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ABSTRACT 
Adrenergic Beta-2 Receptor (ADRB2) is a member of G-

protein coupled receptors family, which has served as targets for 

more than 30% of top-selling drugs in the market. Recently, an 
enhanced dataset of ligands and decoys for ADRB2 has publicly 
available. However, the original retrospective structure-based 
virtual screening campaign accompanying the dataset showed 
relatively poor quality with enrichment factor of true positives at 
1% false positives (EF1%) value of 3.9. In this article, the 
construction and retrospective validation of a structure-based 

virtual screening protocol by employing PLANTS1.2 as the 
molecular docking software and PyPLIF as an alternative post 
docking scoring functions are presented. The results show that the 
developed protocols have better quality compared the original 
structure-based virtual screening with EF1% values of 24.24 and 
8.22 by using ChemPLP from PLANTS1.2 and by using Tc-PLIF 
from PyPLIF, respectively. Further investigation by performing 

systematic filtering resulted in the identification of D113, S203, 

and N293 as molecular determinants in ADRB2-ligand binding. 
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INTRODUCTION 
Adrenergic Beta-2 Receptor (ADRB2) 

plays an important role as the molecular target 
for drugs in the therapy for diseases as diverse 
as heart failure, hypertension and asthma 
(Cherezov et al., 2007; Taylor, 2007). ADBR2 is 
a member of G-Protein Coupled Receptors 
(GPCRs) family, to which more than 30% of 
top-selling drugs in the market bind (Klabunde 
and Hessler, 2002; Surgand et al., 2006). 
Notably, human ADRB2 was also the first 
human GPCR that could be crystallized and 
publicly available to provide insight on how 
ligands bind to GPCRs (Cherezov et al., 2007). 
The ADRB2 crystal structure has been 
subsequently employed in some prospective 
Structure-Based Virtual Screening (SBVS) 
campaigns and successfully discovered novel 
potent ADRB2 ligands (Kolb et al., 2009; Yakar 
and Akten, 2014).  

The successful three dimensional (3D) 
structure characterization through 
crystallography of ADRB2 bound to its 

antagonist carazolol (Cherezov et al., 2007) was 
followed by 3D characterization of some other 
GPCRs (Chien et al., 2010; Jaakola et al., 2008; 
Shimamura et al., 2011; Wacker et al., 2010; Wu 
et al., 2010), which have offered opportunities 
to construct, validate and perform SBVS to 
discover novel potent ligands for a particular 
GPCR both on the crystal structures (Carlsson 
et al., 2010; de Graaf et al., 2011a; Katritch et al., 
2010; Kolb et al., 2009; Yakar and Akten, 2014) 
and homology models (Carlsson et al., 2011; de 
Graaf et al., 2011b; Istyastono et al., 2011b; Sirci 
et al., 2012; Tarcsay et al., 2013). Solely used of 
SBVS approaches on Histamine H1 Receptor 
(HRH1) crystal structure in the recent virtual 
screening campaigns showed extraordinary 
results, both retrospectively and prospectively 
(de Graaf et al., 2011a). One of the key 
strategies of the virtual screening was filtering 
the Protein-Ligand Interaction Fingerprint 
(PLIF) (Marcou and Rognan, 2007; Radifar et 
al., 2013a): Only docking poses that form a 
hydrogen bond (H-bond) and an ionic 
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interaction with D107 were considered (de 
Graaf et al., 2011a). This strategy can be 
recognized as “using prior knowledge” in SBVS 
campaigns (Seifert, 2009; Yuniarti et al., 2011). 
The customization of the SBVS protocols by 
filtering on key interactions has increased the 
SBVS quality significantly (de Graaf et al., 
2011a; Sirci et al., 2012; Yuniarti et al., 2011). 
Unfortunately, the information of key 
interactions is available only for a few drug 
targets. The key interaction used in the SBVS 
campaigns on crystal structure of HRH1 was 
identified from previous Site-Directed 
Mutagenesis (SDM) studies and chemogenomic 
analysis (de Graaf et al., 2011a; Shin et al., 2002; 
Surgand et al., 2006). Besides SDM studies and 
chemogenomic analysis, some computer-aided 
strategies could be employed in order to obtain 
information on key interactions that can assist 
the improvement of SBVS quality. Istyastono et 
al. (2011a) employed QSAR, 3D-QSAR, 
homology modeling and molecular dynamics to 
identify the molecular determinants of ligand 
binding modes in the Histamine H3 and H4 
Receptors (HRH3 and HRH4, respectively). 
The obtained information was subsequently 
used in SBVS campaigns on homology models 
the receptors (Istyastono et al., 2011a; Sirci et al., 
2012). However, the use of multiple or 
combined approaches reflects time and 
resource consuming methods. Therefore, 
development of more effective and efficient 
computational methods to identify key interact-
tions as well as the molecular determinants in 
protein-ligand binding to increase the SBVS 
quality is of considerable interest. 

The research presented in this paper was 
aimed to perform retrospective SBVS 
campaigns on a newly published enhanced 
dataset of ligands and decoys (DUD-e) for 
ADRB2 (Mysinger et al., 2012) and to identify 
the PLIF of each compound to ADRB2 by 
employing PyPLIF (Radifar et al., 2013a; Radifar 
et al., 2013b; Setyaningsih et al., 2013). The 
SBVS qualities were subsequently assessed (de 
Graaf and Rognan, 2008) and compared to the 
original SBVS accompanying the release of 
DUD-e (Mysinger et al., 2012). The               
results showed that both scoring strategies 
employed in this research, i.e. ChemPLP score 
and Tc-PLIF resulted in a better SBVS.  Notably  
 

the    SBVS   quality   using   ChemPLP   scores  
outperformed the SBVS quality using Tc-PLIF 
values. The PLIFs of ADRB2-ligands identified 
in this research were subsequently employed in 
the key interactions identification in a further 
investigation by systematic filtering. These 
approaches have led to the identification of 
D113, S203 and N293 as the molecular 
determinants on ADRB2-ligand binding. 

 
MATERIAL AND METHODS 

The crystal structure of human ADRB2 
obtained from the protein data bank (PDB) 
with PDB id of 3NY8 (Wacker et al., 2010) was 
used as the reference structure. Ligands (231) 
and decoys (15000) for ADRB2 from DUD-e 
(Mysinger et al., 2012) were employed as the 
test compounds to perform retrospective 
SBVS. All calculations and computational 
simulations were performed on a Linux 
(Ubuntu 10.04 LTS Lucid Lynx) machine with 
Intel(R) Xeon(R) CPU E31220 (@ 3.10          
GHz) as the processors and 8.00 GB of        
RAM. Computational medicinal chemistry 
applications employed in this research were 
SPORES (ten Brink and Exner, 2009), 
PLANTS1.2 (Korb et al., 2009), Open Babel 
2.2.3 (O’Boyle et al., 2011), PyPLIF 0.1.1 
(Radifar, 2013a), and PyMOL 1.2r1 (Lill and 
Danielson, 2011). Statistical analysis was 
performed by using R 3.1.0 (R Development 
Core Team, 2008). A shell script to take into 
account only poses that have the predefined 
interaction bitstring after the PLIF 
identification using PyPLIF (Table I).  

 
Computational methods 

Virtual molecular target preparation 

The crystal structure of human ADRB2 
with the PDB id of 3NY8 (Wacker et al., 2010) 
was downloaded from the PDB website 
(http://www.rcsb.org/pdb/explore.do?structur
eId=3ny8). The module splitpdb in SPORES 
was used to split the receptor, the co-crystal 
ligand, and the water molecules discovered in 
the pdb file and to subsequently convert the 
files into mol2 files ready to be employed in 
molecular docking simulation employing 
PLANTS1.2 docking software. This procedure 
produced the virtual target protein.mol2 and the 
co-crystal ligand ligand_JRZ1203_0.mol2. 
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Ligands preparation for retrospective 
virtual screening 

Known ADRB2 active ligands and their 
decoys were downloaded in their SMILES 
format from DUD-e (Mysinger et al., 2012). 
There were 231 ligands and 15.000 decoys 
downloaded and stored locally as actives_final.ism 
and decoys_final.ism. The files were subsequently 
concatenated into a file named all.smi. Each 
compound in the file was then subjected to 
Open Babel 2.2.3 conversion software to be 
converted in its three dimensional (3D) format 
at pH 7.4 as a mol2 file. The settypes module in 
SPORES was subsequently employed to 
properly check and assign the mol2 file into a 
proper mol2 file ready to dock by using 
PLANTS1.2 docking software.    

 

Automated molecular docking and 
virtual screening  

All virtual screenings were performed by 
docking program PLANTS1.2. For each 
compound, 50 poses were calculated and 
scored by the ChemPLP scoring function at 
speed setting 2. The binding pocket of ADRB2 
was defined by the coordinates of the center of 
the reference ligand and a radius of 5 Å (which 
is the maximum distance from the center 
defined by a 5 Å radius around the reference 
ligand). All other options of PLANTS1.2 were 
left at their default setting. Every compound 
was virtually screened three times.   

 

Rescoring using protein-ligand interaction 
fingerprints calculated by PyPLIF  

The co-crystal ligand binding mode in 
the ADRB2 crystal structure was used to 
generate reference PLIF by using PyPLIF. 
Seven different interaction types (negatively 
charged, positively charged, hydrogen bond (H-
bond) acceptor, H-bond donor, aromatic face-
to-edge, aromatic face-to-face and hydrophobic 
interactions) were used to define the PLIF. The 
cavity used for the PLIF analysis is consisted of 
a set of residues in the binding pocket of 
ADRB2 defined in subsection Automated 
molecular docking and virtual screening. Note 
that for each PLANTS docking pose, a unique 
subset of protein coordinates with rotated 
hydroxyl hydrogen atoms were used to define 
the PLIF. Standard PLIF scoring parameters, 
and a Tanimoto coefficient (Tc-PLIF) 
measuring PLIF similarity with the reference 
molecule pose was used to re-rank the docking 
poses of the known active ADRB2 ligands and 
their decoys. 

 
SBVS quality assessment  

The docking pose with the best 
ChemPLP score or the best Tc-PLIF value was 
selected for each virtually screened compound. 
Virtual screening accuracies were determined in 
terms of Area Under the Curve (AUC) of the 
Receiver-Operator Characteristic (ROC) plots 
computed with R statistical computing software 

Table I. Shell script to filter based on the predefined interaction bitstring (Radifar, 2013a). 
 

Line No. Shell script content 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

#!/bin/sh 
rm tc_all.csv 
for i in $(cat ligand.lst) 
do 
 best=`awk '{if (substr($4,103*),1)==1) print $0}' \ 
pyplif_result/${i}_tc.csv | sort -n -k3rn -k2n | head -n1` 
 # to check which csv is missing 
 if [ -z "$best" ]; then 
  echo $i 
 fi 
 echo $best >> tc_all.csv 
done 
sort -n -k3rn -k2n tc_all.csv > tc_all_sorted.csv 

 

*) The shell script should was adopted according to the relevant predefined bitstring. In this example by 
Radifar et al. (2013a), the bitstring number 103 is used 
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version 3.1.0 and the enrichment in True 
Positives rate (TP) reported at a false positive 
rate (FP) of 1% (EF1%) value. The EF1% values 
were calculated as follows: EF1% = TP/FP1%.  

 

Systematic filtering on PLIFs 

A shell script to perform systematic 
filtering on PLIFs resulted in subsection 
Rescoring using protein-ligand interaction 
fingerprints calculated by PyPLIF was created 
by adopting the one (Table I) provided by 
Radifar et al. (2013a). For every filtering result, a 
new rank based on the ChemPLP values was 
created and the EF1% values were then 
calculated (de Graaf et al., 2011a; Sirci et al., 
2012). The molecular determinants were 
identified by correlating the bitstring interaction 
that give significantly better EF1% values 
compared to the default ones (without PLIF 
filtering) to the relevant binding pocket 
residues (Wacker et al., 2010). The results were 
then retrospectively validated by examining 
available mutation data in the literatures stored 
in GPCRDB (Vroling et al., 2010). 

 
Visual inspection  

Visual inspection using PyMOL 1.2r1 
(Lill and Danielson, 2011) was performed to 
investigate manually some representative 
docking poses to examine the plausible 
molecular determinants of the ADRB2-ligands 
binding.  

 

RESULTS AND DISCUSSION 
This research was aimed to construct a 

valid SBVS protocol to identify potent human 
ADRB2 ligands by employing PLIF 
identification using PyPLIF as an alternative 
rescoring      strategy     (Radifar   et al.,   2013b). 
The additional rescoring procedures offer 
possibilities to identify the molecular 
determinant in the ADRB2-ligand binding by 
providing PLIF bitstrings from every 
interaction types of every docking poses to all 
amino acids in the binding pocket (de Graaf et 
al., 2011a; Marcou and Rognan, 2007; Radifar et 
al., 2013a). Subsequent investigation by 
performing systematic filtering on the bitstrings 
could lead to the identification of the critical 
bitstrings that affect the SBVS quality. The 
identified  critical  bitstrings  were  suggested to  

be correlated to the potential molecular 
determinant in the ADRB2-ligand binding (de 
Graaf and Rognan, 2008; Istyastono et al., 
2011b).    
 

 
 

Figure 1. ROC curves resulted in the 
retrospective SBVS campaign. The black lines 
represent the ROC curves when the results 
were ranked by ChemPLP scores, while the 
grey lines represent the ROC curves when the 
results were ranked by Tc-PLIF values. The 
dashed lines represent random selection. 

 
The virtual screening campaigns has 

resulted 2,284,650 docking poses and 
799,627,500 bitstrings for all 15,231 screened 
ADRB2 ligands or decoys downloaded from 
DUD-e. By employing either ChemPLP score 
originated from PLANTS1.2 or Tc-PLIF value 
of PyPLIF (Korb et al., 2009; Radifar et al., 
2013a), the best pose for each screened 
compound was selected. In order to evaluate 
and compare the SBVS qualities, the selected 
poses were ranked according the relevant 
scoring functions, and the ROC curves were 
plotted were accordingly (Figure 1). The results 
showed that the developed protocols had better 
qualities compared the original SBVS with 
EF1% values of 24.24 by using ChemPLP from 
PLANTS1.2 as the scoring functions and of 
8.22 by using Tc-PLIF from PyPLIF as the 
scoring functions (Figure 1). Based on Figure 1, 
the AUC values were calculated in 95 %          
level of confidence (de Graaf and Rognan, 
2008). The AUC values resulted in employing 
PLANTS1.2 as the scoring functions and            
Tc-PLIF from PyPLIF as the scoring  
functions   were   82.97  and 60.23, respectively. 
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Compared to the original SBVS accompanying 
the DUD-e release (Mysinger et al., 2012) with 
the EF1% value of 3.9 and the AUC value of 
69.26, the SBVS protocols using PLANTS1.2 
developed in this research showed better 
qualities in term of EF1% and AUC values. 
Interestingly, the results indicated also that the 
SBVS on ADRB2 employing ChemPLP as the 
scoring functions outperformed the SBVS 
employing Tc-PLIF as the scoring functions. 
However, the PLIFs resulted in the PLIF 
identification using PyPLIF could serve as 
starting points in the identification of the 
critical bitstrings, which in turn could be 
correlated to the important residues in the 
ADRB2-ligand binding.      

 The PLIFs of docking poses resulted in 
this research have subsequently served as useful 
tools to identify the molecular determinants in 
ADRB2-ligands binding. The systematic 
filtering on all PLIF bitstrings for both “on” 
(represents favorable interaction) and “off” 
(represents unfavorable interaction) resulted in 
some bitstrings that gave better EF1% values 
compared  to  the  unfiltered  SBVS  campaigns 
(the default ones). These important bitstrings 

and their related amino acid residues are 
presented in Table 2. By employing mutation 
data stored in GPCRDB (Vroling et al., 2011), 
the following were the identified                     
and retrospectively validated molecular 
determinants in ADRB2-ligand binding: D113, 
S203 and N293. These could serve as the key 
information in the future ADRB2-ligand design 
(Figure 2): Potent ligands for ADRB2 should 
form ionic interaction to D113 and H-bond to 
both D113 (Strader et al., 1987; Elling et al., 
1999; Ballesteros et al., 2001; Gouldson et al., 
1997) and S203 (Suryanarayana and Kobilka, 
1993; Sato et al., 1999; Liapakis et al., 2000; 
Rasmussen et al., 2011), but not to N293 
(Wieland et al., 1996). 

The SBVS campaigns using ChemPLP 
score as the scoring functions and considering  
only poses that have an ionic interaction to 
D113 resulted in a better virtual screening 
quality with EF1% of 33.33 (Table 2). This 
means that a virtually screened compound 
possessing ionic interaction to D113 with a 
better ChemPLP score compared to the 
compound recognized in the EF1% value in the 
retrospective SBVS campaigns CHEMBL38205 

Tabel II. Filtering on PLIF bitstrings for both “on” (represents favorable interaction) and “off” 
(represents unfavorable interaction) that gave better EF1% values compared to the unfiltered SBVS 
campaigns (EF1% = 24.24). 
 

Bitstring 
No. 

On/Off Residue Interaction type EF1% 
Retrospective 
Validation*) 

30 Off Y109 Aromatic 25.10 N/A 
39 Off T110 H-bond with the amino acid 

residue as the donor 
27.70 

N/A 

61 On D113 H-bond with the amino acid 
residue as the acceptor 

26.40 
Confirmed 

63 On D113 Ionic interaction with the amino 
acid residue as the anion 

33.33 
Confirmed 

171 Off F194 Aromatic 24.67 N/A 
201 On S203 H-bond with the amino acid 

residue as the acceptor 
25.54 

Confirmed 

261 Off F289 Aromatic 24.67 N/A 
291 Off N293 H-bond with the amino acid 

residue as the donor 
25.10 

Confirmed 

332 Off W313 Aromatic 25.54 N/A 
346 
345 

Off Y316 Aromatic 24.67 
25.10 

N/A 

 

*) Based on mutation data stored in GPCRB (Vroling et al., 2011). N/A: Not available  
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(Ki at ADRB2 = 3-7nM (Tejani-Butt and 
Brunswick, 1986; Mysinger et al., 2012); 
ChemPLP score = -101.916) has 33.33 times 
better opportunities to be confirmed as a 
ADRB2 ligand compared to any random 
selected compounds. Figure 2 is presented to 
examine how the representative ligand 
CHEMBL38205 interacts to the ADRB2 
binding pocket in comparison to the co-crystal 
ligands ICI 118,551 (Wacker et al., 2010). As 
can be seen in Figure 2, the co-crystal ligand 
ICI 118,551 forms an ionic bond to D113, H-
bonds to D113 and N312, and an aromatic 
interaction to F290 (Wacker et al., 2010)  
(Figure 2A), while the representative ligand 
forms ionic bond to D113, H-bonds to D113 
and S203, and an aromatic interaction to F290 
(Figure 2B). Notably, both compounds do not 
form H-bond to N293. Similar to histamine 
receptors, ADRB2 as an aminergic GPCR has a 

conserved D113 residue as an ionic bond 
anchor (Cherezov et al., 2007; de Graaf et al., 
2011a; Istyastono et al., 2011a; Istyastono et al., 
2011b; Shimamura et al., 2011; Wacker et al., 
2010). The SBVS protocols developed in this 
research showed that by adding knowledge of 
molecular determinants in ADRB2-ligand 
binding in the protocols could increase the 
virtual screening quality as well as to identify 
the most plausible binding pose of ligands in 
the ADRB2 binding pocket. The similar 
strategy has successfully shown in the SBVS on 
a HRH1 crystal structure and HRH3 homology 
models (de Graaf et al., 2011a; Sirci et al., 2012).        

 

CONCLUSIONS 
The constructed SBVS protocol 

employing PLANTS1.2 and PyPLIF to identify 
ligands for ADRB2 has been retrospectively 
validated using newly published database 

 
Figure 2. The co-crystal ligands ICI 118.551 (cyan carbon atoms; balls and sticks mode) pose in the 
ADRB2 binding pocket (Wacker et al., 2010) (A) and the docking pose of the representative ligand 
CHEMBL38205 (magenta carbon atoms; balls and sticks mode; Ki at ADRB2 = 3-7nM (Tejani-
Butt and Brunswick, 1986; Mysinger et al., 2012); ChemPLP score = -101.916) in the ADRB2 
binding pocket resulted in the SBVS with filtering on poses that have an ionic interaction to D113 
(see Table II) with the residue as the anion (B). The ADRB2 (green carbon atoms) is presented in 
the cartoon mode with only some important residues are presented in the balls and sticks mode. 
Oxygen, nitrogen and hydrogen are presented in red, blue and white, respectively. For clarity, only 
polar hydrogen and interacting residues to the crystal ligand are shown as balls and sticks, while 
ADRB2 residues from sequence 161 to sequence 200 are not shown. H-bonds and ionic bond are 
depicted by black dashed lines and red dashed lines, respectively. 
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DUD-e. The protocol showed better virtual 
screening qualities in ligand identification 
compared to the original protocol 
accompanying the release of DUD-e. An 
improvement on virtual screening quality was 
subsequently achieved by adding information 
of molecular determinants in ADRB2-ligand 
binding into the protocol. The produced PLIFs 
have served as useful tools in the recognition of 
the molecular determinants in ADRB2-ligand 
binding: D113, S203, and N293.     
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