
I. Introduction

In current modern era, the technology has changed 
human perspectives and behavior, including in the health 
management. In monitoring and improving the quality 
of individual health, smart health devices become a 
technological solution. A smart health device can collect 
health data in blood pressure, pulse rate, temperature, even 
heart signals [1]. Smart health devices can assist users in 
monitoring the quality of health to provide information 
on prevention actions. Smart health devices can provide 
health services thanks to a computer network that connects 
them to the cloud of health care centers [1]–[5].

In communicating towards the healthcare center cloud, 
smart health devices use communication protocols. One 
of the communication protocols used is message queue 
telemetry transport (MQTT). The MQTT protocol is a 
fast and lightweight publish-subscribe-based protocol [6]. 
Additionally, the MQTT protocol can be computed by 
constraint devices, such as smart health wearable. Smart 
health devices collect information from their users and 

send it via the MQTT protocol to the healthcare center 
cloud.

The information that contained in medical records 
and personal information on the smart health device is 
confidential. Therefore, information security threats on 
smart health devices to various cyber security threats can 
cause varying levels of damage to smart health devices. The 
result of this cyber-attack can cause loss or even damage 
to the information. One such attack is eavesdropping 
and replays. Eavesdropping on communications can 
result in the leakage of information transmitted by smart 
health devices over computer networks. The leakage of 
information happens because the information sent does not 
have an encryption security mechanism. Replay attacks 
can cause health device malfunctions and information 
integrity issues. The malfunctions and information 
integrity issues happen because the access to the device 
does not have an authentication mechanism. Therefore, 
improving information security and providing a level 
of authentication on smart health devices is receiving 
attention in this research area.
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An authenticated key exchange method to provide 
cryptography sessions is the best way to provide 
information security and secure authentication. The 
MQTT protocol provides a security mechanism using 
the asymmetric method. However, not all smart health 
devices have sufficient computing power to perform 
asymmetric cryptography processes due to the limitations 
of the embedded devices used [6]. Because asymmetric 
cryptography imposes high computational costs on 
smart healthcare devices, symmetric cryptography is a 
good candidate because it uses lower computation costs. 
However, symmetric cryptography uses the same key for 
every communication. It is a range for replay attacks. The 
attacker could send the same message in order to flood the 
service with authenticated messages. Thus, the symmetric 
security property cannot be the same at all times. 

One method of getting a security property repeating 
its security property is to use a physical unclonable 
function (PUF). PUF can provide security properties for 
the authentication process on-demand and unique to each 
session [7]–[10]. Thus, the symmetric authentication 
process will be safer from eavesdropping and replay 
attacks. This study proposes a PUF-based and fuzzy 
extractor-based key exchange protocol model to 
accommodate smart health device authentication. We 
also analyzed the security of the proposed protocol using 
the authentication tool Tamarin Prover. In order to verify 
its correctness, the protocol model is written formally in 
notation. For verification purposes, security properties are 
created, namely conditions or states that are suspected of 
occurring when an intruder or hacker will attack.

Our contributions to this paper are:
•	 We propose an authenticated key exchange protocol 

model using PUF and a fuzzy extractor on the MQTT 
protocol to counter eavesdropping and replay attacks.

•	 We evaluated the proposed protocol using Tamarin 
Prover and proved the validity of the proposed 
protocol against each lemma that represents replay and 
eavesdropping attacks.

II.	 Related Work

Smart health devices must be able to prove their identity 
to carry out the authentication process. In order to provide 
authentication, some researchers use several techniques. 
Mario Barbareschia et al. proposed a PUF-based mutual 
authentication mechanism called Physical Hardware-
Enabled Mutual Authentication Protocol (PHEMAP) that 
was capable of handling man-in-the-middle attacks [11]. 
Shamsoshoara also uses PUF as a security solution for the 
internet of things (IoT) [9]. PUF is a potential solution to 
counter physical attacks.

Additionally, PUF can provide different responses to 
different challenges. Constrained devices can also use PUF. 
Research conducted by Khan et al. proposed a lightweight, 
ultra-low power, re-configurable ring oscillator (RO) 
based PUF that can be used for authentication [12].  In this 

study, the proposed PUF can have better uniqueness and 
reliability than conventional RO. Tahavori also proposes 
lightweight and secure PUF-based authentication. In this 
study, the PUF authentication process was supported by a 
fuzzy extractor. The event-based authentication protocol 
model proposed by Pahlevi et al. that limited devices are 
capable of [6]. The event-based protocol design provides 
mutual authentication with a symmetric encryption 
mechanism.

III.	 Method

The proposed protocol design is formally modeled in a 
logical form that Tamarin Prover can accept. The proposed 
protocol is divided into four phases, one handshake phase 
and three authentication phases, as shown in Figure 1. 
The smart health device sends an initiation message to 
initiate the authentication process with the server via 
handshaking. After that, the smart health war generates 
the PUF to produce the first authentication property. The 
server evaluates the first authentication property of a smart 
health device. If it evaluated, the server then forms a 
second authentication property and encodes the key. The 
smart health device validates the second authentication 
property of the server. If it validated, the smart device then 
decrypts the key and forms a third authentication property. 
The server validates the third authentication property of 
the smart health device. If it validated, the communication 
will establish. Because in modeling the protocol, there is a 
list of terms used as presented in Table 1.

A.	 Prerequisite

Before this PUF-based key exchange, several stages 
must have occurred. We use a standard scenario on a PUF 

Gambar 1. Authentication protocol design
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based protocol:
1.	 The Sver server has collected the CRP and IDumd 

identifier from the UmD device at a stage known as the 
initiation phase. At this stage, the Sver can physically 
access the UmD device in obtaining the CRP. CPR is 
collected and then stored in the Sver storage location 
to be accessed later in the authentication process. 
Moreover, Sver has also collected the challenge index 
number from UmD. This challenge index number 
does not represent the challenge’s contents but only 
a random sequence of challenge numbers. It should 
be noted that this phase must occur in a protected 
and controlled environment because CRP is strictly 
confidential.

2.	 The UmD device has been installed and operated. The 
UmD device can no longer be physically accessed 
by the Sver server either to obtain the CRP or access 
the PUF. In this phase, the UmD device can only 
communicate with the server Sver via a computer 
network.

3.	 UmD devices can access owned PUF to implement the 
proposed protocol. The response results from the PUF 
are not stored in the local UmD device. Challenges are 
used to generate different responses for each session.

B.	 Protocol Design

The proposed protocol design starts when the UmD 
device sends the n-th index of the challenge and IDumd 
to the Sver. The purpose of this transmission is to trigger 
Sver that UmD is asking to authenticate using the n-th 
challenge. Sver replies with nonce b and stores IDumd and 
n. We call this whole stage as the handshake phase. This 
handshake process initiates that Sver recognizes IDumd 
and chooses challenge n. The formal model at this stage is 
written in Table 2.

 Table 2, given UmD1 and UmD2, with UmD1 ≠ 
UmD2, will always give Unmanned (UmD1) ≠ Unmanned 
(UmD2) facts. These facts are an effective way where each 
device has a different IDumd to give unique results. Fr (~ 
n1) is a fact that gives a nonce. The nonce is generated by 

Fr (~ n1) ≠ Fr (~ n2) so that the nonce is unique every 
time. This fact states that the challenges used to generate 
responses will vary. UmD used the nonce used in the 
handshake process as a challenge. Challenge on the n-th 
index, called the challenge C ‘(n), is given an XOR 
operation with nonce b obtaining a complete challenge, 
formally written as C’(n) ⊕  b ⇒ chl where chl is the result 
of the XOR operation. 

Given the fact that n1 ≠ n2 and b1 ≠ b2, then chl1 ≠ 
chl2. These facts state that the challenges that are used 
every time are different. UmD uses the PUF function to 
get response res from chl, Sver gets response res from chl 
from the associated CRP database from IDumd. With the 
fact that chl1 ≠ chl2, the fact res1 ≠ res2 states that the 
resulting responses are different. UmD performs a fuzzy 
extractor generator process to get khl from res. With the 
fact that res1 ≠ res2, then khl1 ≠ khl2 means that the 
fuzzy extractor results are different. UmD forms a cipher 
by performing a symmetric encoding process from the 
concatenate res and khl with the chl key. At this stage, we 
call it the first authentication phase. The first authentication 
phase was formally written in Table 3.

In Table 3, PUF formation is done by calling 
PUFproduce(UmD, chl) facts, resulting in PUFresult(UmD, 
chl, res) facts. Furthermore, the formation of the fuzzy 
extractor’s formation is done by calling the FEgenG(UmD, 
res) fact, which results in the FEresult (UmD, res, khl) 
fact. From these facts, UmD forms a symmetric encoding 
with the fact Out(Sver, UmD, senc((res || khl), chl)).

The results of the fact products Out(Sver, UmD, 
senc((res || khl), chl)) are used by Sver to perform 
validation. Sver first decrypts with the symmetric chl 
key. Since the chl symmetric key results from the same 
challenge and nonce b, the chl symmetric key from the 
Sver side and the UmD side is the same. From the results 
of this decryption, Sver found res and khl. Sver performs 
Hamming distanace calculations on the res sent by UmD 
with the res that Sver has from the CRP database. If the 
Hamming distance does not cross the threshold α, then the 
process continues. Sver generates the khls key from the 
fuzzy extractor process from the response res with the khl 

Tabel 1.  Terms used Tabel 2.  Handshake phase

UmD smart health device

IDumd smart health device identity name

Sver service provider to perform validation

CRP Challenge Response Pair

DBcrp Server-owned CRP database

FEgen fuzzy extractor generation process

FErep fuzzy extractor reconstruction process

h() hash process

PUF(Ci) process to gain PUF responses from 
challenge Ci

CRP() a process to find a partner response from the 
challenge

TRNG() true random number generator

UmD Sver

Unmanned(UmD), Server(Sver),  
Fr(~n) 
→
Out(UmD, Sver, ~n), 
DBcrp(UmD, Sver, ~n) 
CRPpass(Sver, UmD, chl, res)

⇒

In(UmD, Sver, n), 
DBcrp(UmD, Sver, n), 
Fr(~b) 
→
Out(Sver, UmD, ~b), 
DBcrpB(Sver, UmD, ~b)

In(<Sver, UmD, b>), 
DBcrpB(Sver, UmD, b), 
CRPpass(Sver, UmD, chl, res)

⇐

Rizka Reza Pahlevi dkk.: Secure MQTT PUF-Based Key Exchange Protocol for Smart Healthcare



110

helper. With the fact that khl1 ≠ khl2, then khls1 ≠ khls2 
states that the key results from the fuzzy extractor on Sver 
are different. Following, Sver generates the hash for the 
concatenated results of chl, res, and khls. Then, Sver calls 
the true random number generator (TRNG) function to 
generate a random key as the Key. After that, Sver forms 
a cipher using a symmetric encryption process on the 
Key with the chl key. At this stage, we call it the second 
authentication phase. The second authentication phase was 
formally written in Table 4.

In Table 4, Sver performs the formation of a fuzzy 
extractor reconstruction by calling the FEgenR(Sver, UmD, 
khl) fact and producing FEresultR(Sver, UmD, khl, khls) 
fact. Sver generates a hash by calling the Auth_2_2(Sver, 
UmD, Key, res, chl) fact and returns Auth_2_3(Sver, UmD, 
senc(Key, chl), h (<res, chl, khls>), Key, res, chl, khls) 
fact. After that, Sver forms a cipher by calling the facts 
Auth_2_3(Sver, UmD, senc(Key, chl), auth2, Key, res, chl, 
khls) fact and generates Out(<Sver, UmD, senc(Key, chl), 
auth2>) fact.

The results of the fact products Out(<Sver, UmD, 
senc(Key, chl),auth2>) from Sver are used by UmD to 
perform validation and obtain the random key Key. UmD 
generates auth2 by hashing the concatenate result chl, res, 
khl to validate auth2. If the two hashes are the same, UmD 
decrypts the cipher senc(Key, chl) using the chl symmetric 
key to get the Key. Then, UmD creates authentication auth3 
with hash concatenate Key and chl. At this stage, we call 
it the third authentication phase. The third authentication 
phase was formally written in Table 5.

In Table 5, UmD generates auth3 for the third phase 
of authentication by calling In(<Sver, UmD, senc(Key, 
chl)>), Auth2to3(Sver, UmD, chl, khls) facts, and 
generating Out(<Sver, UmD, h (<Key, chl>)>) fact. Sver 
uses the results of the auth3 fact product to validate UmD. 
To validate the message from UmD, Sver generates the 
hash of the concatenated Key and chl. If the auth3 result 
from UmD is the same as the hash result for Sver, then 
the connection is established. All authentication phases, 
starting from the handshake phase, the first authentication 

phase, the second authentication phase, and the third 
authentication phase, are shown in Figure 2.

IV.	 Protocol Validation and Analysis 

The protocol validation model is a fact that is used to 
prove that the fact-built protocol can exchange messages. 
We tested two protocol validations in the proposed protocol 
design, namely sanity validation and authentication 
validation. Validation of sanity is validation that aims 
that the proposed protocol can communicate properly. 
Authentication validation is validation that aims to see 
whether each actor can validate the intended message.

The validation of sanity is tested in the handshake phase. 
The handshake phase involves communication between 
UmD and Sver. UmD sends a message to Sver in the form 
of index n. After that, Sver replied by sending nonce b to 
UmD. To track these communications, we provide fact-

UmD Sver

Auth_1_1(Sver, UmD, chl), 
PUFresult(UmD, chl, res)

→
FEgenG(UmD, res), 
Auth_1_2(Sver, UmD, chl)

Auth1(Sver, UmD, chl), 
FEresultG(UmD, res, khl) 

→
Out(Sver, UmD, senc((res || khl), 
chl)), Auth1to2(UmD, Sver, khl)

⇒

In(<Sver, UmD,  
senc(<res, khl>, 
chl)>), Fr(~Key), 
Auth1to2(UmD, Sver, 
khl), CRPpass(Sver, 
UmD, chl, res)

UmD Sver

In(<Sver, UmD, senc(Key, 
chl)>), Auth2to3(Sver, UmD, 
chl, khls)
→
Out(<Sver, UmD, h(<Key, 
chl>)>), Auth3to4(Sver, UmD, 
Key)

⇒

In(<Sver, UmD, 
h(<Key, chl>)>), 
Auth3to4(Sver, UmD, 
Key), CRPpass(Sver, 
UmD, chl, res)

UmD Sver

Auth_2_1(Sver, UmD, 
Key, chl, res, khl)

→
Auth_2_2(Sver, UmD, 

Key, res, chl), 
FEgenR(Sver, UmD, khl)

Auth_2_2(Sver, 
UmD, Key, res, chl), 

FEresultR(Sver, UmD, 
khl, khls)

→
Auth_2_3(Sver, UmD, 

senc(Key, chl), h(<res, 
chl, khls>), Key, res, chl, 

khls)

Auth_2_3(Sver, UmD, 
senc(Key, chl), auth2, 

Key, res, chl, khls)
→

Out(<Sver, UmD, 
senc(Key, chl), auth2>), 

Auth2to3(Sver, UmD, 
khls)

In(<Sver, UmD, senc(Key, chl), 
auth2>), Auth2to3(Sver, UmD, 

khls), CRPpass(Sver, UmD, 
chl, res)

⇐Tabel 3.  First authentication phase on the UmD side

Tabel 4.  Second authentication phase

Tabel 5.  Third authentication phase
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tracing. The fact-tracing provided in the handshaking phase 
are, Handshaking(UmD,Sver, <’UtoS’ / ‘StoU’ , c>). Fact-
tracking Handshaking(UmD, Sver, <’UtoS’ / ‘StoU’, c>) 
is intended to track the communication between UmD and 
Sver when sending messages c. There are directional flags 
‘UtoS’ / ‘StoU’, where ‘UtoS’  indicates communication 
from UmD to Sver, and ‘StoU’ indicates communication 
from Sver to UmD. The fact that tracing the handshake 
is addressed to the handshake poses in Table 2. The fact-

tracking can be proven if Sver receives an index n message 
from UmD, and UmD receives a nonce b message from 
Sver. Thus, formally the two tracing facts are written in 
Lemma 1. 

Lemma 1. In one event at a time i, there was an UmD 
who shook hands with Sver with the message c, and there 
was a Sver who shook hands with UmD with the message 
c. Formally written with 

Gambar 2. Formal model proposed protocol
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∃Sver,UmD,c,i.
Handshaking(UmD,Sver,<’UtoS’, c>)@

^ 
∃Sver,UmD,c,i. 

Handshaking(Sver,UmD,<’UtoS’, c>)@i
 ^ 

∃Sver,UmD,c,i. 
Handshaking(UmD,Sver,<’StoU’, c>)@i

Analysis Lemma 1. In Table 2, the UmD actor 
has Unmanned(UmD) and Fr(~n) facts which result 
in Out(UmD, Sver, ~ n) and DBcrp(UmD, Sver, ~ n) 
facts. Actor Sver has In(UmD, Sver, n), DBcrp(UmD, 
Sver, n), and Fr(~b) facts. In Lemma 1, fact-tracking 
Handshaking(UmD, Sver, <’UtoS’, c>)@i tracks the 
communication between the UmD and Sver actors. The 
fact-tracking tracks whether actor UmD has sent n. After 
that, the actor Sver accepts and understands it. Tamarin 
evaluates this facts-tracing with proven results. This is 
because the two actors have each other’s DBcrp(UmD, Sver, 
n) facts, which means they know each other n. Thereafter, 
actor Sver who already had the facts Fr (~b), sent it to 
UmD. In Lemma 1, fact tracking Handshaking(UmD, 
Sver, <’StoU’, c>) @i communication between actor Sver 
and UmD. The tracking fact-tracks whether actor Sver 
has sent b, and actor UmD accepts and understands it. 
Tamarin evaluates these tracing facts with proven results. 
This is because the two actors have mutual DBcrpB(Sver, 
UmD, b) facts, which means they know each other b. 
Facts DBcrp(UmD, Sver, n) and DBcrpB(Sver, UmD, b) 
facts owned by actors UmD and Sver indicate that actor 
Sver has understood actor UmD, and vice versa, from the 
prerequisite process or previous initiation process. 

Authentication property validation is the validation used 
to test the first authentication phase, second authentication 
phase, and third authentication phase. Authentication 
validation proves that each actor can accept the properties 
needed in the authentication process. The first lemma is 
to prove that UmD can send chl, res, and khl to Sver. The 
second lemma is to prove that Sver can send the Key to 
UmD and is understood. The third tracing fact is to prove 
that UmD can send the hash result of the concatenate chl 
and Key to Sver. Thus, formally the three tracking facts are 
written in Lemma 2, Lemma 3, and Lemma 4. 

  
Lemma 2. In one event at a time i, there is an UmD 

that sends an authentication property to Sver in the form 
of a res message, and there is a Sver that receives a res 
authentication property from UmD. Formally written down

∃Sver,UmD,res,i.
AuthProtocol1(UmD, Sver, res)@i

  ^
 ∃Sver,UmD,res,i. 

AuthProtocol1(Sver, UmD, res)@i

Analysis Lemma 2. Fact-tracking in Lemma 2 is used 

to track communications between UmD actors and Sver at 
the first authentication phase stage. In Table 3, UmD has 
the Auth1(Sver, UmD, chl), FEresultG(UmD, res, hl) facts 
which produces an authentication property in the form of 
the Out(Sver, UmD, senc((res || khl), chl)) fact. This fact 
was accepted by Sver with the In(<Sver, UmD, senc(<res, 
khl>, chl)>) fact. Lemma 2 fact-tracking tracks whether 
senc(<res, khl>, chl) (as the property of res) has been 
submitted by the UmD actor and received and understood 
by the Sver actor. Tamarin evaluated the fact-tracking of 
Lemma 2 with proven results. This is because the Sver 
actor has CRPpass(Sver, UmD, chl, res) facts, which are 
the result of the facts in Table 2, which are also owned by 
the UmD actor. This fact shows that actors UmD and Sver 
have a pair of chl and res. In Table 3, Sver uses chl to do 
the decryption. Since the chl used by UmD and Sver is the 
same, Sver can get the properties sent by UmD. Thus, the 
actor Sver can know <res, khl>.

Lemma 3. In one event at a time i, there is an UmD 
that sends an authentication property to Sver in the form 
of a keyA message, and there is a Sver who receives an 
authentication property from UmD with a keyA message. 
Formally written down

∃Sver,UmD,keyA,i. 
AuthProtocol2(UmD, Sver, keyA)@i

^
∃Sver,UmD,keyA,i. 

AuthProtocol2(Sver, UmD, keyA)@i

Analysis Lemma 3. The fact-tracking in Lemma 3 
is used to track the Sver actor’s communication to UmD 
in the second authentication phase. In Table 4, Sver has 
the Auth_2_3(Sver, UmD, senc(Key, chl), auth2, Key, res, 
chl, khls) facts which produces an authentication property 
in the form of the Out(<Sver, UmD, senc(Key, chl)> ), 
Auth2to3 (Sver, UmD, khls) facts. UmD accepted these 
facts with the In(<Sver, UmD, senc(Key, chl)>) facts. 
Lemma 3 fact-tracking trace whether senc(Key, chl) (as 
property keyA) has been sent by actor Sver and received 
also understood by actor UmD. Tamarin evaluates the 
facts-tracking of Lemma 3 with proven results. This is 
because the UmD actor has CRPpass(Sver, UmD, chl, res) 
facts in Table 2. This fact shows that the UmD and Sver 
actors have a pair of chl and res. In Table 4, UmD uses chl 
to do the decryption. Since the chl used by Sver and UmD 
is the same, UmD can get the Key property sent by Sver. 
Thus, the UmD actor was able to find out the Key sent by 
the actor Sver.

Lemma 4. In one event at a time i, there is an UmD 
that sends authentication properties to Sver in the form of 
chl and keyA messages, and there is a Sver who receives 
protocol authentication from UmD with messages chl and 
keyA.

∃Sver,UmD,chl,keyA,i. 
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AuthProtocol3(UmD,Sver,chl, keyA)@i
^

∃Sver,UmD,chl,keyA,i. 
AuthProtocol3(Sver, UmD, chl, keyA)@i

Analysis Lemma 4. Fact-tracking in Lemma 4 is used 
to track communications between UmD actors and Sver in 
the third authentication phase process. In Table 5, UmD has 
In(<Sver, UmD, senc(Key, chl)>), Auth2to3(Sver, UmD, 
chl, khls) facts which produce authentication properties 
in the form of Out(<Sver, UmD, h(<Key , chl>)>), 
Auth3to4(Sver, UmD, Key, chl) facts. Sver accepted this 
fact with the In(<Sver, UmD, h(<Key, chl>)>) fact. 
Lemma 4 fact tracking tracks whether h(<Key, chl>) 
(as the property chl and keyA) has been submitted by 
the UmD actor and is received and understood by actor 
Sver. Tamarin evaluated the fact-tracking of Lemma 4 
with proven results. This is because the UmD actor has 
CRPpass(Sver, UmD, chl, res) facts from Table 2 and the 
Auth3to4(Sver, UmD, Key) facts. In Table 5, UmD uses chl 
and Key to perform the hashing process. Because the chl 
and Key used by Sver and UmD are the same, Sver can get 
the same hash result that UmD sent. 

The replay attack model in the proposed protocol 
is used to prove that no usable message exists after the 
original message has been received. This validation 
is carried out in the first authentication phase, second 
authentication phase, and third authentication phase. To 
track this evidence, we provide fact-tracking for each 
phase. In general, fact tracking in each phase has the 
same model. The tracing facts provided are Send(UmD, 
Sver, authmessage) fact and facts Authentic(UmD, Sver, 
authmessage). The Send(UmD, Sver, authmessage) fact 
validates that the UmD actor has sent the Sver actor 
an authmessage message. The Authentic(UmD, Sver, 
authmessage) fact validates that the UmD actor has 
received from the Sver actor an authmessage message. 
The actors in the role can switch each other to fulfill the 
tracking. Formally, the proof of the replay attack is written 
on Lemma 5. 

Lemma 5. In one event at a time i, each authentication 
message that has been received from the UmD actor to the 
Sver actor with an authmessage message, there is an UmD 
actor who sends the Sver actor an authmessage message, 
and no other actor uses an acceptable authmessage 
message. Formally written with

∀ UmD, Sver, authmessage, i. 
Authentic(UmD, Sver, authmessage) @i 

⇒   ( ∃ j.  Send(UmD, Sver, authmessage) @j 
^ j < i
^ 
¬ ( ∃ UmD2,Sver2,i2

 Authentic(UmD2, Sver2, authmessage) @i2 
 ^ (i < i2) ) )

In Lemma 5, the timing of the incident between UmD 

and UmD2 actors was different. The UmD actor performs 
the first execution, and then the UmD2 actor performs the 
second execution by replicating the authmessage message.

Analysis Lemma 5. Fact-tracking on Lemma 5 is 
used to validate replay attacks on communication between 
UmD and Sver actors in Table 3, Table 4, and Table 5. In 
Table 3, the intended authmessage is chl on senc(<res, 
khl>, chl)>). The Lemma 5 tracking facts in Table 3 aim to 
prove that no same senc(<res, khl>, chl)>) sent a second 
time can be received. Tamarin evaluated the tracking 
facts of Lemma 5 in Table 3 with proven results. This 
happens because each session using a different chl. With 
different chl, the resulting symmetric encryption results 
will be different (even though the encrypted properties 
are the same). Furthermore, Lemma 5 fact-tracking is in 
Table 4. In Table 4, the intended authmessage is chl on 
senc(Key, chl). The tracking facts of Lemma 5 in Table 
4 are intended to prove that none of the same senc(Key, 
chl) sent for the second time can be received. Tamarin 
evaluated the tracking facts of Lemma 5 in Table 4 with 
proven results. Similar to the reason for Lemma 5 in Table 
4, the use of different chl will produce different symmetric 
encryption results. Furthermore, Lemma 5 tracking facts 
are in Table 5. In Table 5, the intended authmessage is Key 
and chl on h(<Key, chl>). The Lemma 5 tracking facts in 
Table 5 aim that no h(<Key, chl>) the same sent a second 
time can be received. Tamarin evaluated the tracking facts 
of Lemma 5 in Table 5 with proven results. This happens 
because the hash results with different Key and chl can 
produce significant differences. Thus, no message can be 
received a second time.

The eavesdropping attack in the proposed protocol is 
used to prove that there is no critical information that other 
actors can tamper with. This validation is carried out in 
the first authentication phase, second authentication phase, 
and third authentication phase. To do this validation, we 
provide fact-tracking facts at each phase. In general, 
fact-tracking eavesdropping has the same model. The 
difference used is the information to be compromised. The 
fact Secret(A) validates A information that has been used 
on both actors cannot be known by actor K(A). Formally, 
evidence of eavesdropping attacks is written on Lemma 6.

Lemma 6. In one event at a time i, for every secret 
message secretmessage, there is no secret message 
secretmessage known by actor K

∀ Sver, UmD, secretmessage ( Secret(Sver, UmD, 
secretmessage) 

 ⇒  ¬ ( ∃  K(secretmessage)))

In Lemma 6, actor K is an actor who plays an attacking 
actor. In Lemma 6, there is a secret message in the form of 
a secretmessage known only to legitimate actors. 

Analysis Lemma 6. Fact-tracking on Lemma 6 are 
used to validate eavesdropping attacks on communication 
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between UmD and Sver actors in Table 3, Table 4, and Table 
5. In Table 3, the intended secretmessage are chl, res, and 
khl. The tracking facts of Lemma 6 in Table 3 aim to prove 
that no chl, res, and khl can be compromised by actor K 
at the time of communication. Tamarin evaluated the fact-
tracking of Lemma 6 in Table 3 with proven results. This 
happens because the communication is encrypted using 
symmetric encryption. Validated actors can only know the 
chl, res, and khl properties. Even though the message was 
received by actor K, the actor was unable to know res and khl 
because he did not have the chl key. Furthermore, Lemma 
6 tracking facts are in Table 4. In Table 4, the intended 
secretmessage is Key. The fact-tracking of Lemma 6 in 
Table 4 is intended to prove that there is no Key that can 
be compromised by actor K at the time of communication. 
Tamarin evaluated the tracking facts of Lemma 6 in Table 
4 with proven results. This is because the Key is given 
symmetric encryption. Thus, even though actor K received 
a message containing an encoded Key, the actor was unable 
to obtain the Key. Furthermore, Lemma 6 fact-tracking is 
in Table 5. In Table 5, the intended secretmessage is Key 
and chl. The tracking facts of Lemma 6 in Table 5 are 
intended to prove that there is no Key and chl that can be 
compromised by actor K at the time of communication. 
Tamarin evaluated the tracking facts of Lemma 6 in Table 
5 with proven results. This happens because the hash is a 
one-way function and cannot be reversed. Thus, even if 
actor K gets the hash message from the communication, 
the actor cannot get the hash compiler information. 

V.	 Conclusion

The information on the smart health device is 
confidential that requires a level of security. Eavesdropping 
and replay attacks threaten the security of information held 
by smart health devices. An authenticated key exchange 
method to provide cryptography sessions is the best 
way to provide information security and provide secure 
authentication. However, smart health devices do not have 
sufficient computation to perform heavy cryptography 
processes due to the constrained of the embedded 
devices used. This study proposed a validated PUF-based 
authenticated key exchange protocol model in proving 
replay and eavesdropping attacks. We are evaluating our 
proposed protocol using Tamarin Prover. From the results 
of the evaluation, the proposed protocol can properly 
exchange properties between communication actors. Our 

proposed protocol can prove that no message can be sent 
twice to prove resilience to replay attack. Our proposed 
protocol can prove that no property can be compromised 
during the communication process to prove its resistance 
to eavesdropping attack.
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