
I. Introduction

In current modern era, the technology has changed
human perspectives and behavior, including in the health
management. In monitoring and improving the quality
of individual health, smart health devices become a
technological solution. A smart health device can collect
health data in blood pressure, pulse rate, temperature, even
heart signals [1]. Smart health devices can assist users in
monitoring the quality of health to provide information
on prevention actions. Smart health devices can provide
health services thanks to a computer network that connects
them to the cloud of health care centers [1]–[5].

In communicating towards the healthcare center cloud,
smart health devices use communication protocols. One
of the communication protocols used is message queue
telemetry transport (MQTT). The MQTT protocol is a
fast and lightweight publish-subscribe-based protocol [6].
Additionally, the MQTT protocol can be computed by
constraint devices, such as smart health wearable. Smart
health devices collect information from their users and

send it via the MQTT protocol to the healthcare center
cloud.

The information that contained in medical records
and personal information on the smart health device is
confidential. Therefore, information security threats on
smart health devices to various cyber security threats can
cause varying levels of damage to smart health devices. The
result of this cyber-attack can cause loss or even damage
to the information. One such attack is eavesdropping
and replays. Eavesdropping on communications can
result in the leakage of information transmitted by smart
health devices over computer networks. The leakage of
information happens because the information sent does not
have an encryption security mechanism. Replay attacks
can cause health device malfunctions and information
integrity issues. The malfunctions and information
integrity issues happen because the access to the device
does not have an authentication mechanism. Therefore,
improving information security and providing a level
of authentication on smart health devices is receiving
attention in this research area.

Secure MQTT PUF-Based Key Exchange Protocol
for Smart Healthcare

Rizka Reza Pahlevi, Parman Sukarno, and Bayu Erfianto
School of Computing, Telkom University

Jl. Telekomunikasi No. 1, Terusan Buahbatu-Bojongsoang, Sukapura, Bandung 40257
e-mail: rizkarezap@telkomuniversity.ac.id

Abstrak—Serangan replay dan eavesdropping mengancam keamanan informasi yang dimiliki oleh perangkat kesehatan
cerdas. Metode pertukaran kunci yang diautentikasi untuk menyediakan sesi kriptografi adalah upayapaling baik
dalam memberikan keamanan informasi dan menyediakan autentikasi secara aman. Namun, perangkat kesehatan
cerdas tidak memiliki komputasi yang cukup untuk melakukan proses kriptografi berat karena batasan perangkat
tertanam yang digunakan. Kami mengusulkan protokol pertukaran kunci yang diautentikasi berbasis physical
unclonable function (PUF) yang aman dari serangan replay dan eavesdropping. Protokol didesain dengan satu proses
jabat tangan dan tiga proses autentikasi. Selanjutnya protokol usulan dievaluasi dengan menggunakan Tamarin
Prover. Dari hasil evaluasi, protokol yang diusulkan dapat bertukar properti dengan benar antar aktor komunikasi
dan valid dalam membuktikan setiap lemma pada serangan replay dan eavesdropping.

Kata kunci: keamanan informasi, perangkat kesehatan cerdas, puf, tamarin prover, autentikasi

Abstract—Replay and eavesdropping attacks threaten the information security that is held by smart healthcare
devices. An authenticated key exchange method to provide cryptography sessions is the best way to provide
information security and secure authentication. However, smart healthcare devices do not have sufficient computation
to perform heavy cryptography processes due to the limitations of the embedded devices used. We propose an
authenticated key exchange protocol based on a physical unclonable function (PUF). The proposed protocol aimed
to countermeasure from replay and eavesdropping attacks. The protocol is designed with one handshake process
and three authentication processes. Futhermore, the proposed protocol is evaluated using Tamarin Prover. From the
results of the evaluation, our proposed protocol can exchange properties correctly between communication actors
and is valid in proving each lemma in replay and eavesdropping attacks.

Keywords: information security, smart healthcare device, puf, tamarin prover, authentication

Jurnal Rekayasa Elektrika Vol. 17, No. 2, Juni 2021, hal. 107-114
ISSN. 1412-4785; e-ISSN. 2252-620X, Terakreditasi RISTEKDIKTI No. 30/E/KPT/2018
DOI: 10.17529/jre.v17i2.20428

Received 20 March 2021; Revised -; Accepted 19 April 2021

107

108

An authenticated key exchange method to provide
cryptography sessions is the best way to provide
information security and secure authentication. The
MQTT protocol provides a security mechanism using
the asymmetric method. However, not all smart health
devices have sufficient computing power to perform
asymmetric cryptography processes due to the limitations
of the embedded devices used [6]. Because asymmetric
cryptography imposes high computational costs on
smart healthcare devices, symmetric cryptography is a
good candidate because it uses lower computation costs.
However, symmetric cryptography uses the same key for
every communication. It is a range for replay attacks. The
attacker could send the same message in order to flood the
service with authenticated messages. Thus, the symmetric
security property cannot be the same at all times.

One method of getting a security property repeating
its security property is to use a physical unclonable
function (PUF). PUF can provide security properties for
the authentication process on-demand and unique to each
session [7]–[10]. Thus, the symmetric authentication
process will be safer from eavesdropping and replay
attacks. This study proposes a PUF-based and fuzzy
extractor-based key exchange protocol model to
accommodate smart health device authentication. We
also analyzed the security of the proposed protocol using
the authentication tool Tamarin Prover. In order to verify
its correctness, the protocol model is written formally in
notation. For verification purposes, security properties are
created, namely conditions or states that are suspected of
occurring when an intruder or hacker will attack.

Our contributions to this paper are:
•	 We propose an authenticated key exchange protocol

model using PUF and a fuzzy extractor on the MQTT
protocol to counter eavesdropping and replay attacks.

•	 We evaluated the proposed protocol using Tamarin
Prover and proved the validity of the proposed
protocol against each lemma that represents replay and
eavesdropping attacks.

II.	 Related Work

Smart health devices must be able to prove their identity
to carry out the authentication process. In order to provide
authentication, some researchers use several techniques.
Mario Barbareschia et al. proposed a PUF-based mutual
authentication mechanism called Physical Hardware-
Enabled Mutual Authentication Protocol (PHEMAP) that
was capable of handling man-in-the-middle attacks [11].
Shamsoshoara also uses PUF as a security solution for the
internet of things (IoT) [9]. PUF is a potential solution to
counter physical attacks.

Additionally, PUF can provide different responses to
different challenges. Constrained devices can also use PUF.
Research conducted by Khan et al. proposed a lightweight,
ultra-low power, re-configurable ring oscillator (RO)
based PUF that can be used for authentication [12]. In this

study, the proposed PUF can have better uniqueness and
reliability than conventional RO. Tahavori also proposes
lightweight and secure PUF-based authentication. In this
study, the PUF authentication process was supported by a
fuzzy extractor. The event-based authentication protocol
model proposed by Pahlevi et al. that limited devices are
capable of [6]. The event-based protocol design provides
mutual authentication with a symmetric encryption
mechanism.

III.	 Method

The proposed protocol design is formally modeled in a
logical form that Tamarin Prover can accept. The proposed
protocol is divided into four phases, one handshake phase
and three authentication phases, as shown in Figure 1.
The smart health device sends an initiation message to
initiate the authentication process with the server via
handshaking. After that, the smart health war generates
the PUF to produce the first authentication property. The
server evaluates the first authentication property of a smart
health device. If it evaluated, the server then forms a
second authentication property and encodes the key. The
smart health device validates the second authentication
property of the server. If it validated, the smart device then
decrypts the key and forms a third authentication property.
The server validates the third authentication property of
the smart health device. If it validated, the communication
will establish. Because in modeling the protocol, there is a
list of terms used as presented in Table 1.

A.	 Prerequisite

Before this PUF-based key exchange, several stages
must have occurred. We use a standard scenario on a PUF

Gambar 1. Authentication protocol design

Jurnal Rekayasa Elektrika Vol. 17, No. 2, Juni 2021

109

based protocol:
1.	 The Sver server has collected the CRP and IDumd

identifier from the UmD device at a stage known as the
initiation phase. At this stage, the Sver can physically
access the UmD device in obtaining the CRP. CPR is
collected and then stored in the Sver storage location
to be accessed later in the authentication process.
Moreover, Sver has also collected the challenge index
number from UmD. This challenge index number
does not represent the challenge’s contents but only
a random sequence of challenge numbers. It should
be noted that this phase must occur in a protected
and controlled environment because CRP is strictly
confidential.

2.	 The UmD device has been installed and operated. The
UmD device can no longer be physically accessed
by the Sver server either to obtain the CRP or access
the PUF. In this phase, the UmD device can only
communicate with the server Sver via a computer
network.

3.	 UmD devices can access owned PUF to implement the
proposed protocol. The response results from the PUF
are not stored in the local UmD device. Challenges are
used to generate different responses for each session.

B.	 Protocol Design

The proposed protocol design starts when the UmD
device sends the n-th index of the challenge and IDumd
to the Sver. The purpose of this transmission is to trigger
Sver that UmD is asking to authenticate using the n-th
challenge. Sver replies with nonce b and stores IDumd and
n. We call this whole stage as the handshake phase. This
handshake process initiates that Sver recognizes IDumd
and chooses challenge n. The formal model at this stage is
written in Table 2.

 Table 2, given UmD1 and UmD2, with UmD1 ≠
UmD2, will always give Unmanned (UmD1) ≠ Unmanned
(UmD2) facts. These facts are an effective way where each
device has a different IDumd to give unique results. Fr (~
n1) is a fact that gives a nonce. The nonce is generated by

Fr (~ n1) ≠ Fr (~ n2) so that the nonce is unique every
time. This fact states that the challenges used to generate
responses will vary. UmD used the nonce used in the
handshake process as a challenge. Challenge on the n-th
index, called the challenge C ‘(n), is given an XOR
operation with nonce b obtaining a complete challenge,
formally written as C’(n) ⊕ b ⇒ chl where chl is the result
of the XOR operation.

Given the fact that n1 ≠ n2 and b1 ≠ b2, then chl1 ≠
chl2. These facts state that the challenges that are used
every time are different. UmD uses the PUF function to
get response res from chl, Sver gets response res from chl
from the associated CRP database from IDumd. With the
fact that chl1 ≠ chl2, the fact res1 ≠ res2 states that the
resulting responses are different. UmD performs a fuzzy
extractor generator process to get khl from res. With the
fact that res1 ≠ res2, then khl1 ≠ khl2 means that the
fuzzy extractor results are different. UmD forms a cipher
by performing a symmetric encoding process from the
concatenate res and khl with the chl key. At this stage, we
call it the first authentication phase. The first authentication
phase was formally written in Table 3.

In Table 3, PUF formation is done by calling
PUFproduce(UmD, chl) facts, resulting in PUFresult(UmD,
chl, res) facts. Furthermore, the formation of the fuzzy
extractor’s formation is done by calling the FEgenG(UmD,
res) fact, which results in the FEresult (UmD, res, khl)
fact. From these facts, UmD forms a symmetric encoding
with the fact Out(Sver, UmD, senc((res || khl), chl)).

The results of the fact products Out(Sver, UmD,
senc((res || khl), chl)) are used by Sver to perform
validation. Sver first decrypts with the symmetric chl
key. Since the chl symmetric key results from the same
challenge and nonce b, the chl symmetric key from the
Sver side and the UmD side is the same. From the results
of this decryption, Sver found res and khl. Sver performs
Hamming distanace calculations on the res sent by UmD
with the res that Sver has from the CRP database. If the
Hamming distance does not cross the threshold α, then the
process continues. Sver generates the khls key from the
fuzzy extractor process from the response res with the khl

Tabel 1.  Terms used Tabel 2.  Handshake phase

UmD smart health device

IDumd smart health device identity name

Sver service provider to perform validation

CRP Challenge Response Pair

DBcrp Server-owned CRP database

FEgen fuzzy extractor generation process

FErep fuzzy extractor reconstruction process

h() hash process

PUF(Ci) process to gain PUF responses from
challenge Ci

CRP() a process to find a partner response from the
challenge

TRNG() true random number generator

UmD Sver

Unmanned(UmD), Server(Sver),
Fr(~n)
→
Out(UmD, Sver, ~n),
DBcrp(UmD, Sver, ~n)
CRPpass(Sver, UmD, chl, res)

⇒

In(UmD, Sver, n),
DBcrp(UmD, Sver, n),
Fr(~b)
→
Out(Sver, UmD, ~b),
DBcrpB(Sver, UmD, ~b)

In(<Sver, UmD, b>),
DBcrpB(Sver, UmD, b),
CRPpass(Sver, UmD, chl, res)

⇐

Rizka Reza Pahlevi dkk.: Secure MQTT PUF-Based Key Exchange Protocol for Smart Healthcare

110

helper. With the fact that khl1 ≠ khl2, then khls1 ≠ khls2
states that the key results from the fuzzy extractor on Sver
are different. Following, Sver generates the hash for the
concatenated results of chl, res, and khls. Then, Sver calls
the true random number generator (TRNG) function to
generate a random key as the Key. After that, Sver forms
a cipher using a symmetric encryption process on the
Key with the chl key. At this stage, we call it the second
authentication phase. The second authentication phase was
formally written in Table 4.

In Table 4, Sver performs the formation of a fuzzy
extractor reconstruction by calling the FEgenR(Sver, UmD,
khl) fact and producing FEresultR(Sver, UmD, khl, khls)
fact. Sver generates a hash by calling the Auth_2_2(Sver,
UmD, Key, res, chl) fact and returns Auth_2_3(Sver, UmD,
senc(Key, chl), h (<res, chl, khls>), Key, res, chl, khls)
fact. After that, Sver forms a cipher by calling the facts
Auth_2_3(Sver, UmD, senc(Key, chl), auth2, Key, res, chl,
khls) fact and generates Out(<Sver, UmD, senc(Key, chl),
auth2>) fact.

The results of the fact products Out(<Sver, UmD,
senc(Key, chl),auth2>) from Sver are used by UmD to
perform validation and obtain the random key Key. UmD
generates auth2 by hashing the concatenate result chl, res,
khl to validate auth2. If the two hashes are the same, UmD
decrypts the cipher senc(Key, chl) using the chl symmetric
key to get the Key. Then, UmD creates authentication auth3
with hash concatenate Key and chl. At this stage, we call
it the third authentication phase. The third authentication
phase was formally written in Table 5.

In Table 5, UmD generates auth3 for the third phase
of authentication by calling In(<Sver, UmD, senc(Key,
chl)>), Auth2to3(Sver, UmD, chl, khls) facts, and
generating Out(<Sver, UmD, h (<Key, chl>)>) fact. Sver
uses the results of the auth3 fact product to validate UmD.
To validate the message from UmD, Sver generates the
hash of the concatenated Key and chl. If the auth3 result
from UmD is the same as the hash result for Sver, then
the connection is established. All authentication phases,
starting from the handshake phase, the first authentication

phase, the second authentication phase, and the third
authentication phase, are shown in Figure 2.

IV.	 Protocol Validation and Analysis

The protocol validation model is a fact that is used to
prove that the fact-built protocol can exchange messages.
We tested two protocol validations in the proposed protocol
design, namely sanity validation and authentication
validation. Validation of sanity is validation that aims
that the proposed protocol can communicate properly.
Authentication validation is validation that aims to see
whether each actor can validate the intended message.

The validation of sanity is tested in the handshake phase.
The handshake phase involves communication between
UmD and Sver. UmD sends a message to Sver in the form
of index n. After that, Sver replied by sending nonce b to
UmD. To track these communications, we provide fact-

UmD Sver

Auth_1_1(Sver, UmD, chl),
PUFresult(UmD, chl, res)

→
FEgenG(UmD, res),
Auth_1_2(Sver, UmD, chl)

Auth1(Sver, UmD, chl),
FEresultG(UmD, res, khl)

→
Out(Sver, UmD, senc((res || khl),
chl)), Auth1to2(UmD, Sver, khl)

⇒

In(<Sver, UmD,
senc(<res, khl>,
chl)>), Fr(~Key),
Auth1to2(UmD, Sver,
khl), CRPpass(Sver,
UmD, chl, res)

UmD Sver

In(<Sver, UmD, senc(Key,
chl)>), Auth2to3(Sver, UmD,
chl, khls)
→
Out(<Sver, UmD, h(<Key,
chl>)>), Auth3to4(Sver, UmD,
Key)

⇒

In(<Sver, UmD,
h(<Key, chl>)>),
Auth3to4(Sver, UmD,
Key), CRPpass(Sver,
UmD, chl, res)

UmD Sver

Auth_2_1(Sver, UmD,
Key, chl, res, khl)

→
Auth_2_2(Sver, UmD,

Key, res, chl),
FEgenR(Sver, UmD, khl)

Auth_2_2(Sver,
UmD, Key, res, chl),

FEresultR(Sver, UmD,
khl, khls)

→
Auth_2_3(Sver, UmD,

senc(Key, chl), h(<res,
chl, khls>), Key, res, chl,

khls)

Auth_2_3(Sver, UmD,
senc(Key, chl), auth2,

Key, res, chl, khls)
→

Out(<Sver, UmD,
senc(Key, chl), auth2>),

Auth2to3(Sver, UmD,
khls)

In(<Sver, UmD, senc(Key, chl),
auth2>), Auth2to3(Sver, UmD,

khls), CRPpass(Sver, UmD,
chl, res)

⇐Tabel 3.  First authentication phase on the UmD side

Tabel 4.  Second authentication phase

Tabel 5.  Third authentication phase

Jurnal Rekayasa Elektrika Vol. 17, No. 2, Juni 2021

111

tracing. The fact-tracing provided in the handshaking phase
are, Handshaking(UmD,Sver, <’UtoS’ / ‘StoU’ , c>). Fact-
tracking Handshaking(UmD, Sver, <’UtoS’ / ‘StoU’, c>)
is intended to track the communication between UmD and
Sver when sending messages c. There are directional flags
‘UtoS’ / ‘StoU’, where ‘UtoS’ indicates communication
from UmD to Sver, and ‘StoU’ indicates communication
from Sver to UmD. The fact that tracing the handshake
is addressed to the handshake poses in Table 2. The fact-

tracking can be proven if Sver receives an index n message
from UmD, and UmD receives a nonce b message from
Sver. Thus, formally the two tracing facts are written in
Lemma 1.

Lemma 1. In one event at a time i, there was an UmD
who shook hands with Sver with the message c, and there
was a Sver who shook hands with UmD with the message
c. Formally written with

Gambar 2. Formal model proposed protocol

Rizka Reza Pahlevi dkk.: Secure MQTT PUF-Based Key Exchange Protocol for Smart Healthcare

112

∃Sver,UmD,c,i.
Handshaking(UmD,Sver,<’UtoS’, c>)@

^
∃Sver,UmD,c,i.

Handshaking(Sver,UmD,<’UtoS’, c>)@i
 ^

∃Sver,UmD,c,i.
Handshaking(UmD,Sver,<’StoU’, c>)@i

Analysis Lemma 1. In Table 2, the UmD actor
has Unmanned(UmD) and Fr(~n) facts which result
in Out(UmD, Sver, ~ n) and DBcrp(UmD, Sver, ~ n)
facts. Actor Sver has In(UmD, Sver, n), DBcrp(UmD,
Sver, n), and Fr(~b) facts. In Lemma 1, fact-tracking
Handshaking(UmD, Sver, <’UtoS’, c>)@i tracks the
communication between the UmD and Sver actors. The
fact-tracking tracks whether actor UmD has sent n. After
that, the actor Sver accepts and understands it. Tamarin
evaluates this facts-tracing with proven results. This is
because the two actors have each other’s DBcrp(UmD, Sver,
n) facts, which means they know each other n. Thereafter,
actor Sver who already had the facts Fr (~b), sent it to
UmD. In Lemma 1, fact tracking Handshaking(UmD,
Sver, <’StoU’, c>) @i communication between actor Sver
and UmD. The tracking fact-tracks whether actor Sver
has sent b, and actor UmD accepts and understands it.
Tamarin evaluates these tracing facts with proven results.
This is because the two actors have mutual DBcrpB(Sver,
UmD, b) facts, which means they know each other b.
Facts DBcrp(UmD, Sver, n) and DBcrpB(Sver, UmD, b)
facts owned by actors UmD and Sver indicate that actor
Sver has understood actor UmD, and vice versa, from the
prerequisite process or previous initiation process.

Authentication property validation is the validation used
to test the first authentication phase, second authentication
phase, and third authentication phase. Authentication
validation proves that each actor can accept the properties
needed in the authentication process. The first lemma is
to prove that UmD can send chl, res, and khl to Sver. The
second lemma is to prove that Sver can send the Key to
UmD and is understood. The third tracing fact is to prove
that UmD can send the hash result of the concatenate chl
and Key to Sver. Thus, formally the three tracking facts are
written in Lemma 2, Lemma 3, and Lemma 4.

Lemma 2. In one event at a time i, there is an UmD

that sends an authentication property to Sver in the form
of a res message, and there is a Sver that receives a res
authentication property from UmD. Formally written down

∃Sver,UmD,res,i.
AuthProtocol1(UmD, Sver, res)@i

 ^
 ∃Sver,UmD,res,i.

AuthProtocol1(Sver, UmD, res)@i

Analysis Lemma 2. Fact-tracking in Lemma 2 is used

to track communications between UmD actors and Sver at
the first authentication phase stage. In Table 3, UmD has
the Auth1(Sver, UmD, chl), FEresultG(UmD, res, hl) facts
which produces an authentication property in the form of
the Out(Sver, UmD, senc((res || khl), chl)) fact. This fact
was accepted by Sver with the In(<Sver, UmD, senc(<res,
khl>, chl)>) fact. Lemma 2 fact-tracking tracks whether
senc(<res, khl>, chl) (as the property of res) has been
submitted by the UmD actor and received and understood
by the Sver actor. Tamarin evaluated the fact-tracking of
Lemma 2 with proven results. This is because the Sver
actor has CRPpass(Sver, UmD, chl, res) facts, which are
the result of the facts in Table 2, which are also owned by
the UmD actor. This fact shows that actors UmD and Sver
have a pair of chl and res. In Table 3, Sver uses chl to do
the decryption. Since the chl used by UmD and Sver is the
same, Sver can get the properties sent by UmD. Thus, the
actor Sver can know <res, khl>.

Lemma 3. In one event at a time i, there is an UmD
that sends an authentication property to Sver in the form
of a keyA message, and there is a Sver who receives an
authentication property from UmD with a keyA message.
Formally written down

∃Sver,UmD,keyA,i.
AuthProtocol2(UmD, Sver, keyA)@i

^
∃Sver,UmD,keyA,i.

AuthProtocol2(Sver, UmD, keyA)@i

Analysis Lemma 3. The fact-tracking in Lemma 3
is used to track the Sver actor’s communication to UmD
in the second authentication phase. In Table 4, Sver has
the Auth_2_3(Sver, UmD, senc(Key, chl), auth2, Key, res,
chl, khls) facts which produces an authentication property
in the form of the Out(<Sver, UmD, senc(Key, chl)>),
Auth2to3 (Sver, UmD, khls) facts. UmD accepted these
facts with the In(<Sver, UmD, senc(Key, chl)>) facts.
Lemma 3 fact-tracking trace whether senc(Key, chl) (as
property keyA) has been sent by actor Sver and received
also understood by actor UmD. Tamarin evaluates the
facts-tracking of Lemma 3 with proven results. This is
because the UmD actor has CRPpass(Sver, UmD, chl, res)
facts in Table 2. This fact shows that the UmD and Sver
actors have a pair of chl and res. In Table 4, UmD uses chl
to do the decryption. Since the chl used by Sver and UmD
is the same, UmD can get the Key property sent by Sver.
Thus, the UmD actor was able to find out the Key sent by
the actor Sver.

Lemma 4. In one event at a time i, there is an UmD
that sends authentication properties to Sver in the form of
chl and keyA messages, and there is a Sver who receives
protocol authentication from UmD with messages chl and
keyA.

∃Sver,UmD,chl,keyA,i.

Jurnal Rekayasa Elektrika Vol. 17, No. 2, Juni 2021

113

AuthProtocol3(UmD,Sver,chl, keyA)@i
^

∃Sver,UmD,chl,keyA,i.
AuthProtocol3(Sver, UmD, chl, keyA)@i

Analysis Lemma 4. Fact-tracking in Lemma 4 is used
to track communications between UmD actors and Sver in
the third authentication phase process. In Table 5, UmD has
In(<Sver, UmD, senc(Key, chl)>), Auth2to3(Sver, UmD,
chl, khls) facts which produce authentication properties
in the form of Out(<Sver, UmD, h(<Key , chl>)>),
Auth3to4(Sver, UmD, Key, chl) facts. Sver accepted this
fact with the In(<Sver, UmD, h(<Key, chl>)>) fact.
Lemma 4 fact tracking tracks whether h(<Key, chl>)
(as the property chl and keyA) has been submitted by
the UmD actor and is received and understood by actor
Sver. Tamarin evaluated the fact-tracking of Lemma 4
with proven results. This is because the UmD actor has
CRPpass(Sver, UmD, chl, res) facts from Table 2 and the
Auth3to4(Sver, UmD, Key) facts. In Table 5, UmD uses chl
and Key to perform the hashing process. Because the chl
and Key used by Sver and UmD are the same, Sver can get
the same hash result that UmD sent.

The replay attack model in the proposed protocol
is used to prove that no usable message exists after the
original message has been received. This validation
is carried out in the first authentication phase, second
authentication phase, and third authentication phase. To
track this evidence, we provide fact-tracking for each
phase. In general, fact tracking in each phase has the
same model. The tracing facts provided are Send(UmD,
Sver, authmessage) fact and facts Authentic(UmD, Sver,
authmessage). The Send(UmD, Sver, authmessage) fact
validates that the UmD actor has sent the Sver actor
an authmessage message. The Authentic(UmD, Sver,
authmessage) fact validates that the UmD actor has
received from the Sver actor an authmessage message.
The actors in the role can switch each other to fulfill the
tracking. Formally, the proof of the replay attack is written
on Lemma 5.

Lemma 5. In one event at a time i, each authentication
message that has been received from the UmD actor to the
Sver actor with an authmessage message, there is an UmD
actor who sends the Sver actor an authmessage message,
and no other actor uses an acceptable authmessage
message. Formally written with

∀ UmD, Sver, authmessage, i.
Authentic(UmD, Sver, authmessage) @i

⇒ (∃ j. Send(UmD, Sver, authmessage) @j
^ j < i
^
¬ (∃ UmD2,Sver2,i2

 Authentic(UmD2, Sver2, authmessage) @i2
 ^ (i < i2)))

In Lemma 5, the timing of the incident between UmD

and UmD2 actors was different. The UmD actor performs
the first execution, and then the UmD2 actor performs the
second execution by replicating the authmessage message.

Analysis Lemma 5. Fact-tracking on Lemma 5 is
used to validate replay attacks on communication between
UmD and Sver actors in Table 3, Table 4, and Table 5. In
Table 3, the intended authmessage is chl on senc(<res,
khl>, chl)>). The Lemma 5 tracking facts in Table 3 aim to
prove that no same senc(<res, khl>, chl)>) sent a second
time can be received. Tamarin evaluated the tracking
facts of Lemma 5 in Table 3 with proven results. This
happens because each session using a different chl. With
different chl, the resulting symmetric encryption results
will be different (even though the encrypted properties
are the same). Furthermore, Lemma 5 fact-tracking is in
Table 4. In Table 4, the intended authmessage is chl on
senc(Key, chl). The tracking facts of Lemma 5 in Table
4 are intended to prove that none of the same senc(Key,
chl) sent for the second time can be received. Tamarin
evaluated the tracking facts of Lemma 5 in Table 4 with
proven results. Similar to the reason for Lemma 5 in Table
4, the use of different chl will produce different symmetric
encryption results. Furthermore, Lemma 5 tracking facts
are in Table 5. In Table 5, the intended authmessage is Key
and chl on h(<Key, chl>). The Lemma 5 tracking facts in
Table 5 aim that no h(<Key, chl>) the same sent a second
time can be received. Tamarin evaluated the tracking facts
of Lemma 5 in Table 5 with proven results. This happens
because the hash results with different Key and chl can
produce significant differences. Thus, no message can be
received a second time.

The eavesdropping attack in the proposed protocol is
used to prove that there is no critical information that other
actors can tamper with. This validation is carried out in
the first authentication phase, second authentication phase,
and third authentication phase. To do this validation, we
provide fact-tracking facts at each phase. In general,
fact-tracking eavesdropping has the same model. The
difference used is the information to be compromised. The
fact Secret(A) validates A information that has been used
on both actors cannot be known by actor K(A). Formally,
evidence of eavesdropping attacks is written on Lemma 6.

Lemma 6. In one event at a time i, for every secret
message secretmessage, there is no secret message
secretmessage known by actor K

∀ Sver, UmD, secretmessage (Secret(Sver, UmD,
secretmessage)

 ⇒ ¬ (∃ K(secretmessage)))

In Lemma 6, actor K is an actor who plays an attacking
actor. In Lemma 6, there is a secret message in the form of
a secretmessage known only to legitimate actors.

Analysis Lemma 6. Fact-tracking on Lemma 6 are
used to validate eavesdropping attacks on communication

Rizka Reza Pahlevi dkk.: Secure MQTT PUF-Based Key Exchange Protocol for Smart Healthcare

114

between UmD and Sver actors in Table 3, Table 4, and Table
5. In Table 3, the intended secretmessage are chl, res, and
khl. The tracking facts of Lemma 6 in Table 3 aim to prove
that no chl, res, and khl can be compromised by actor K
at the time of communication. Tamarin evaluated the fact-
tracking of Lemma 6 in Table 3 with proven results. This
happens because the communication is encrypted using
symmetric encryption. Validated actors can only know the
chl, res, and khl properties. Even though the message was
received by actor K, the actor was unable to know res and khl
because he did not have the chl key. Furthermore, Lemma
6 tracking facts are in Table 4. In Table 4, the intended
secretmessage is Key. The fact-tracking of Lemma 6 in
Table 4 is intended to prove that there is no Key that can
be compromised by actor K at the time of communication.
Tamarin evaluated the tracking facts of Lemma 6 in Table
4 with proven results. This is because the Key is given
symmetric encryption. Thus, even though actor K received
a message containing an encoded Key, the actor was unable
to obtain the Key. Furthermore, Lemma 6 fact-tracking is
in Table 5. In Table 5, the intended secretmessage is Key
and chl. The tracking facts of Lemma 6 in Table 5 are
intended to prove that there is no Key and chl that can be
compromised by actor K at the time of communication.
Tamarin evaluated the tracking facts of Lemma 6 in Table
5 with proven results. This happens because the hash is a
one-way function and cannot be reversed. Thus, even if
actor K gets the hash message from the communication,
the actor cannot get the hash compiler information.

V.	 Conclusion

The information on the smart health device is
confidential that requires a level of security. Eavesdropping
and replay attacks threaten the security of information held
by smart health devices. An authenticated key exchange
method to provide cryptography sessions is the best
way to provide information security and provide secure
authentication. However, smart health devices do not have
sufficient computation to perform heavy cryptography
processes due to the constrained of the embedded
devices used. This study proposed a validated PUF-based
authenticated key exchange protocol model in proving
replay and eavesdropping attacks. We are evaluating our
proposed protocol using Tamarin Prover. From the results
of the evaluation, the proposed protocol can properly
exchange properties between communication actors. Our

proposed protocol can prove that no message can be sent
twice to prove resilience to replay attack. Our proposed
protocol can prove that no property can be compromised
during the communication process to prove its resistance
to eavesdropping attack.

References

[1]	 F. Wu, X. Li, L. Xu, S. Kumari, and A. K. Sangaiah,“A novel
mutual authentication scheme with formal proof for smart
healthcare systems under global mobility networks notion,”
Comput. Electr. Eng., vol. 68, pp. 107–118, May 2018.

[2]	 Y. Zhang, M. Qiu, C. Tsai, M. M. Hassan, and A. Alamri,
“Health-cps: healthcare cyber-physical system assisted by cloud
and big data,” IEEE Syst. J., vol. 11, no. 1, pp. 88–95, Mar. 2017.

[3]	 N. Tariq, A. Qamar, M. Asim, and F. A. Khan, “Blockchain and
smart healthcare security: a survey,” Procedia Comput. Sci., vol.
175, pp. 615–620, Jan. 2020.

[4]	 S. B. Baker, W. Xiang, and I. Atkinson, “Internet of things for
smart healthcare: technologies, challenges, and opportunities,”
IEEE Access, vol. 5, pp. 26521–26544, 2017.

[5]	 Minahil, M. F. Ayub, K. Mahmood, S. Kumari, and A. K.
Sangaiah, “Lightweight authentication protocol for e-health
clouds in IoT based applications through 5G technology,” Digit.
Commun. Netw., vol. 7, no. 2, Jul. 2020.

[6]	 R. R. Pahlevi, P. Sukarno, and B. Erfianto, “Implementation of
event-based dynamic authentication on MQTT protocol,” J.
Rekayasa Elektr., vol. 15, no. 2, Sep. 2019.

[7]	 P. Gope, O. Millwood, and N. Saxena, “A provably secure
authentication scheme for RFID-enabled UAV applications,”
Comput. Commun., vol. 166, pp. 19–25, Jan. 2021.

[8]	 S. Kardaş, S. Çelik, M. Yıldız, and A. Levi, “PUF-enhanced
offline RFID security and privacy,” J. Netw. Comput. Appl., vol.
35, no. 6, pp. 2059–2067, Nov. 2012.

[9]	 A. Shamsoshoara, A. Korenda, F. Afghah, and S. Zeadally, “A
survey on physical unclonable function (PUF)-based security
solutions for Internet of Things,” Comput. Netw., vol. 183, p.
107593, Dec. 2020.

[10]	 M. Tahavori and F. Moazami, “Lightweight and secure PUF-
based authenticated key agreement scheme for smart grid,” Peer--
Peer Netw. Appl., vol. 13, no. 5, pp. 1616–1628, Sep. 2020.

[11]	 M. Barbareschi, A. De Benedictis, E. La Montagna, A. Mazzeo,
and N. Mazzocca, “A PUF-based mutual authentication scheme
for Cloud-Edges IoT systems,” Future Gener. Comput. Syst., vol.
101, pp. 246–261, Dec. 2019.

[12]	 S. Khan, A. P. Shah, N. Gupta, S. S. Chouhan, J. G. Pandey, and
S. K. Vishvakarma, “An ultra-low power, reconfigurable, aging
resilient RO PUF for IoT applications,” Microelectron. J., vol. 92,
p. 104605, Oct. 2019.

Jurnal Rekayasa Elektrika Vol. 17, No. 2, Juni 2021

