
I.	 Introduction

ATRACBOT is a smart trash caring robot that was 
built to provide education on the importance of disposing 
of trash in its place to early childhood. This education 
really needs to be done because the data in the Indifference 
Behavior Index for the Environment According to 

Provinces in Java-Bali Island, Central Java and East 
Java Provinces have an index of 0.75 in the dimension 
of trash management. [1][2]. The robot is developed by 
starting from planning, sub-system creation, integration 
and evaluation. The robot is designed to have several 
capabilities. Several of them are detecting and classifying 
trash objects [3], detecting human target around the robot 
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Abstract—In a visual-based real detection system using computer vision, the most important thing that must be 
considered is the computation time. In general, a detection system has a heavy algorithm that puts a strain on 
the performance of a computer system, especially if the computer has to handle two or more different detection 
processes. This paper presents an effort to improve the performance of the trash detection system and the target 
partner detection system of a trash bin robot with social interaction capabilities. The trash detection system uses a 
combination of the Haar Cascade algorithm, Histogram of Oriented Gradient (HOG) and Gray-Level Co-ocurrence 
Matrix (GLCM). Meanwhile, the target partner detection system uses a combination of Depth and Histogram of 
Oriented Gradient (HOG) algorithms. Robotic Operating System (ROS) is used to make each system in separate 
modules which aim to utilize all available computer system resources while reducing computation time. As a result, 
the performance obtained by using the ROS platform is a trash detection system capable of running at a speed of 
7.003 fps. Meanwhile, the human target detection system is capable of running at a speed of 8,515 fps. In line with 
the increase in fps, the accuracy also increases to 77%, precision increases to 87,80%, recall increases to 82,75%, and 
F1-score increases to 85,20% in trash detection, and the human target detection system has also improved accuracy 
to 81%, %, precision increases to 91,46%, recall increases to 86,20%, and F1-score increases to 88,42%. 

Keywords: ATRACBOT, performance improvement, robot operating system, trash detection, target detection

Abstrak—Pada sebuah sistem deteksi riil berbasis visual menggunakan visi komputer, hal terpenting yang harus 
diperhatikan adalah waktu komputasi. Pada umumnya, sebuah sistem deteksi memiliki algoritma yang berat 
sehingga membebani kinerja sistem komputer, terlebih jika komputer harus menangani dua atau lebih proses deteksi 
berbeda. Makalah ini menyajikan upaya peningkatan performa sistem deteksi sampah dan sistem deteksi target 
partner sebuah robot tempat sampah dengan kemampuan interaksi sosial. Sistem deteksi sampah menggunakan 
kombinasi algoritma Haar-Cascade, Histogram of Oriented Gradient (HOG) dan Grey-Level Coocurrence Matrix 
(GLCM). Sedangkan sistem deteksi target partner menggunakan kombinasi algoritma Depth dan Histogram of 
Oriented Gradient (HOG). Robotic Operating System (ROS) digunakan untuk membuat setiap sistem dalam modul-
modul terpisah yang bertujuan untuk memanfaatkan seluruh sumber daya sistem komputer yang ada sekaligus 
mengurangi waktu komputasi. Sebagai hasilnya, performa yang didapatkan dengan menggunakan platform ROS 
ini adalah sistem deteksi sampah mampu berjalan dengan kecepatan 7,003 fps. Sedangkan sistem deteksi target 
manusia mampu berjalan dengan kecepatan 8.515 fps. Sejalan dengan peningkatan fps tersebut, akurasi juga naik 
menjadi 77%, presisi naik menjadi 87,80%, recall naik menjadi 82,75%, dan F1-score naik menjadi 85,20% pada 
deteksi sampah, dan sistem deteksi target manusia juga memperbaiki akurasi menjadi 81%, presisi naik menjadi 
91,46%, recall naik menjadi 86,20%, dan F1-Score naik menjadi 88,42%.  
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[4], communicating with the officer [5][6], and navigating 
around the social environments [7].

Those abilities have been carried out by previous 
researchers, namely the detection and classification 
of trash objects by Salimi et.al. [3] with the detection 
results performance up to 73.49% with 3.221 fps. Then, 
the human target and persuasive social interaction was 
carried out by Dewantara et.al. [4] which achieves 71% 
of detection results with 4.26 fps. For robot monitoring 
and communication with the officer, Kisron et.al. [5][6] 
has developed a IoT-based system which achieves 100% 
of accuracy, 100% of precision and 100% of recall results 
for the robot’s decision-making system. The Telegram bot-
based application is able to send and receive information 
between the robot and the officer. The navigation system 
[7] is developed in the form of simulation, and the robot 
has not been implemented directly.

Salimi et.al. [3] developed a visual-based system that 
can detect the presence of trash by using Haar-Cascade. 
Then, a combination of Gray-Level Co-Occurrence 
Matrix (GLCM) and Histogram of Oriented Gradient 
(HOG) is used as the features to be fed to the Support 
Vector Machine (SVM) to distinguish the type of trash into 
organic and non-organic. The system was developed under 
standard C++ programming on Windows OS platform 
without any optimization techniques. The main drawback 
of the system is very low computing speed. This is the 
main cause of the low processing speed of 3.221 fps.

On the other hand, the second ability of the robot is to 
detect the presence of human around the robot. This feature 
will work when the robot has managed to find the trash and 
will ask someone for help to pick up and put the trash into 
the bin carried by the robot. Dewantara et.al. [4] proposed 
Depth-HOG as the shape feature of a human upper body 
that is classified using SVM to distinguish human or not 
human. The system was also developed under standard 
C++ programming on Windows OS platform without 
any optimization techniques. The main drawback of the 
system is very low computing speed. This is also the main 
cause of the low processing speed of 4.26 fps.

Another problem that arises is when multiple abilities 
are supposed to work together to achieve a goal cannot 
be combined easily, then the robot system as a whole will 
not work optimally. Therefore, we propose using ROS for 
overall system integration in order to maximize existing 
resources to build a reliable system and converting the 
operating system to Linux in order to further reduce the 
computation time.

This paper will explain the performance evaluation of 
the two sub-systems that have been made, namely the trash 
detection and classification system and the human target 
detection system. Evaluation of the system is carried out by 
comparing the platforms used. In addition to performance 
comparisons, system integration is also carried out so that 
the two sub-systems can run simultaneously.

II.	 Literature Review

To get maximum research results, the researcher made 
comparisons of several methods. This is done so that the 
method used is in accordance with the characteristics of the 
system because each system has different characteristics. 
Asim Roy  et al.  [8] have compared several methods 
and evaluated machine learning algorithms based on 
performance measures (e.g., Accuracy, Area Under the 
Curve (AUC), and F-score). Such a method can be used 
to compare standard Machine Learning platforms such as 
SAS, IBM SPSS, and Microsoft Azure ML. 

They compare platforms based on predictive 
performance on classification problems because most of 
the problems in machine learning are those of the platform 
type. Common questions posed include the following: Is 
there any platform that outperforms the others on certain 
performance measures? For each platform, they use a set 
of six classification algorithms from the following six 
algorithm families - support vector machine, multilayer 
perceptron, random forest, random trees / gradient 
boost trees, naive Bayes/Bayesian network, and logistic 
regression. To test the platform, they used several datasets 
from the University of California library, Irvine (UCI), 
Kaggle Competition Library, and high-dimensional gene 
expression problems. They also perform parameter tuning 
of the algorithm. The results obtained by each method have 
different performance when applied to different cases.

Ahmad Ashari et.al. [9] proposed a new method 
in finding design alternatives, namely by using the 
classification method. The classification methods they use 
are Naïve Bayes, Decision Tree, and k-Nearest Neighbor. 
Their experiments show that the Decision Tree has the 
fastest classification time followed by Naïve Bayes and 
k-Nearest Neighbor. The difference between the Decision 
Tree and Naïve Bayes classification times as well as 
between the Naïve Bayes and k-NN is about the order 
of magnitude. Based on Percision, Recall, F-measure, 
Accuracy, and AUC, Naïve Bayes’ performance is the best. 

Aldi Kika and Silvana Grecca [10] explored the 
performance of a Java image processing application 
designed with a multithreading approach. To test how 
multithreading affects program performance, they tested 
several image processing algorithms implemented in Java 
using a sequential one thread approach and multithreading 
on single and multi-core CPUs. Experiments are based 
not only on different platforms and algorithms which 
differ from each other by their level of complexity, but 
also on changes in image size and thread count when 
the multithreading approach is applied. Performance 
is improved on single core and multiple CPU cores in 
different ways due to image size, algorithm complexity 
and platform.

The results showed that the multithreading approach 
improved the performance of the algorithm processing 
time on both single-core and multi-core CPU platforms, 
but this increase was different. In a single core, the best 
results are given by a combination of small image sizes 
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and less complex algorithms, whereas on multicore CPUs 
the combination of small image sizes and more complex 
algorithms improves performance. Multithreading 
programming can improve performance on multi-core 
CPUs when complex image processing algorithms are 
applied.

III.	 Metodology and System Design

A.	 Trash Detection and Classification

ATRACBOT has the ability to detect and differentiate 
trash into organic or non-organic types. The initial research 
by Salimi et al. [3] developed a detection system using 
a single core CPU programming and gets the detection 
results with an accuracy of 73.49% and fps of 3,221 fps. 
Fig. 1 shows the system design of the trash detection 
system on ATRACBOT that has been developed in [3].

Based on the block diagram in Fig. 1, the system’s 
input is an image frame with a scene contains trash object 
obtained from the RGB camera. Preprocessing is done 
by reducing the image size so that it is faster to process. 
Object detection is built using the Haar-cascade method 
[11]. For the training purpose, we used a set of positive 
images such as bottles, cans, paper bundles, drinking 
boxes, leaves, and plastic wraps. While negative images 
are taken from objects other than the positive images. 

The Haar-cascade is used to determine the features by 
processing the image by using a set of black-white squares 
that has a certain pixel size. The results are then fed to an 
integral image process. And finally, the result of integral 
image is classified as trash or not using a combination 
of some Adaptive Boosting in the form of Cascaded 
Classifier.

After the trash is detected, then, the type of trash should 
be classified. We use a texture and shape-based features by 
utilizing the Gray-Level Co-Occurrence Matrix (GLCM) 
and Histogram of Oriented Gradient (HOG), respectively. 
The GLCM will calculate the variation of the neighboring 
values ​​of the image and then create a matrix. From the 
matrix that has been formed, the value of each texture 
feature can be calculated. There are six values that will 
be the GLCM features, namely Contrast, Inverse Different 

Moment (IDM), Energy, Entropy, Homogeneity, and Mean 
Square Error (MSE). Each value is formulated as follows.
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On the other hand, HOG describes the appearance of 
the object by a gradient or edge intensity distribution. 
The features obtained from the HOG are calculated by 
taking an edge-oriented histogram in the local area. The 
magnitude and direction of HOG is calculated using the 
following equation.
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These combined features are then fed to the Support 
Vector Machine (SVM) [12] to be classified into three 
classes, namely organic trash, non-organic trash and not 
a trash. The parameters setting for the SVM are shown in 
Table 1. 

To analyze the performance, an analysis is carried out 
by looking for accuracy, precision, recall and F-1 score. 
The following is the formula used to get the system’s 
performance:
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Fig 1. Trash detection and classification design

Table 1. The parameters setting for the SVM

Parameters Value

Type C-SVC

Kernel type Linear
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B.	 Human Target Detection and Social Persuasive

Apart from being able to detect and distinguish types 
of trash, ATRACBOT also has the ability to detect human 
existence in the surrounding environment. Human detection 
is needed because the robot that we have developed is a 
social robot, where interaction with humans is one of the 
main targets. Here, the role of robots is to teach humans 
about the importance of disposing of waste in its place. 
Figure 2 shows the system’s design of the human target 
and social persuasive detection system. 

The working of this system is that when the robot 
successfully detects a trash object, the camera installed 
on the robot will perform the second function, namely 
looking for human targets that have the potential to help 
the robot put trash into the trash bin provided above the 
robot. Human detection is carried out on the upper part of 
the human body based on shape features using the HOG 
and SVM methods [4]. When someone is detected, the 
robot will make a sound to invite the person to take and 
put the garbage in the trash bin. If the person, does it, then 
the robot will sound again saying thank you. If it has not 
been done, the robot will continue to sound to invite the 
person. The previous research has been done using a single 
core CPU programming and obtains detection results with 
an accuracy of 71% and fps of 4.26 fps.

C.	 Robot Operating System (ROS)

ROS is an open-source Robot Operating System in 
which there are libraries and tools for creating robot 
software. ROS is a robotic middleware that can flexibly 
connect robotic hardware to a computer operating system. 
ROS aims to make it easier for robot developers to create 
their software without having to create source code from 

scratch and can be developed together. 
ROS has 3 concepts, namely the filesystem level, the 

computational graphics level and the community level[13]
[14]. The filesystem level is the level of ROS resources 
available on the system. the first step when using or 
developing ROS is to conceptualize it like an operating 
system. In an ROS filesystem there are folders, and each 
folder has a different file description according to its 
respective function.

Figure 3 shows the node design used in this system. This 
system consists of 4 nodes and 3 topics that are created. The 
publish subscribe model is used so that data that has been 
processed on a node can be used simultaneously by other 
nodes. Camera node to take pictures of the environment 
using a minoru stereo camera. Then obtained data in the 
form of images that are processed in the depth image node 
so as to produce a depth image that has silhouette image 
data and the distance of the object from the camera. The 
depth image is used to detect human presence using the 
human upper body method, which is created by a separate 
node. Social persuasion is combined by using the human 
upper body node which will run when a human is detected.

Figure 4 shows a flowchart to explain the workflow of 
the robot. The first step is to initialize the camera, sensors 

Fig 2. Target detection and social persuasive design

Fig 3. Node design

Fig 4. Flowchart robot
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and actuators. Then the robot will maneuver looking for 
trash at a slow speed so that it does not endanger the 
surrounding environment. After the trash is detected, the 
robot will stop and search for human targets to dispose of 
the detected trash into the space provided to the robot. To 
detect human targets around the robot, the human upper 
body detection method is used. After the target is detected, 
the robot will attract the target’s attention to dispose of the 
trash around the robot. Then after the trash is entered, the 
robot will give appreciation to the person who has entered 
the trash. Then the robot will maneuver to find trash again.

Prediction systems and decision-making systems 
are used to provide intelligence to robots that run 
autonomously to be able to make decisions independently. 
Meanwhile, communication with officers is a feature used 
to monitor robots using the telegram application remotely.

IV.	 Result and Discussion

To perform system testing, testing is carried out using 
two methods, namely running programs on different 
operating systems and comparing with running programs 
on ROS. The operating systems being compared are Visual 
Studio 2017 on Windows 10 with ROS Melodic on Ubuntu 
18.04 LTS. For the test location, data collection is made 
the same so as to minimize environmental differences.

Figure 5 shows a trash detection and classification 
system using the ROS platform. Where there are two nodes, 
namely stereo publisher and trash detection as shown in 
Fig. 7 which is generated using rotograph on ROS. The 

two separate nodes will reduce the computational load 
that runs sequentially, the time needed to update the 
data capture image will also be cut quite a lot so that the 
detection process will be faster. After converting from 
windows to ROS, the initial fps increase was 3.221 to 
7.003.

Figure 6 shows a trash detection and classification 
system using the ROS platform. Where there are three 
nodes, namely stereo publisher, target detection and social 
persuasive as shown in Fig. 7 which is generated using 
rosgraph on ROS. The three separate nodes will reduce 
the computational load that runs sequentially, the time 
needed to update the data capture image will also be cut 
quite a lot so that the detection process will be faster. The 
social persuasive node will run when the target detection 

(a) Trash detection run in windows

(b) Trash detection run in linux

Fig 5. Running trash detection program

(a) Target detection run in windows

(b) Target detection run in linux
Fig 6. Running target detection and social persuasive program

Fig 7. ROS Node graph
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node successfully detects human presence around the 
robot. After converting from windows to ROS, the 
initial fps increase was 4,442 to 8,515. From the results 
of the experiments that have been carried out, it can be 
summarized into tables to make it easier to analyze data. 
Table 2 shows the results obtained.

FPS or frames per second is the number of images/
frames displayed in 1 second [15]. The greater the fps of a 
video, the smoother and smoother the image displayed is. 
And the lower the fps, the worse the video quality. Based 
on Table 2, the results of running programs on Linux 
have higher fps when compared to running programs on 
Windows. This is because when running the program in 
Windows, the distribution of the CPU cores is not evenly 
distributed so that the program is run sequentially. The 
high and low FPS is influenced by the processes run by 
the system. The previous systems run sequentially and do 
not involve all CPU cores in the process. The system uses 
ROS which divides each CPU core to work on the process 

so that the system becomes multi-threaded. This causes 
the FPS to be better.

Figure. 8 (a) shows the CPU performance in running 
the program. Of the four cores, it can be seen that CPU 
usage is above 50%. This makes the computer work hard 
to run the program. Meanwhile, using ROS on Linux, 
the CPU performance shown in Fig. 8 (b) has an average 
value of 26%. So that with that much CPU usage it doesn’t 
burden the work of the computer itself.

In addition to the reduction in processor workload, the 
detection system performance is tested using parameters 
accuracy, precision, recall and F-score by testing offline 
and real implementation. Testing offline by detecting 
images 100 times with different objects and positions. The 
real implementation is executed by enabling detection for 
60 seconds and replacing it with a different object. Table 
3 shows the offline trial of trash detection using previous 
research method [3] and then Table 4 shows the offline 
trial of target detection using previous research [4]. Then, 
Table 5 and Table 6 shows offline trial trash and target 
detection using our method. Table 7 shows the result of 
real implementation using previous method [3] and table 
8 shows the result of real implementation using previous 
method [4]. Then, Table 9 and Table 10 show the result of 
real implementation trash and target detection using our 
method.

The offline experiments were carried out by detecting 
100 times the detection of trash and detection of targets. 

(a) Task Manager Windows

(b) Task Manager Linux

Fig 8. CPU Performance Comparison

Table 3. Confusion matrix trash detection offline testing (Salimi [3])

Actual Values

n=100 Positive Negative

Predicted Values Positive TP = 67 FP = 12

Negative FN = 14 TN = 7

Table 4. Confusion matrix target detection offline testing (Dewantara [4])

Actual Values

n=100 Positive Negative

Predicted Values Positive TP = 67 FP = 12

Negative FN = 13 TN = 8

Table 5. Confusion matrix trash detection offline testing (ours)

Actual Values

n=100 Positive Negative

Predicted Values Positive TP = 72 FP = 10

Negative FN = 13 TN = 5

Table 6. Confusion matrix target detection offline testing (ours)

Actual Values

n=100 Positive Negative

Predicted Values Positive TP =75 FP = 7

Negative FN = 12 TN = 6

Table 2. FPS comparison

Running on Trash Detection (fps) Target Detection (fps)

Windows 3.221 4.442

Linux (ROS) 7.003 8.515
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The results obtained on the trash detection system accuracy 
77,00%, precision 87,80%, recall 82,75%, and F1 score 
85,20%, while the target detection results in performance 
accuracy 81%, precision 91,46%, recall 86,20%, and F1 
score 88,42 %. Table 7 shows the performance comparison 
based on accuracy, precision, recall and F1 score.

In real implementation there are differences in the 
frames that are processed. by using ROS frames that are 
processed more than using the previous researches. Table 
11, 12, 13, 14, 15 and 16 show the detail of trash and target 
detection for each experiment. Where from the results 
of the tests we did, the technique we used had a better 
performance than the results in [3] and [4].

From the result of the experiments above, we can 
observe that there is an increase in each parameter. This is 

directly proportional to the reduction in processor workload, 
thereby increasing detection results. The combination of 
HOG and GLCM features is also considered to be able 
to improve system performance. Research by Gue and 
Liu [16] proved that the combination of HOG and GLCM 

Table 7. Confusion matrix trash detection for real implementation 
(Salimi [3])

Actual Values

n=100 Positive Negative

Predicted Values Positive TP =60 FP = 15

Negative FN = 13 TN = 22

Table 8. Confusion matrix target detection for real implementation 
(Dewantara [4])

Actual Values

n=100 Positive Negative

Predicted Values Positive TP =79 FP = 18

Negative FN = 23 TN = 25

Table 9. Confusion matrix trash detection for real implementation (ours)

Actual Values

n=100 Positive Negative

Predicted Values Positive TP =168 FP = 37

Negative FN = 51 TN = 82

Table 10. Confusion matrix target detection for real implementation 
(ours)

Actual Values

n=100 Positive Negative

Predicted Values Positive TP =94 FP = 30

Negative FN = 25 TN = 48

Table 11. Detail trash detection offline testing result (Salimi [3])

Trash Detection
Detection

AccuracyOrganic Non-
Organic

Not 
Trash

Actual Organic 25 7 3 71,42%

Non-Organic 4 26 5 74,28%

Not Trash 2 5 23 76,67%

n=100                                                                                                                                    Average 74,12%
			 

Table 12. Detail trash detection offline testing result (ours)

Trash Detection
Detection

AccuracyOrganic Non-
Organic

Not 
Trash

Actual Organic 26 6 3 74,28%

Non-Organic 4 29 2 82,85%

Not Trash 2 4 24 80,00%

n=100                                                                                                                                    Average 93,04%
			 

Table 13. Detail trash detection for real implementation result (Salimi [3])

Trash Detection
Detection

AccuracyOrganic Non-
Organic

Not 
Trash

Actual Organic 58 13 9 72,50%

Non-Organic 10 56 9 74,67%

Not Trash 3 5 22 73,33%

n=185                                                                                                                                   Average 73,50%
			 

Table 14. Detail trash detection for real implementation result (ours)

Trash Detection
Detection

AccuracyOrganic Non-
Organic

Not 
Trash

Actual Organic 147 31 22 73,50%

Non-Organic 24 137 20 75,69%

Not Trash 12 20 93 74,40%

n=506                                                                                                                                  Average 74,53%
			 

Table 15. Performance comparison of offline testing

Performance 
Indicator

Off Trash Detection 
(%)

Human Target 
Detection (%)

Salimi [3] Ours Dewantara 
[4] Ours

Accuracy 74,00% 77,00% 75,00% 81,00%

Precision 84,81% 87,80% 84,81% 91,46%

Recall 82,71% 82,75% 83,75% 86,20%

F1 Score 83,75% 85,20% 84,27% 88,42%

Table 16. Performance comparison of real implementation

Performance 
Indicator

Real Trash Detection 
(%)

Human Target 
Detection (%)

Salimi [3] Ours Dewantara 
[4] Ours

Accuracy 74,54% 73,96% 71,72% 72,08%

Precision 80,00% 81,95% 81,44% 75,80%

Recall 82,19% 76,71% 77,45% 78,99%

F1 Score 81,08% 79,24% 79,39% 77,36%
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features from images then fed into SVM for experiments 
demonstrated effectiveness. The combination of the two in 
image classification is superior to the use of HOG alone or 
GLCM alone.

V.	 Conclusion

After evaluating system performance and integration, 
it can be concluded that by using the publish-subscribe 
method on ROS Performance, the trash detection system 
can run at a speed of 7,003 fps. Meanwhile, the target 
detection system is capable of running at a speed of 8,515 
fps. In addition to this increase, CPU usage has also 
decreased, which originally with a single process using 
CPU resources is quite large with an average of 52% to 
26% only. This of course will maintain the stability of 
system performance and also the devices used and can use 
one camera to run two systems simultaneously. In addition 
to a decrease in CPU usage, there was an increase in the 
performance of each system which was able to achieve 
77% accuracy, 87.80% precision, 82.75% recall and 
85.20% F1 Score in the trash detection and classification 
system. Then the detection system for human and social 
persuasive targets has increased in accuracy reaching 
81%, precision reaching 91.46%, recall reaching 86.20% 
and F1 Score reaching 88.42%.

The next task is to integrate with communication 
systems and navigation systems. Then after integration, 
the robot will run in a real environment, namely in the 
form of public facilities. Then it can be evaluated the 
robot’s performance based on the results obtained.
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