiple representations of
mathematical concepts by computer software. The objective is to make students consider
the representation of mathematical concepts and help them to enjoy studying
mathematics. From that thought, hopefully student understanding will improve and their
mathematical achievement will increase. The result of this study is five lesson plans for
teaching and learning integral using Geogebra4.
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PREFACE
Most teachers teach mathematics
without representation.  As a result,
students have difficulties visualizing
many concepts. The teachers just
teach our students with the formula
and symbol-letter, and then the
students try to solve problems with
the formula, without having
knowledge of the visualization of the
function or solution look likes. It is a
little bit weird because students just
remembering the formula without
knowing what are the curves or
representation look like.

For example, when teachers teach
integral concept about area between
two curves; teachers just give
students the formula that is

, where is
above . For instance, teacher
gives question abouthow to calculate
the area between two functions,

and , from 0	to1.  To solve this problem, the
students in my country take minutes
to draw picture of these two
functions. For example, the picture is
like this:
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After drawing the picture, students
begin to calculate the area, by solving
the integral equation like this:

− = −
																											= . − . =

Of course, for some students it is easy
to draw the picture and to solve the
integral equation. However, for the
other students, it is hard to draw
picture and to solve the integral,
moreover when the functions are not
simple like on the above example.

Technology (GeoGebra4) can help
students get more understanding
about this problem; that is how to
make representation to calculate
integral: area between two curves.
My opinion is based on Bruner’s
insights on the role of representation
have greatly influenced mathematics
educator. Most of mathematics
educators state that mathematical
idea can be represented in three
ways: enactively (concrete
representation), iconically (pictorial
representation), and symbolically
(written symbols) (Bruner, 1960). In
this context, technology (GeoGebra4)
plays role as iconically or pictorial
representation.

The purpose of this project is to
involve technology in the
mathematics classroom. I do believe
that mathematics must be taught in
a joyful learning environment with
multiple representations, including
representation from technology.
With this project, I want to help

students to enjoy studying
mathematics with technology,
because nowadays, technology is the
focus of their attention. I also want to
make mathematics become less
abstract with the representation
from the technology (Geogebra4). The
result of this project is five lesson
plans for teaching integral with
Geogebra4.

LITERATURE REVIEW

Most of the mathematics teachers
just teach mathematics in the level of
theory or concept. Students then
have perception that mathematics is
an abstract subject matter. The
teachers rarely use representation or
make connection between
mathematics and the real life. From
that historical background, I have a
dream to change “the theoretical
teaching style” in my country. In my
teaching philosophy, I do believe that
mathematics must be taught with
realistic representation, involving
technology, and trying to make
students enjoy when they learn
mathematics

My paper is based on Bruner’s
insights on the role of representation
have greatly influenced mathematics
educator. Most of mathematics
educators state that mathematical
idea can be represented in three
ways: enactively (concrete
representation), iconically (pictorial
representation), and symbolically
(written symbols) (Bruner, 1960). In
this article, technology (GeoGebra4)
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plays role as iconically or pictorial
representation.

In the Prepare and
Inspire(President’s Council of
Advisors on Science and Technology,
2010), there is a belief that
technology has the potential to
transform K-12 education, just as it
has many other sectors of the US and
global economy and our society. It
can enable real-time and meaningful
data gathering that allow learning
and innovation in the education
system. It can power innovative
learning tools that prepare and
inspire students. Furthermore, the
report states thatone of the most
powerful tools to propel innovation in
education is computation and
information technology.

The report also explains that
technology supports innovation in
three fundamental ways: (1)
continuous evaluation and
improvement based on data, (2) rapid
and inexpensive dissemination of
successful solutions, and (3) mass
customization. The report also notes
some important points: (1)
educational technology has been
advancing rapidly in recent years
and is likely to create major strides
in the near future; (2) there will be a
growing need for new instructional
materials, new professional
development materials, and new
kinds of assessments that are
aligned with higher standards and
provide much richer learning
experiences and more vibrant
sources of information; (3) the
‘‘collection and use of data’’ is one of
the U.S. Department of Education’s
four assurances; (4) technology is

becoming increasingly affordable,
accessible, and versatile- a trend that
will continue over the next decades,
and will encompass personal and
mobile devices; and (5) today’s
students are increasingly digital
natives.

Many research findings conclude
that technology is a great instrument
to enhance mathematics teaching
and learning process. Hatfield and
Kieran (1972) explain that that was
believe that “the activity of writing,
processing, and studying the output
of computer algorithms should
promote the development of
mathematical concepts and
principles, computational skills, and
problem-solving abilities of the
students”.

Ellington (2003) also states that
when calculators were included in
instruction, the ability to select the
appropriate problem solving
strategies improved for the
participating student. Furthermore,
she states that students who used
calculators while learning
mathematics reported more positive
attitudes towards mathematics than
their non-calculator using
counterparts on survey taken at the
end of calculator treatment.

From another research finding using
computer-intensive algebra (CIA),
O’Callaghan (1998) found that the
CIA students achieved a better
overall understanding of function
and were better at the component of
modeling, interpreting, and
translating. Moreover, CIA students
showed significant improvements in
their attitudes toward mathematics,
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were less anxious about
mathematics, and rate their classes
as more interesting.

From the other research findings,
Kaput, Hegedus, and Lesh (2007)
state that technology become
infrastructure in mathematics
education. They explain that
technology is a fundamental yet
invisible role similar to the electricity
in our homes. Moreover, technology
will lead to emphasize to new level
and types of ideas and abilities, as
well as new ways to think about
traditional concepts and skills. In the
school, technology will facilitate new
type of social interaction and
thinking, and new way to make
mathematics less abstract and more
accessible to a wider population of
students. The authors said that to
realize the potential of technology,
new type of pedagogical
diversification will be needed, and of
course teacher development must be
done.

Kaput et al. (2007) also show
their result of classroom
connectivity (CC) (i.e., classroom
that involves technology); there
are significant improvements in
low-achieving students’ abilities
to solve standardize and applied
problems. They also state that
there are significant shifts in
participation structures from
non-CC to CC context. They also
explain that the use of
representationally rich software
in mathematics education calls
for a reconceptualization of both
traditional and applied
mathematics concepts. They also

see distinct differences in
fundamental process such as
posture and gesture as well as
discourse, teachers using CC
more positive and effectual in the
classroom. They state that
connectivity support pedagogical
manipulation of students’ focus of
attention.

TECHNOLOGY OVERVIEW

Geogebra4 is an application for
exploring and demonstrating
Geometry and Algebra. It is an open
source application and is freely
available for non-commercial use.
There are currently versions
available for Windows, Mac OS X,
Linux and other java-enabled
platforms. To start Geogebra4 go to
http://www.geogebra.org where we
will see links to Web start or
Download. The Web start option
downloads the necessary java files to
our computer and starts the
application immediately. The
advantage of choosing this option is
that the application is always up to
date. The Download option
downloads files to our computer and
we must then install. The big
advantage here is that we can
continue to work offline.

The installation process is very
straightforward. After we have
downloaded on a Windows machine
just double-click the downloaded file.
An Install Wizard will guide us
through every step. It is strongly
advised that we select the typical
configuration when given the choice.
Full instructions are given on the
Geogebra4 site.
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Double click the Geogebra4 icon on
the desktop to start the application.
We will be presented with a launch
screen as shown in Figure 1.

Figure 1: Launch Screen for
GeoGebra4

The button menu along the top (see
Figure 2) contains a submenu of
actions. By clicking on the down-
pointing arrow at the bottom right
corner of any of these buttons the
submenu is displayed.

Figure 2: Buttons for Geogebra4

LESSON PLANS OVERVIEW

On the next pages, five lesson plans
about teaching integral using
Geogebra4 will be explained. The first
lesson plan is on teaching lower sum
concept with representation from
Geogebra4. In this lesson, students
will investigate the properties of
lower sum as a basic concept to
understand Riemann integral.
Students also will construct a
conjecture and then they will try to

analyze their conjecture by
Geogebra4.

The second lesson plan is teaching
upper sum concept with
representation from Geogebra4. In
this lesson, students will investigate
the properties of upper sum as a
basic concept to understand
Riemann integral. Students also will
construct a conjecture about the
relation between the number of
rectangles and the value of the upper
sum. Additionally, students will
construct a conjecture and then they
will try to analyze their conjecture by
Geogebra4.

The third lesson plan is an
investigation of the
phenomenonwhen the number of
rectangles goes to infinity. In this
lesson, students will prove their
conjecture in the previous lesson (the
second lesson). They will construct
the lower sum and the upper sum
with a large enough number of
rectangles, and then they will
analyze whether their previous
conjecture in the second lesson is
true or not.

The fourth lesson plan is on teaching
definite integral (Riemann Integral).
In this lesson, students will
investigate the properties of definite
integral. Students also will construct
a conjecture about the relation
between the value of the definite
integral (positive or negative) and
the position of the area under the
curves. Furthermore, students will
construct a conjecture and then they
will try to analyze their conjecture by
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Geogebra4.

The fifth lesson plan is on teaching
area between two curves with
representation from Geogebra4. In
this lesson, students will investigate
the properties of area between two
curves. Students also will construct a
conjecture about the relation
between the value of area between
two curves and the position of the
function f and g. Moreover, students
will construct a conjecture and then
they will try to analyze their
conjecture by Geogebra4.

LESSON PLANS

Lesson Plan 1

Investigation: Lower Sum

Lower Sum is ∑ ∆ , where
is x-value at which f(x) attains a

minimum on interval	 , . We
can make Lower Sum representation
in the Geogebra4 software.

Sketch

1. Type the equation
in the Input Bar and

press enter.

2. Type this command: Lower Sum [f,
-3, -1, 8], or select it from the drop

down list in the Input Bar, and
press enter.

You must have a representation like
this:

Investigate

Use a slider to make an animation of
the number of rectangles by clicking

the . You can set the number of
rectangles between 8 and 100. What
is the relationship between the
number of rectangles and the Lower
Sum value (a)? Analyze your findings
to make a conjecture about the
relationship between the number of
rectangles and the Lower Sum
values.

Conjecture: Write a conjecture
below

__________________________________
_______________________________
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_______________________________
_______________________________

Present Your Findings

Discuss your results with your
partner or group. To present your
findings you should:

1. Show some set of data about the
relationship between the number
of rectangles and the Lower Sum.
For example, when the number of
rectangles is________, the lower
sum value is_________.

2. From that data, you explain your
own conclusion about the
relationship between the number
of rectangles and the Lower Sum
values to your group members.

Explore More

See if you can come up with the
number of rectangles that makes the

value of the lower sum not change
significantly.

Investigation: Lower Sum
(Teacher Comments)

Students Audience: High School

Prerequisite: Introduce (or let the
student worksheet introduce) the
terms Lower Sum

Geogebra4 Proficiency: Beginner

Class Time: 45 minutes

Construction Tips: This is a very
simple construction that effectively
illustrates the concept of Lower Sum

Sketch

Teacher have to makes sure that
students have a representation as
shown in the student worksheet.
Teacher should moves to each group
to see whether they have an intended
representation.

Investigate/Conjecture

To increase the number of
rectangles, create the slider n to go
from 8 to 100 in steps of 0.1 by

clicking the .  Then type this
command: Lower Sum [f, -3, -1, n] or
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select it from the drop down list in
the Input Bar, and press enter.

To make the difference between the
value of Lower Sum clear, create text
block
a: Lower Sum with n = 8 rectangles

by clicking and create text
block b: Lower Sum with n rectangles

by clicking .

The illustration is below:

Leading students to conjecture:

When the number of rectangles
increases, then the value of Lower
Sum also increases

Introduce the term infinity after
students have made the conjecture.
It is an important concept for

understanding Riemann integral in
the next lesson.

Explore More

Lead students to a number of
rectangles that makes the value of
Lower Sum not change significantly.
For example, n = 1000, this will
illustrate the next lesson about the
definition of the definite integral
(Riemann Integral), which is the
value of Lower Sum and the value of
Upper Sum are equal when n goes to
the infinity.

Lesson Plan 2

Investigation: Upper Sum

Upper Sum is ∑ ∆ , where
is x-value at which f(x) attains a

maximum on interval	 , . We
can make Upper Sum representation
in the Geogebra4 software.

Sketch

1. Type the equation
in the Input Bar and

press enter.

2. Type this command: Upper Sum [f,
-3, -1, 8], or select it from the drop
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down list in the Input Bar, and
press enter.

You must have a representation like
this:

Investigate

Use a slider to make an animation of
the number of rectangles by clicking

the . You can set the number of
rectangles is between 8 and 100.
What is the relationship between the
number of rectangles and the Upper
Sum value (a)? Analyze your findings
to make a conjecture about the
relationship between the number of
rectangles and the Upper Sum value.

Conjecture: Write a conjecture below

__________________________________
__________________________________
__________________________________

__________________________________
_______

Present Your Findings

Discuss your results with your
partner or group. To present your
findings you should:

1. Show some set of data about the
relationship between the number
of rectangles and the Upper Sum.
For example, when the number of
rectangles is________, the Upper
Sum value is_________.

2. From that data, you explain your
own conclusion about the
relationship between the number
of rectangles and the Upper Sum
value to your group members.

Explore More

See if you can come up with the
number of rectangles that makes the
value of the upper sum not change
significantly.

What do you think about the value of
Lower Sum and the value of Upper
Sum when n (the number of
rectangles) becomes large enough?
Make your conjecture here:

__________________________________
__________________________________
__________________________________
__________________________________
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__________________________________
________________________

Investigation: Upper Sum
(Teacher Comments)

Students Audience: High School

Prerequisite: Introduce (or let the
student worksheet introduce) the
terms Upper Sum

Geogebra4 Proficiency: Beginner

Class Time: 45 minutes

Construction Tips: This is a very
simple construction that effectively
illustrates the concept of Upper Sum

Sketch

Teacher have to makes sure that
students have a representation as
shown in the student worksheet.
Teacher should moves to each group
to see whether they have an intended
representation, and help them if they
have difficulties.

Investigate/Conjecture

To increase the number of rectangle,
create the slider n to go from 8 to 100

in steps of 0.1 by clicking the .
Then type this command: Upper Sum
[f, -3, -1, n] or select it from the drop
down list in the Input Bar, and press
enter. To make the difference
between the value of Upper Sum

clear, create text block a: Upper Sum
with n = 8 rectangles by clicking

and create text block b: Upper
Sum with n rectangles by clicking

.

The illustration is below:

Leading students to conjecture:

When the number of rectangles
increases, then the value of Upper
Sum decreases

Teacher reminds students about the
term infinity after students have
made the conjecture. It is an
important concept for understanding
Riemann integral in the next lesson

Explore More

Lead students to a number of
rectangles that makes the value of
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Upper Sum not change significantly.
For example, n = 2000.

Leading students’ conjecture to the
definition of definite integral
(Riemann Integral), which is the
value of Lower Sum and the value of
Upper Sum are equal when n goes to
the infinity. However, keep this
definition for the next lesson.

Lesson Plan 3

Investigation: When the number of
rectangles goes to infinity

You have made a conjecture about
the relation between the value of
Lower Sum and the value of Upper
Sum when n (the number of
rectangles) goes to infinity.
Investigate your conjecture by
following these procedures.

Sketch

1. Type the equation
in the Input Bar and

press enter.

2. Type this command: Lower Sum [f,
-3, -1, 8], or select it from the drop
down list in the Input Bar and
press enter.

3. Use a slider to make an animation
of the number of rectangles by

clicking the , moving n
between 8 and 4000.

4. Type this command: Lower Sum [f,
-3, -1, n] or select it from the drop
down list in the Input Bar and
press enter.

You will see this representation:

Investigate

Use the same procedures as above to
create a representation for Upper
Sum. You can set the number of
rectangles between 8 and 3000, and
call it m. What do you find about the
relation between the value of Lower
Sum and the value of Upper Sum
when n and m (the number of
rectangles) go to infinity? How about
your previous conjecture, is it true?
Write your findings on the space
below.

__________________________________
__________________________________
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__________________________________
__________________________________
________

Investigation: When the number
of rectangles goes to infinity
(Teacher Comments)

Students Audience: High School

Prerequisite: Introduce (or let the
student worksheet introduce) the
terms Upper Sum

Geogebra4 Proficiency: Beginner

Class Time: 45 minutes

Construction Tips: This is a very
simple construction that effectively
illustrates the concept of Lower Sum
and Upper Sum when the number of
rectangles goes to infinity.

Sketch

Teacher have to makes sure that
students have a representation as
shown in the student worksheet.
Teacher should moves to each group
to see whether they have an intended

representation, and help them if they
have difficulties.

Investigate/Conjecture

As students construct their Upper
Sum representation, make sure that
they do these procedures:

1. Type the equation = ++ − in the Input Bar and
press enter

2. Type this command: Upper Sum [f,
-3, -1, 8] or select it from the drop
down list in the Input Bar and
press enter.

3. Use a slider to make an animation
of the number of rectangles (m) by

clicking the , moving m
between 8 and 4000.

4. Type this command: Upper Sum [f,
-3, -1, n] or select it from the drop
down list in the Input Bar, and
press enter.

Also make sure that students give
different names for each variable in
the left hand side of the Gogebra4

interface. For example, for the Lower
Sum with 8 rectangles, students can
call it Lower 8, and for the Lower
Sum with n rectangles, students can
call it Lower n, and likewise for the
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Upper Sum. So, students can look at
those different variables easily.

The illustration is below:

Lead the students to make final
conclusion about their conjecture,
that is the definition of definite
integral (Riemann Integral), which is
the value of Lower Sum and the
value of Upper Sum are equal when
n and m  (the number of rectangles)
go to the infinity.

Lesson Plan 4

Investigation: Definite Integral

A definite integral is an integral
with upper and lower

limits. If x is restricted to lie on the
real line, the definite integral is
known as a Riemann Integral. We
can make definite integral
representation in the Geogebra4

software.

Sketch

1. Type the equation
in the Input Bar and

press enter.

2. Type this command: Integral [f, 1,
3], or select it from the drop down
list in the Input Bar, and press
enter.

You must have a representation like
this:

Investigate

Investigate the definite integral from
the same function	between 	 	 and 	 .
What is the result? Do you have a
positive or a negative number of
results? What your conclusion. Write
your conclusion as a conjecture.

Conjecture: Write a conjecture
below

__________________________________
__________________________________
__________________________________
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__________________________________
________

Present Your Findings

Discuss your results with your
partner or group. To present your
findings you could:

1. Show some set of data about the
differences between definite
integral that has area above x-axis
and definite integral that has area
below x-axis. For example, when
the upper and lower limits are 1
and 3 (above x-axis), the definite
integral is________, and when the
upper and lower limits are -3 and
-1 (above x-axis), the definite
integral is _________.

2. From that data, then you explain
your conjecture about the definite
integral that has an area above x-
axis and the definite integral that
has an area below x-axis to your
group members.

Explore More

See if you can come up with a
conclusion why the definite integral
that has area under x-axis is
negative?

Write your thought here:

__________________________________
__________________________________
__________________________________
__________________________________

__________________________________
________________________

Investigation: Definite Integral
(Teacher Comments)

Students Audience: High School

Prerequisite: Introduce (or let the
student worksheet introduce) the
terms Definite Integral

Geogebra4 Proficiency: Beginner

Class Time: 45 minutes

Construction Tips: This is a very
simple construction that effectively
illustrates the concept of Definite
Integral (Riemann Integral)

Sketch

Teacher have to makes sure that
students have a representation as
shown in the student worksheet.
Teacher should moves to each group
to see whether they have an intended
representation, and help them if they
have difficulties.

Investigate/Conjecture

To make a representation of the
definite integral that has upper and
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lower limit -3 and -1, you can follow
this procedure:

1. Type the equation
n the Input Bar and press

enter.

2. Type this command: Integral [f, -3,
-1] or select it from the drop down
list in the Input Bar, and press
enter.

The illustration is below:

Leading students to the
conjecture:

Definite integral that has area above
x-axis is positive and definite integral
that has area below x-axisis negative

Teacher should use Geogebra4 to
show some example of
representations to make sense this
conjecture.

Explore More

Leading students to the conclusion
that: the definite integral that has

area below x-axis is negative because
in the whole interval [-3,-1].

Remember the definition of the
Riemann Sum: ∑ ∆ as the
basic concept of the definite integral.
Therefore, if for all ∈, then Riemann Sum is a
negative number.

Lesson Plan 5

Investigation: Area Between
Two Curves

The method for determining the area
between two curves is an important
application of integral calculus. It
lets us determine the area of non-
standard shapes by evaluating the
definite integral. You will learn and
investigate that in this lesson.

Sketch

1. Type the equation in the
Input Bar and press enter.

2. Type the equation
in the Input Bar and press enter.

3. Click on f and g to create the
points of intersection, A and B.

4. Create the number a, which is the
area between the line and the
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curve f(x) by typing in the Input
Bar: Integral[g(x), f(x), (A) , x(B)]

You must have a representation like
this:

Investigate

Construct the same procedures as
above, but for step 4, you should type:
Integral[f(x), g(x), (A) , x(B)]. What
happens with the result of the area;
is it positive or negative? Write your
answerhere

__________________________________
________________________

You know that the area of any shape
must be a positive number. If you
find a negative number for the
representation above, why does it
happen? Analyze your answer, and
form a conjecture that explains the
relation between the position of
function f and g in the coordinate

plane and the result of the area
between f and g.

Conjecture: Write a conjecture
below

__________________________________
__________________________________
__________________________________
__________________________________
__________________________________
________________________

Present Your Findings

Discuss your results with your
partner or group. To present your
findings you could:

1. Show some set of data about the
relation between the area of
function f and g.	For example, when you
type f first, and then you type g,
the area is________, and when you
type g first, and then you type f,
the area is _________.

(Note: you can change the number
of m and c in the function as

you like with the slider            )

2. From that data, then you explain
your own conclusion about the
relation between the position of
function f and g and the value of
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the area (between the two
functions) to your group members.

Investigation: Area Between
Two Curves (Teacher
Comments)

Students Audience: High School

Prerequisite: Introduce (or let the
student worksheet introduce) the
terms Area Between Two Curves

Geogebra4 Proficiency: Beginner

Class Time: 45 minutes

Construction Tips: This is a very
simple construction that effectively
illustrates the concept of Area
Between Two Curves

Sketch

Teacher have to makes sure that
students have a representation as
shown in the student worksheet.
Teacher should moves to each group
to see whether they have an intended
representation, and help them if they
have difficulties.

Investigate/Conjecture

As students manipulate their
integral: area between two curves
representation, you should note that
if we type: Integral [f(x), g(x), x(A),
x(B)], the area must be a negative
number. The reason is the area
under f function is less than the area

under g function on that interval. So,
if you type: Integral [f(x), g(x), x(A) ,
x(B)], it means you subtract the area
under function gfrom the area under
function f, and it must be a negative
number.

To make this representation clear,
you can do these procedures and
show it to the students:

1. Create the number a, which is the
area between the line and the
x-axis by typing in the Input Bar:
Integral[g(x), x(A) , x(B)]

2. Create the number b, which is the
area between the curve and
the x-axis by typing in the Input
Bar: Integral[f(x), x(A) , x(B)]

This is the illustration:

This representation shows that the
area under g, which is b = 8.49, and
the area under f, which is a = 4.71.
Therefore, if you subtract the area
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under function gfrom the area under
function f, the result must be – 3.78.

Leading students to the
conjecture:

When the position of g is above f in
the coordinate plane, we must type g
first, and then type f in the Input Bar
(it means we subtract the area under
function ffrom the area under
function g), in order to get a positive
number for the area between two
curves.

Present Your Findings

When students present their
findings in a group discussion, you
could guide them when they
construct general linear function
g by these procedure:

1. Type the equation in
the Input Bar, and press enter.

2. Create the slider c to go from 0
to 5 in steps of 0.1.

3. Create the slider m to go from 0
to 5 in steps of 0.1.

4. Type the equation
in the Input Bar, and press
enter.

5. You will get this representation:

SUMMARY

There are many factors that have
implications in the teaching and
learning mathematics. Teachers
must consider any changes around
the world in order to make more
adaptable mathematics teaching and
learning processes. A variety of
technological tools have been
produced and it has a big impact in
our society. In order to adapt with
the new era of connectivity, teachers
have to learn that technology.
Geogebra4 emphasizes on the use of
multiple representations of
mathematical concepts by computer
software. The objective is to make
students consider the representation
of mathematical concepts and help
them to enjoy studying mathematics.
From that thought, hopefully
student understanding will improve
and their mathematical achievement
will increase.
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