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Abstract

The use of optimal control techniques on high-order systems produce
high-order controller. Therefore, an approximation from high-order
system to low-order system is needed. The approximation is known as

reduction model. In this paper we study one of reduction model of
Linear Parameter Varying (LPI\ i.e. method balanced truncation. The
procedure ofthis method can be stated as follows:lrst, the quadratic
stable (Qstable) is shown for given a high-order of LPV. Second, the
state space realization ofthe high-order LPV plant is transformed to the
balanced realization. Third, the balanced realizations are truflcated to
obtain the reduced-order plarfi. Fourth, the reduced-order plant is
shown similar properties with the high-order plant. Finally, the
simulation is carried out for a missile autopilot by using LMI Control
toolbox and Robust Control toolbox in MATLAB software. From the
simulation results we obtain that the reduction system has similar
properties with the high-order system, i.e. $stable and balanced.

Keywords: LPV system, Q-stable, LPV Balanced Truncation, LMI
Control toolbox and Robust Control toolbox.

1. Introduction

The approximation of high-order plant and controller models by models of lower-order is
an integral part ofcontrol system design. The model reduction was often based on physical
intuition, for example mechanical engineers remove high- frequency vibration modes from
models of aircraft wings, turbine shafts and flexible shuchres. It may also be possible to
replace high-order controllers by low order approximations with little sacrifice in
performance [4].
Simple linear models or controllers are normally preferred over complex one in control
system design for some obvious reason: They are much easier to implement and more
reliable as they are fewer things to go lvrong in hardware or bugs to fix in software. In this
paper we consider the problem of reducing the order of a linear multivariable dynamical
system. Two well known Linear Time Invariants (I71) approximation methods - Optimal
Hankel Norm approximation and Balanced Truncation are extended to the Linear
Parameter Varying (IPIJ framework. However, we shall study only one of them: the
balanced truncation method. The main advantage of this method is that it is simple and
performs fairly well [3.1.



210 R. Zuhra

MATLAB software has a rich collection of frmctions immediately useflrl to the control
engineer or system theorist. Eigenvalues, root-finding and matrix inversion are just a few
examples of MATLAB's important pumerical tools. More generally, MATLAB's linear
algebr4 matrix computation and numerical analysis capabilities provide a reliable
foundation for control system engineering as well as many other disciplines. In this paper,
we use the control system toolbox, particularly LMI control toolbox and robust control
toolbox, to provide state-of-the-art tools for the LMl-based analysis and design ofrobust
control systems [5, 7].

2. Literature Survey

Linear Parameter Varying (IPtrJ systems are a special class of time varying systems where
the time dependence enters the state equation through one possibly more exogenous
parameters []. Consider a system which has a state space realization given by

*Q) = d(p (t\) x(/\ + a(p 0)"Q)
y@=c(p0),[)+a(p@z(r) ttl

where I : R- -+ R"-, B: R" + R* , C: -R' -+ R@, and D: X" -+ ft@ are continuous
fimctions of the parameter yector p e lC. Note that there is no assumption that the
parameter dependence exhibited by the state space matrices is linear. The state-space
matrices of an LPV system in equation (1) as follow:

P,(p(t)t:f,n(P(r))la(P(r))l rrl
Lc(p(r))lo(p(')).1

Definition 1: Dehne the set of feasible parameter trajectories { to be a subset of all

piecewise continuous functions C : R* -+.ff, according to :
A

rri_ {pQ):n. 1 R", p,* 3 p, 3 p,^, i=1,2,...,s\
Continuity of the state-space matrices implies bormded ness on compact subsets of lt and
this ensures that for each p(r) e Frthe state transition matrix, denoted aDp{t,) is unique

and continuous. For this class of systems we define the notion of quadratic stability [1,2,
61.

Definition 2 : The IPI/ system P" with state-paco matrices given by equation [) is
quadratically stable (@stable) if there exists a real positive-definite matrix X : X > 0
such that

Ar (p{t)) X+ x a{p(t)) <0, vdlt)cFF

Because l({t)) is continuous function of parameter p(t)eFocompact, therefore the above
definition shown that left equation is negative-definite uniform, that there exists scalar D >
0, such that :

.ar 14t'11X+ XA(p(t)) <-6r,, Y f,t) e F,

(3)
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In another word, P, (dr)) is a state-space realization of a IPZ system Q-stable if only if
there exists a real positive-deflrnite matrix P: Pr> 0 and Q = y'> 0 such that:

A'( t))g+ QA(AI)) + Cr@<t))C(At)) < O, V p(t) e Fp (4)
and

A( I))P+PAT@QD+ B0 nBr(/\t))<o,Vdt)eFp (5)
Henceforfh we shall refer to a Q satisffing equation (4) as a parameter-varying
observability Gramian and a P satisfying equation (5) as a parameter-varying
controllability Gramian. Whereas flt) is written as p.

Definition 3 : ( Induced 1,2 Gain)
Given a @stable ZPZ system P,, with zero initial condition, the Induced la gain is
defined as :

lla(Pll,', I 'Po 
*,JE{-1)4L (6)

' p(rYF, F,.1, ll/ll,
Lemma I : (Quadratic Performance )
Given a continuous state-space realization of ZPZ system P,, with a scalar 1> 0. If there
exists anXeR-,X= f > 0 such that for all p(t) e Fo. :

) xn(p)
_I

r'o(p)
that:

l.P"(p) is $stable pn Fr.
2. There exists a p < 1 such thatllf, G)|,., < 0.

A diffrculty with determining quadratic performance using lrmma I is the infinite number
of constraints which must be satisfied. However, by making the restrictions that

(1). The state-space matrices A(p), l(p), C(p) wrd D{p) depend affinely on p, i.e. :

A(p): Ao+ p1 A1 + ...+ p,A,i
B(p): Bo+ pt 81 + .-.* p,B,;
C(p)= Cs+ plCt + ... + p,C,;
DQt): Ds+ p,Dt + ... * p,D, .

Or, we can write as :

S(p):S, + p1S|*... +A^S,.

*ith s(p)=|-rlp) ,lrll'' 
Lc(p) o(p))

(2). That p varies in a convex polytope with a finile nurnbpr of vertices \n, m, ...,
PN].-

Hence to determine performance for a system satisffing (1) and (2) it is sufficient to
satisfy a finite number of constraints. Given a convex decomposition of the current

parameter value p: dt pt* dz pz* 6t ps* ... * ar,t p* , q> 0, fo,=, thenthe state-

space matrices of an affme LPy model *;' determined by

I a'(p)x + x,a(p

I a'b\x
I r-'c(o)

(7)
y-'c'(p\
r-'o'b)l.o-r l
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ll?,'#l=*"llB\
t(p)1.
D(p))

2. Material and Method

Balancing of lPZsystems
Definition 3 : Given an n - state qua(ratically stable IPllsystems P,, a parameter varying
observability Gramian Q satisffing equation (4) and a parameter varying controllability
GramianP satisfying equation (5), defineo, =,[fWpJ, i= 1,2,..., nwhere o1 2 o22

.-.2 o, > 0 to be P. singular values and eigen values P,.

Lemma 2: Given a continuous state-space realization of an LPV system P,, an
observability Gramian Q satisffing eguation (4) and a controllability Gramian P satisfying
equation (5) and a constant state transformation matrix T then

F =TPTT

A=r-'er'
are parameter varying observability and confiollability Gramians for the transformed
system respectively.

Proposition: Given a continuous state-space realization of an LPV system P,, an
observability Gramian Q satis$ing equation (4) and a controllability Gramian P satisffing
equation (5), then it is possible to find a constant state ffansformation matrix T such that
the transformed Gramian F = A -->.. E is diagonal matrix which has P, singular values

arranged along its diagonal in descending order
o12o22...)q,>0.

Delinition 3: Given a continuous state-space realization of at LPV system P, and a

balancing state transformation matrix T such thatF=A=2, define the balanced
pmameter varying realization as follows

p,b\!-lra(pV'lrn(p)f' 
Lc(pV-' lo(p).i

LPVBdanced Truncation
Lemma 3: Assume Pn is an n - state, quadratically stable, balanced ZPZ system
partitioned as follows

.4rrb)

4,b)
7I;- cI;,(a\

Where : All e No , Atz e ffo'i , A, e N-do , A22 e fl*'k(*') , Bt e P* , B, e N"o)- ,
C1e R* ,C2e P'l(n+) ,D e Y' .

)

)
)

G,;

b
G';

4,
h
cr"r,L

l4b)l

l#l
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wirh p: ,: r : 
[? ;]*, 

E1 = diag {ot, ot, ..., o),Ez__ dias(o,*,, o,*2, ..., on),

6r> or+t ther,:.

P,(p)!149l!@1
l.c,(pllo(p)J

is an r-state, quadratically stable, balanced approximation to P, (p) and the reduction error

llP,(p)- P,(p)|,,, . ,fo, '
j=r+l

Since balanced truncation of II1 systems produces zero error at infinite frequency because
it does not influence the system's D matrix, but from confol perspective we would like the
approximation error to be a small at low and intermediate frequencies. It has been
observed that in general case where more than one state is tnrncated the maximum
approximation error resulting from balanced huncation occws at low frequency. This has
led to the development of several frequencies weighted approximation schemes which can
be used to improve the approximant for confiol purposes. Of course parameter varytng
systems do not have a frequency response but we can still draw on intuition gained from
I71 systems in order to improve the approximation for the purpose of contol design. It can
be seen in the following chapter.

3. Simulation and Discussion

In this example we examine reduced order controller synthesis for pitch axis control of a
missile. The dynamic of the missile under consideration vary greatly as a function of speed
( v ), altitude ( 11) and angle-of-attack ( a), hence a single LTI model and controller is
insufficient for effective control. Here we'll consider an LPY model and controller. The
model we will use has previously been studied by Gahinet et al. [10]. For the synthesis of
IPZ controllers of state-dimension equal to the weighted model. The parameter dependent
model is glen by,

ll:l-';" ,l[;].[:]',
lo*1 [-t ol["-]

L,l:Lo r.il,l
where Zo and Mo are aerodynamic co-efficients which depend on y, H and a. The input
system is the fin deflection (4).The two states are angle-of-attack ( a) and pitch rate (4)
respectively. The two outputs xe the (normalized) vertical acceleration (aJ pitch rate (q)
respectively.

'We assume thatt, H and d t\ay all be measured in real time and vary over the following
ranges, i.e.:

v e [0.5 4] MactL ]/ e [0 1800]m, arrd q e [0 40] degree.
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The combination of v, H anid a imply that Z" e f0.5 41, and M, e [0 106]. The state-

space reaf ization of systems ,,=l -';, ;|ll
I -l o lol

lo ,lo]
Note that Zo and Mo enter the state-space matices in an affine way, and may be considered
as representing a convex polytope with four vertices.

The objective we wish to achieve is for the step response of a- to have a settling time of
less than half a second for all variations of Znand Moin the above range.

Given the performance weights,

W^=
96.78s3 + 0.29 s2 + 0.0003s - 0.00392 

s3 +1.12xI05s2 +1.05x10*rli.oZrtd

The performance specification correspond to designing a confoller which achieves,

llw,(t* 
r,x,l'. 

ll .,, (y: r)
llw,r,\r+ r,r,lll-

From the above problem, can be done as follow:

a- has settling time less than 0.6 second.

Solution:
To solve this problenr, we use MATLAB software, mainly LMI Control Toolbox and
Robust Control Toolbox.

Steps of solving phases:

1). Add weighted function in the plang such that order - 6 generalized plant.
2). Show that generalized plant Q-stable.
3). Define mafru. A(p), B@), C(p), D(p). After obtaining these matixes, the

generalized plant is balanced" Therefore :

P=Q=>,=

48.799100000
05.00090000
000.6924000
0000.298500
00000.28130

0 0.2797

4). Because the generaLznd plant is p-stable and balanced, so balanced truncation
can be done. So that the order - 6 initial plant would truncate to become order - 5,
order - 4, order - 3. The result oftruncated can be seen in the following table.
Tabel. l: Reduction Error

w. = 2'ol and' s + 0.201



lla0)-4bl[ 0.559 0.560 0.814

2trace2, 0.559 t.122 1.719
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From the table shown above can be seen the gap between initial plant and reduced
plant for continuously outcoming reduction error less than 2 times of singular

values that is tuncated (2traceZ, = Zfo ).
i=k+l

5). Next, we draw a step response graphic. From this graphic shovrn at picture.l,
pictme.2 and picture.3 can be seen that all graphic from reduction plant are lying
over (overlapping) the same line of initial plant

Picturel: Steprssponsegraphic Picture2: Stepresponsegraphic Picture3: Stepresponsegraphic
for olrn loop order - 6 for open loop order . 6 for open loop order - 6
whichisoverlapping whichisoverlapping whichis overlapping
with open loop order-5 with open loop order-4 with open loop order-3

6). Finally, Designing controllers from initial plant and reduced plant where step
response of a- has settling time less than 0.6 second. From picture.5 can be seon
that time response closed loop system from initial plant order - 6 and reduced
plant order - 4 which given time functioq the controller has settling time less
than 0.6 second. Conversely, another picture does not have settling time.
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Picture4: Stepresponsegraphrc

for openlooporder-6

which is ovedapping

with open loop order-5

Pictore 5: Step response graptuc

for openloop order-6

whrch is overlapping

with open loop order-4

Picturc 5: Step response graphic
for openloop order-6
which is overlapping
with open loop order-3

4. Conclusion

In this paper we have shown that the LTI model approximation technique of balanced
tuncation may be extended to LPV frameworlq where the least upper bound from
reduction elror less than 2 times singular values reduced systcm. Furthermore, if initial
plant arc @stable and balanced, then reduced plant are @stable and balance( too.
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