
Jurnal CoreIT, Vol.9, No.1, June 2023
I SSN 2460-738X (Print)
I SSN 2599-3321 (Online)

DOI: 10.24014/coreit.v9i1.17109

39

Pathfinding Solving in Maze Game using Backtracking Algorithms

Tegar Arifin Prasetyo1*, Rudy Chandra1, Berliana Simamora2, Michael Joseph Christian2, Agus

Rokyanto Silaban2, and Meyliza Veronica Siregar2
1
Information Technology Department, Faculty of Vocational Studies, Institut Teknologi Del, Indonesia

2
 Software Engineering Technology Department, Institut Teknologi Del, Indoneisa

tegar.prasetyo@del.ac.id (*Corresponding Author), rudychandra@del.ac.id, if419016@students.del.ac.id,
if419005@students.del.ac.id, if419045@students.del.ac.id, if419058@students.del.ac.id

Abstract.

Games have become a highly sought-after form of entertainment, offering not just leisure, but also the opportunity to

sharpen critical thinking skills. A game that contains elements of artificial intelligence requires algorithms for its

implementation. One type of game is the maze game, where players are required to find a way out of the maze. The
backtracking algorithm was employed to solve this challenge by tracing possible paths recursively. If the path leads to

a dead end, it will be backtracked and another path will be explored. The algorithm saves all solutions, continuing the

search until the final solution is found. By implementing the backtracking algorithm, the completion time for a single

attempt in the maze game was impressively reduced to just 2.16 seconds.

Keywords: Backtracking Algorithm, Maze Game, and Recursive

Received November 2022 / Revised May 2023 / Accepted June 2023

This work is licensed under a Creative Commons Attribution 4.0 International License.

INTRODUCTION
Games have become a highly sought-after source of entertainment, appealing to all demographics,

particularly the youth. The gaming industry is experiencing significant growth, with developers creating

increasingly captivating games to attract players. Not only do these games provide entertainment, but the y

also challenge players to sharpen their problem-solving skills in order to win.The modern computer gaming

industry continues to expand and become more intricate each year, with advancements in both map size

and the number of units within the industry [1], [2]. A maze-themed game can be just as engaging and

mentally stimulating for players, challenging them to use their problem-solving skills. One common issue

in games is finding effective pathfinding solutions for non-player characters, which are crucial for their

movement and behavior, such as in tower games [3], car racing [4], and educational games [5], and so on.

The implementation of a game that incorporates artificial intelligence elements demands the use of

algorithms [6]. The maze game is an example of a game that incorporates artificial intelligence elements.

It features barriers or walls that restrict the player's path and has a starting point and a final goal. When

players reach a dead end, they must turn around and explore other paths. With multiple potential solutions,

this game offers a challenging experience for players. Several algorithms used to solve maze games are

closely related to graph theory and are designed to find the shortest path solution from the starting point to

the destination, even when multiple solutions exist [7], [8]. The shortest path search problem in games has

been addressed using a variety of search algorithms, including the efficient A* search algorithm and the

comprehensive Bread-First Search algorithm [9]. Previous studies have utilized the implementation of the

Bread-First Search (BFS) and A* algorithms to tackle the pathfinding challenge in maze games [9], [10].

The research has shown that both the Bread-First Search (BFS) and A* algorithms are capable of solving

the shortest path problem without encountering bottlenecks, as long as the generator node does not move

towards a dead end. The A* algorithm can be utilized in games that are designed with artificial intelligence

concepts, such as the Goat Foraging Game [11]. The A* algorithm in the Goat Foraging Game utilizes

artificial intelligence to determine the shortest distance between the enemy and the goat. Other studies have

demonstrated that the brute force algorithm can solve problems in the shortest amount of time [12]. The

Brute Force Algorithm involves evaluating all possible solutions to find the correct one, which results in a

longer time frame compared to other algorithms as it thoroughly checks every possible outcome, regardless

of its feasibility.

http://creativecommons.org/licenses/by/4.0/

40

In this research, we aim to find a potential solution by implementing the backtracking algorithm. This

algorithm operates by constructing solutions incrementally and then discarding those that are unnecessary.

It employs a state-space tree to determine if a solution is valid, and if it is, the process is repeated until the

final solution is found. If the solution is invalid, it will be discarded. The backtracking algorithm's unique

advantage is its ability to ignore or eliminate invalid s olutions efficiently. The objective of this research is

to delve into the workings and processes of the backtracking algorithm applied to pathfinding in maze

games. It is hoped that the findings will shed new light on the functioning of the backtracking algorithm

and contribute to a deeper understanding of its application.

METHODS

The right algorithm to find a way out of the maze is the backtracking algorithm. This algorithm tries a path

until it reaches a dead end, then performs the previous step (backwards) until it finds another path, then

repeats the path again. To describe a backtracking algorithm, divide the path into a series of steps. One of

the steps is to move the unit cell in a certain direction. The directions that can be passed are: up, down, left,

and right. A backtracking algorithm is a recursive algorithm that aims to solve a given problem by testing

all possible paths to a solution until a solution is found [13]. Each time a path is tested, if no solution is

found, the algorithm will return to test another path, and so on until a solution is found or all paths have

been tested. In the game Maze, the backtracking algorithm scenario occurs when attempting to find a way

out of a maze. Whenever the algorithm reaches a dead end, it will back off and try another path until it finds

a way out or all paths have been explored. In general, Backtracking algorithm can be presented in Figure

1.

Figure 1. General Backtracking Algorithm Representation

Backtracking algorithm for the Maze problem is the function parameter is M, then the maze is saved (the

maze can be implemented as a 0/1 matrix, paths are represented as rows of 0s and walls represented as rows

of 1).

Figure 2. Maze Game Backtracking Algorithm Representation

41

Based on figure 2, if the recursive call to SolveMaze (M) is feasible, it means that the displacements made

lead to the solution. Therefore, the resulting maze image is displayed on the screen. The resulting step

motions are printed in reverse order when the recursive call returns, causing a minor problem. To fix this,

you need to save the step motion on the stack and print the entire step after the SolveMaze call instead of

printing it right away.

The backtracking algorithm for the Maze problem can be thought of as forming a state-space tree. The roots

of the tree are the first maze, and the children are the mazes that result from moving one step away from

the original maze. We use the programming language Python to simulate the implementation of the

backtracking algorithm to solve path finding in the maze game. Python has many features that support

functional programming and object-oriented programming [14]. Python is also simple and easy to learn.

Python became popular for some reasons: it has a simple syntax that makes it easy to learn and easy to read;

it is cross-platform; it supports multi-paradigm; it can be used for multiple tasks (software development

and machine learning); it has many libraries; it is open source; and it has a large and active community [15].

RESULT AND DISCUSSION
Maze Game is a puzzle game where players will be set at one point as a start and are required to find a path

to get out of the maze at a specified point. To get out of the maze, the player will be confronted with several

paths, some of which are dead ends. So to find a solution to this problem, a backtracking algorithm is

implemented.

The backtracking algorithm will examine some paths taken to determine whether or not they are

qualified.The backtracking algorithm will only select those paths that lead to a solution without checking

all possibilities. In other words, paths that do not qualify or do not lead to a solution will not be considered

again. Figure 3 show user interface for the backtracking algorithm implementation of the maze game.

Figure 3. Maze Game UI Implementation

We can find the solution using the state space tree. State space tree roles as follow:

a. Starting point has been set at the end second track.

b. Goal point is set at the bottom in light blue.

c. Paths that can be traversed are dark blue.

d. Paths that can be passed are vertical and horizontal lanes, so players cannot cross paths crosswise or

diagonally.

42

Figure 4. Solution Using State Space Tree

Figure 4 shows the implementation of a backtracking algorithm to solve a maze game problem using a state

space tree. The first intersection in the game maze is the root. There are two intersections that lead to the

right and down. The downward crossing is not promising because it is a dead end. so that a backtrack will

be carried out to the second intersection.

At the second intersection there are two intersections , there are down and to right. Downward crossroad is

not promising because of a dead end. So that a backtrack will be carried out towards the third intersection.

At the third intersection there are two intersections, there are down and to right. Downward crossing is not

promising as it is a dead end. So that a backtrack will be carried out to the fourth intersection. There are

two intersections at fourth intersection, there are down and to right. The intersection to right is not passed

because it does not lead to solution. So it will continue to fifth intersection. At the fifth intersection there

are two intersections, there are to left and right. Righteous crossing is not promising because it is a dead

end. So that a backtrack will be carried out to sixth intersection. At the sixth intersection there are three

intersections, there are to left, to down and to right. The crossing down promises and continues to the

seventh intersection. The seventh intersection has 2 intersections, there are to left and to rig ht. Left crossing

is not promising because it is a dead end. So that a backtrack will be carried out towards the intersection to

the right, this intersection is also not promising because it is a dead end. So that backtracking is carried out

at the seventh and sixth intersections. Next at the sixth intersection trace back to intersection. This crossing

is not promising because it is a dead end. So there will be a backtrack to the eighth intersection. At the

eighth intersection there are two intersections, there are to up and to down. The upward crossing is not

crossed because opposite direction of the final solution. So proceed to the ninth intersection. At the nine

intersection there are two intersections, there are to left and to right. Intersection to left is not crossed

because opposite to the direction of the final solution. So proceed to the right intersection. So that the path

that can be passed to the final solution obtained are1-2-3-4-5-6-8-9.

Furthermore, the backtracking algorithm implementation uses the Python programming language.

43

Figure 5. Library Used

Library in figure 5 is a graphical library used to create user interface of Maze Game. Turtle is a python

library used to create canvas. Where in the canvas will later be able to draw user interface for the maze.

Radiant is used to generate random numbers of integer type with a specified range.

Figure 6. Path and Wall Arrangement

In figure 6 it is a function to draw paths and walls in the maze game using fill function. Point 0 refers to the

right, 90 up, 180 left and 270 down.

Figure 7. Path and Wall in Maze Game

Figure 7 is code snippet for PixelArt saved in list. To determine paths and walls, 0 is path, 1 is wall and 2

is end point.

44

Figure 8. Starting Point Position Setting

Code snippet in figure 8 is the starting point position in upper left area of screen.

Figure 9. Code Program Maze Game Using Backtracking

Figure 10. Code Program Maze Game Using Backtracking

45

Figures 9 and 10 are backtracking/recursive functions to check all possible paths to the end point or exit of

the maze. If an exit or destination is found, it returns true. If the path is empty then it will not be traced.

Figure 11. Setting for Messages

Code snippet in figure 11 is a code snippet to set style of message when you have finished exploring the

maze path.

Figure 12. Message if Solution Found

Code snippet from figure 12 is the code snippet for message when you have finished tracing path.

Figure 13. Maze Drawing Function

Figure 13 is a code snippet to describe the maze. Figure 14 is the output displayed in completing Maze

Game using backtracking algorithm with the solution finding speed time is 2.16 seconds for one trial.

Figure 14. Solution Using State Space Tree
CONCLUSION

The maze game's challenge of finding a path to reach the end point can be effectively addressed through

the utilization of the backtracking algorithm. The implementation of the backtracking algorithm is

straightforward, and its results can be seen in the player's ability to reach the goal and exit the maze.

46

However, there is scope for further improvement, such as incorporating artificial intelligence algorithms

and exploring various in-game scenarios, to enhance the scalability of the maze game solution.

REFERENCES

[1] Z. Abd Algfoor, M. S. Sunar, and H. Kolivand, “A comprehensive study on pathfinding techniques

for robotics and video games,” International Journal of Computer Games Technology , vol. 2015,

2015, doi: 10.1155/2015/736138.

[2] R. Graham, H. McCabe, and S. Sheridan, “Pathfinding in Computer Games,” The ITB Journal, vol.

4, no. 2, p. 6, Nov. 2015, doi: 10.21427/D7ZQ9J.

[3] G. Teixeira Galam, T. P. Remedio, and M. A. Dias, “Viral Infection Genetic Algorithm with

Dynamic Infectability for Pathfinding in a Tower Defense Game,” Brazilian Symposium on Games

and Digital Entertainment, SBGAMES , vol. 2019-October, pp. 198–207, Oct. 2019, doi:

10.1109/SBGAMES.2019.00034.

[4] Y. Sazaki, H. Satria, and M. Syahroyni, “Comparison of A∗ and dynamic pathfinding algorithm

with dynamic pathfinding algorithm for NPC on car racing game,” Proceeding of 2017 11th

International Conference on Telecommunication Systems Services and Applications, TSSA 2017 ,

vol. 2018-January, pp. 1–6, Jan. 2018, doi: 10.1109/TSSA.2017.8272918.

[5] D. Kurniadi, A. Mulvani, and R. S. Maolani, “Implementation of Pathfinding Algorithm in

Sundanese Land History Educational Game,” 2021 2nd International Conference on Innovative

and Creative Information Technology, ICITech 2021 , pp. 145–150, Sep. 2021, doi:

10.1109/ICITECH50181.2021.9590181.

[6] W. Westera et al., “Artificial intelligence moving serious gaming: Presenting reusable game AI

components,” Educ Inf Technol (Dordr) , vol. 25, no. 1, pp. 351–380, Jan. 2020, doi:

10.1007/S10639-019-09968-2.

[7] I. Lagzi, S. Soh, P. J. Wesson, K. P. Browne, and B. A. Grzybowski, “Maze solving by chemotactic

droplets,” J Am Chem Soc, vol. 132, no. 4, pp. 1198–1199, Feb. 2010, doi:

10.1021/JA9076793/SUPPL_FILE/JA9076793_SI_006.AVI.

[8] V. S. Gordon and Z. Matley, “Evolving sparse direction maps for maze pathfinding,” Proceedings

of the 2004 Congress on Evolutionary Computation, CEC2004 , vol. 1, pp. 835–838, 2004, doi:

10.1109/CEC.2004.1330947.

[9] N. H. Barnouti, S. S. M. Al-Dabbagh, and M. A. Sahib Naser, “Pathfinding in Strategy Games and

Maze Solving Using A* Search Algorithm,” Journal of Computer and Communications, vol. 04,

no. 11, pp. 15–25, 2016, doi: 10.4236/JCC.2016.411002.

[10] B. V. Indriyono and Widyatmoko, “Optimization of Breadth -First Search Algorithm for Path

Solutions in Mazyin Games,” International Journal of Artificial Intelligence & Robotics (IJAIR) ,

vol. 3, no. 2, pp. 58–66, Nov. 2021, doi: 10.25139/IJAIR.V3I2.4256.

[11] P. Harsani, I. Mulyana, and D. Zakaria, “Fuzzy logic and A* algorithm implementation on goat

foraging games,” IOP Conf Ser Mater Sci Eng , vol. 332, no. 1, p. 012054, Mar. 2018, doi:

10.1088/1757-899X/332/1/012054.

[12] I. Ariyanti, M. A. Ganiardi, and U. Oktari, “Mobile Application Searching of the Shortest Route

on Delivery Order of CV. Alfa Fresh With Brute Force Algorithm,” Logic : Jurnal Rancang

Bangun dan Teknologi, vol. 19, no. 3, pp. 120–130, Nov. 2019, doi: 10.31940/LOGIC.V19I3.1437.

[13] A. Erguzen and E. Erdal, “SUDOKU SOLUTION WITH BACKTRACKING ALGORITHM,”

International Journal of Advances in Electronics and Computer Science , no. 7, pp. 2394–2835,

2020, Accessed: Feb. 10, 2023. [Online]. Available:

http://iraj.inSudokuSolutionwithBacktrackingAlgorithm

[14] J. M. Chambers, “Object-Oriented Programming, Functional Programming and R,”

https://doi.org/10.1214/13-STS452, vol. 29, no. 2, pp. 167–180, May 2014, doi: 10.1214/13-

STS452.

[15] N. Thaker and A. Shukla, “Python as Multi Paradigm Programming Language,” Int J Comput Appl,

vol. 177, no. 31, pp. 38–42, Jan. 2020, doi: 10.5120/IJCA2020919775.

