
I.	 Introduction

ATRACBOT is a smart trash caring robot that was
built to provide education on the importance of disposing
of trash in its place to early childhood. This education
really needs to be done because the data in the Indifference
Behavior Index for the Environment According to

Provinces in Java-Bali Island, Central Java and East
Java Provinces have an index of 0.75 in the dimension
of trash management. [1][2]. The robot is developed by
starting from planning, sub-system creation, integration
and evaluation. The robot is designed to have several
capabilities. Several of them are detecting and classifying
trash objects [3], detecting human target around the robot

Improved Performance of Trash Detection and
Human Target Detection Systems Using Robot

Operating System (ROS)
Kisron1, Bima Sena Bayu Dewantara1, and Hary Oktavianto2

1Department of Informatics and Computer Engineering, Politeknik Elektronika Negeri Surabaya
2Department of Electrical Engineering, Politeknik Elektronika Negeri Surabaya

Jl. Raya ITS, Keputih, Kec. Sukolilo, Surabaya, Jawa Timur 60111
e-mail: kisron@pasca.student.pens.ac.id

Abstract—In a visual-based real detection system using computer vision, the most important thing that must be
considered is the computation time. In general, a detection system has a heavy algorithm that puts a strain on
the performance of a computer system, especially if the computer has to handle two or more different detection
processes. This paper presents an effort to improve the performance of the trash detection system and the target
partner detection system of a trash bin robot with social interaction capabilities. The trash detection system uses a
combination of the Haar Cascade algorithm, Histogram of Oriented Gradient (HOG) and Gray-Level Co-ocurrence
Matrix (GLCM). Meanwhile, the target partner detection system uses a combination of Depth and Histogram of
Oriented Gradient (HOG) algorithms. Robotic Operating System (ROS) is used to make each system in separate
modules which aim to utilize all available computer system resources while reducing computation time. As a result,
the performance obtained by using the ROS platform is a trash detection system capable of running at a speed of
7.003 fps. Meanwhile, the human target detection system is capable of running at a speed of 8,515 fps. In line with
the increase in fps, the accuracy also increases to 77%, precision increases to 87,80%, recall increases to 82,75%, and
F1-score increases to 85,20% in trash detection, and the human target detection system has also improved accuracy
to 81%, %, precision increases to 91,46%, recall increases to 86,20%, and F1-score increases to 88,42%.

Keywords: ATRACBOT, performance improvement, robot operating system, trash detection, target detection

Abstrak—Pada sebuah sistem deteksi riil berbasis visual menggunakan visi komputer, hal terpenting yang harus
diperhatikan adalah waktu komputasi. Pada umumnya, sebuah sistem deteksi memiliki algoritma yang berat
sehingga membebani kinerja sistem komputer, terlebih jika komputer harus menangani dua atau lebih proses deteksi
berbeda. Makalah ini menyajikan upaya peningkatan performa sistem deteksi sampah dan sistem deteksi target
partner sebuah robot tempat sampah dengan kemampuan interaksi sosial. Sistem deteksi sampah menggunakan
kombinasi algoritma Haar-Cascade, Histogram of Oriented Gradient (HOG) dan Grey-Level Coocurrence Matrix
(GLCM). Sedangkan sistem deteksi target partner menggunakan kombinasi algoritma Depth dan Histogram of
Oriented Gradient (HOG). Robotic Operating System (ROS) digunakan untuk membuat setiap sistem dalam modul-
modul terpisah yang bertujuan untuk memanfaatkan seluruh sumber daya sistem komputer yang ada sekaligus
mengurangi waktu komputasi. Sebagai hasilnya, performa yang didapatkan dengan menggunakan platform ROS
ini adalah sistem deteksi sampah mampu berjalan dengan kecepatan 7,003 fps. Sedangkan sistem deteksi target
manusia mampu berjalan dengan kecepatan 8.515 fps. Sejalan dengan peningkatan fps tersebut, akurasi juga naik
menjadi 77%, presisi naik menjadi 87,80%, recall naik menjadi 82,75%, dan F1-score naik menjadi 85,20% pada
deteksi sampah, dan sistem deteksi target manusia juga memperbaiki akurasi menjadi 81%, presisi naik menjadi
91,46%, recall naik menjadi 86,20%, dan F1-Score naik menjadi 88,42%.

Kata kunci: ATRACBOT, peningkatan performa, robot operating system, deteksi sampah, deteksi target

Jurnal Rekayasa Elektrika Vol. 17, No. 2, Juni 2021, hal. 115-122
ISSN. 1412-4785; e-ISSN. 2252-620X, Terakreditasi RISTEKDIKTI No. 30/E/KPT/2018
DOI: 10.17529/jre.v17i2.20805

Received 20 April 2021; Revised 13 June 2021 ; Accepted 18 June 2021

115

116 Jurnal Rekayasa Elektrika Vol. 17, No. 2, Juni 2021

[4], communicating with the officer [5][6], and navigating
around the social environments [7].

Those abilities have been carried out by previous
researchers, namely the detection and classification
of trash objects by Salimi et.al. [3] with the detection
results performance up to 73.49% with 3.221 fps. Then,
the human target and persuasive social interaction was
carried out by Dewantara et.al. [4] which achieves 71%
of detection results with 4.26 fps. For robot monitoring
and communication with the officer, Kisron et.al. [5][6]
has developed a IoT-based system which achieves 100%
of accuracy, 100% of precision and 100% of recall results
for the robot’s decision-making system. The Telegram bot-
based application is able to send and receive information
between the robot and the officer. The navigation system
[7] is developed in the form of simulation, and the robot
has not been implemented directly.

Salimi et.al. [3] developed a visual-based system that
can detect the presence of trash by using Haar-Cascade.
Then, a combination of Gray-Level Co-Occurrence
Matrix (GLCM) and Histogram of Oriented Gradient
(HOG) is used as the features to be fed to the Support
Vector Machine (SVM) to distinguish the type of trash into
organic and non-organic. The system was developed under
standard C++ programming on Windows OS platform
without any optimization techniques. The main drawback
of the system is very low computing speed. This is the
main cause of the low processing speed of 3.221 fps.

On the other hand, the second ability of the robot is to
detect the presence of human around the robot. This feature
will work when the robot has managed to find the trash and
will ask someone for help to pick up and put the trash into
the bin carried by the robot. Dewantara et.al. [4] proposed
Depth-HOG as the shape feature of a human upper body
that is classified using SVM to distinguish human or not
human. The system was also developed under standard
C++ programming on Windows OS platform without
any optimization techniques. The main drawback of the
system is very low computing speed. This is also the main
cause of the low processing speed of 4.26 fps.

Another problem that arises is when multiple abilities
are supposed to work together to achieve a goal cannot
be combined easily, then the robot system as a whole will
not work optimally. Therefore, we propose using ROS for
overall system integration in order to maximize existing
resources to build a reliable system and converting the
operating system to Linux in order to further reduce the
computation time.

This paper will explain the performance evaluation of
the two sub-systems that have been made, namely the trash
detection and classification system and the human target
detection system. Evaluation of the system is carried out by
comparing the platforms used. In addition to performance
comparisons, system integration is also carried out so that
the two sub-systems can run simultaneously.

II.	 Literature Review

To get maximum research results, the researcher made
comparisons of several methods. This is done so that the
method used is in accordance with the characteristics of the
system because each system has different characteristics.
Asim Roy et al. [8] have compared several methods
and evaluated machine learning algorithms based on
performance measures (e.g., Accuracy, Area Under the
Curve (AUC), and F-score). Such a method can be used
to compare standard Machine Learning platforms such as
SAS, IBM SPSS, and Microsoft Azure ML.

They compare platforms based on predictive
performance on classification problems because most of
the problems in machine learning are those of the platform
type. Common questions posed include the following: Is
there any platform that outperforms the others on certain
performance measures? For each platform, they use a set
of six classification algorithms from the following six
algorithm families - support vector machine, multilayer
perceptron, random forest, random trees / gradient
boost trees, naive Bayes/Bayesian network, and logistic
regression. To test the platform, they used several datasets
from the University of California library, Irvine (UCI),
Kaggle Competition Library, and high-dimensional gene
expression problems. They also perform parameter tuning
of the algorithm. The results obtained by each method have
different performance when applied to different cases.

Ahmad Ashari et.al. [9] proposed a new method
in finding design alternatives, namely by using the
classification method. The classification methods they use
are Naïve Bayes, Decision Tree, and k-Nearest Neighbor.
Their experiments show that the Decision Tree has the
fastest classification time followed by Naïve Bayes and
k-Nearest Neighbor. The difference between the Decision
Tree and Naïve Bayes classification times as well as
between the Naïve Bayes and k-NN is about the order
of magnitude. Based on Percision, Recall, F-measure,
Accuracy, and AUC, Naïve Bayes’ performance is the best.

Aldi Kika and Silvana Grecca [10] explored the
performance of a Java image processing application
designed with a multithreading approach. To test how
multithreading affects program performance, they tested
several image processing algorithms implemented in Java
using a sequential one thread approach and multithreading
on single and multi-core CPUs. Experiments are based
not only on different platforms and algorithms which
differ from each other by their level of complexity, but
also on changes in image size and thread count when
the multithreading approach is applied. Performance
is improved on single core and multiple CPU cores in
different ways due to image size, algorithm complexity
and platform.

The results showed that the multithreading approach
improved the performance of the algorithm processing
time on both single-core and multi-core CPU platforms,
but this increase was different. In a single core, the best
results are given by a combination of small image sizes

117Kisron et. al.: Improved Performance of Trash Detection and Human Target Detection Systems Using Robot
Operating System (ROS)

and less complex algorithms, whereas on multicore CPUs
the combination of small image sizes and more complex
algorithms improves performance. Multithreading
programming can improve performance on multi-core
CPUs when complex image processing algorithms are
applied.

III.	 Metodology and System Design

A.	 Trash Detection and Classification

ATRACBOT has the ability to detect and differentiate
trash into organic or non-organic types. The initial research
by Salimi et al. [3] developed a detection system using
a single core CPU programming and gets the detection
results with an accuracy of 73.49% and fps of 3,221 fps.
Fig. 1 shows the system design of the trash detection
system on ATRACBOT that has been developed in [3].

Based on the block diagram in Fig. 1, the system’s
input is an image frame with a scene contains trash object
obtained from the RGB camera. Preprocessing is done
by reducing the image size so that it is faster to process.
Object detection is built using the Haar-cascade method
[11]. For the training purpose, we used a set of positive
images such as bottles, cans, paper bundles, drinking
boxes, leaves, and plastic wraps. While negative images
are taken from objects other than the positive images.

The Haar-cascade is used to determine the features by
processing the image by using a set of black-white squares
that has a certain pixel size. The results are then fed to an
integral image process. And finally, the result of integral
image is classified as trash or not using a combination
of some Adaptive Boosting in the form of Cascaded
Classifier.

After the trash is detected, then, the type of trash should
be classified. We use a texture and shape-based features by
utilizing the Gray-Level Co-Occurrence Matrix (GLCM)
and Histogram of Oriented Gradient (HOG), respectively.
The GLCM will calculate the variation of the neighboring
values ​​of the image and then create a matrix. From the
matrix that has been formed, the value of each texture
feature can be calculated. There are six values that will
be the GLCM features, namely Contrast, Inverse Different

Moment (IDM), Energy, Entropy, Homogeneity, and Mean
Square Error (MSE). Each value is formulated as follows.

()2

1

 , 1 ()
L

n i j n

Contrast n P i j
= − =

  =  
  

∑ ∑

()
()2

1 1

,

1
(2)

L L

i j

P i j
IDM

i j= =

=
+ −

∑∑

()2 , (3)
i j

Energy P i j=∑∑

() ()()
1 1

 , .log , (4)
L L

i j

Entropy P i j P i j
= =

= ∑∑
	

()
()2

1 ,
1

(5)
i j

Homogeneity P i j
i j

=
+ −

∑∑
	

()2

1

1 ˆ (6)
n

i

MSE Yi Yi
n =

= −∑

On the other hand, HOG describes the appearance of
the object by a gradient or edge intensity distribution.
The features obtained from the HOG are calculated by
taking an edge-oriented histogram in the local area. The
magnitude and direction of HOG is calculated using the
following equation.

2 2 () 7Magnitude gx gy= +

) (8gyDirection arctan
gx

=

These combined features are then fed to the Support
Vector Machine (SVM) [12] to be classified into three
classes, namely organic trash, non-organic trash and not
a trash. The parameters setting for the SVM are shown in
Table 1.

To analyze the performance, an analysis is carried out
by looking for accuracy, precision, recall and F-1 score.
The following is the formula used to get the system’s
performance:

(9)TP TNAccuracy
TP TN FP FN

+
=

+ + +

 (1) 0TPPrecision
TP FP

=
+

 (11)TPRecall
TP FN

=
+

Fig 1. Trash detection and classification design

Table 1. The parameters setting for the SVM

Parameters Value

Type C-SVC

Kernel type Linear

118 Jurnal Rekayasa Elektrika Vol. 17, No. 2, Juni 2021

* 1 2 (12) Precision RecallF Score x
Precision Recall

=
+

B.	 Human Target Detection and Social Persuasive

Apart from being able to detect and distinguish types
of trash, ATRACBOT also has the ability to detect human
existence in the surrounding environment. Human detection
is needed because the robot that we have developed is a
social robot, where interaction with humans is one of the
main targets. Here, the role of robots is to teach humans
about the importance of disposing of waste in its place.
Figure 2 shows the system’s design of the human target
and social persuasive detection system.

The working of this system is that when the robot
successfully detects a trash object, the camera installed
on the robot will perform the second function, namely
looking for human targets that have the potential to help
the robot put trash into the trash bin provided above the
robot. Human detection is carried out on the upper part of
the human body based on shape features using the HOG
and SVM methods [4]. When someone is detected, the
robot will make a sound to invite the person to take and
put the garbage in the trash bin. If the person, does it, then
the robot will sound again saying thank you. If it has not
been done, the robot will continue to sound to invite the
person. The previous research has been done using a single
core CPU programming and obtains detection results with
an accuracy of 71% and fps of 4.26 fps.

C.	 Robot Operating System (ROS)

ROS is an open-source Robot Operating System in
which there are libraries and tools for creating robot
software. ROS is a robotic middleware that can flexibly
connect robotic hardware to a computer operating system.
ROS aims to make it easier for robot developers to create
their software without having to create source code from

scratch and can be developed together.
ROS has 3 concepts, namely the filesystem level, the

computational graphics level and the community level[13]
[14]. The filesystem level is the level of ROS resources
available on the system. the first step when using or
developing ROS is to conceptualize it like an operating
system. In an ROS filesystem there are folders, and each
folder has a different file description according to its
respective function.

Figure 3 shows the node design used in this system. This
system consists of 4 nodes and 3 topics that are created. The
publish subscribe model is used so that data that has been
processed on a node can be used simultaneously by other
nodes. Camera node to take pictures of the environment
using a minoru stereo camera. Then obtained data in the
form of images that are processed in the depth image node
so as to produce a depth image that has silhouette image
data and the distance of the object from the camera. The
depth image is used to detect human presence using the
human upper body method, which is created by a separate
node. Social persuasion is combined by using the human
upper body node which will run when a human is detected.

Figure 4 shows a flowchart to explain the workflow of
the robot. The first step is to initialize the camera, sensors

Fig 2. Target detection and social persuasive design

Fig 3. Node design

Fig 4. Flowchart robot

119Kisron et. al.: Improved Performance of Trash Detection and Human Target Detection Systems Using Robot
Operating System (ROS)

and actuators. Then the robot will maneuver looking for
trash at a slow speed so that it does not endanger the
surrounding environment. After the trash is detected, the
robot will stop and search for human targets to dispose of
the detected trash into the space provided to the robot. To
detect human targets around the robot, the human upper
body detection method is used. After the target is detected,
the robot will attract the target’s attention to dispose of the
trash around the robot. Then after the trash is entered, the
robot will give appreciation to the person who has entered
the trash. Then the robot will maneuver to find trash again.

Prediction systems and decision-making systems
are used to provide intelligence to robots that run
autonomously to be able to make decisions independently.
Meanwhile, communication with officers is a feature used
to monitor robots using the telegram application remotely.

IV.	 Result and Discussion

To perform system testing, testing is carried out using
two methods, namely running programs on different
operating systems and comparing with running programs
on ROS. The operating systems being compared are Visual
Studio 2017 on Windows 10 with ROS Melodic on Ubuntu
18.04 LTS. For the test location, data collection is made
the same so as to minimize environmental differences.

Figure 5 shows a trash detection and classification
system using the ROS platform. Where there are two nodes,
namely stereo publisher and trash detection as shown in
Fig. 7 which is generated using rotograph on ROS. The

two separate nodes will reduce the computational load
that runs sequentially, the time needed to update the
data capture image will also be cut quite a lot so that the
detection process will be faster. After converting from
windows to ROS, the initial fps increase was 3.221 to
7.003.

Figure 6 shows a trash detection and classification
system using the ROS platform. Where there are three
nodes, namely stereo publisher, target detection and social
persuasive as shown in Fig. 7 which is generated using
rosgraph on ROS. The three separate nodes will reduce
the computational load that runs sequentially, the time
needed to update the data capture image will also be cut
quite a lot so that the detection process will be faster. The
social persuasive node will run when the target detection

(a) Trash detection run in windows

(b) Trash detection run in linux

Fig 5. Running trash detection program

(a) Target detection run in windows

(b) Target detection run in linux
Fig 6. Running target detection and social persuasive program

Fig 7. ROS Node graph

120 Jurnal Rekayasa Elektrika Vol. 17, No. 2, Juni 2021

node successfully detects human presence around the
robot. After converting from windows to ROS, the
initial fps increase was 4,442 to 8,515. From the results
of the experiments that have been carried out, it can be
summarized into tables to make it easier to analyze data.
Table 2 shows the results obtained.

FPS or frames per second is the number of images/
frames displayed in 1 second [15]. The greater the fps of a
video, the smoother and smoother the image displayed is.
And the lower the fps, the worse the video quality. Based
on Table 2, the results of running programs on Linux
have higher fps when compared to running programs on
Windows. This is because when running the program in
Windows, the distribution of the CPU cores is not evenly
distributed so that the program is run sequentially. The
high and low FPS is influenced by the processes run by
the system. The previous systems run sequentially and do
not involve all CPU cores in the process. The system uses
ROS which divides each CPU core to work on the process

so that the system becomes multi-threaded. This causes
the FPS to be better.

Figure. 8 (a) shows the CPU performance in running
the program. Of the four cores, it can be seen that CPU
usage is above 50%. This makes the computer work hard
to run the program. Meanwhile, using ROS on Linux,
the CPU performance shown in Fig. 8 (b) has an average
value of 26%. So that with that much CPU usage it doesn’t
burden the work of the computer itself.

In addition to the reduction in processor workload, the
detection system performance is tested using parameters
accuracy, precision, recall and F-score by testing offline
and real implementation. Testing offline by detecting
images 100 times with different objects and positions. The
real implementation is executed by enabling detection for
60 seconds and replacing it with a different object. Table
3 shows the offline trial of trash detection using previous
research method [3] and then Table 4 shows the offline
trial of target detection using previous research [4]. Then,
Table 5 and Table 6 shows offline trial trash and target
detection using our method. Table 7 shows the result of
real implementation using previous method [3] and table
8 shows the result of real implementation using previous
method [4]. Then, Table 9 and Table 10 show the result of
real implementation trash and target detection using our
method.

The offline experiments were carried out by detecting
100 times the detection of trash and detection of targets.

(a) Task Manager Windows

(b) Task Manager Linux

Fig 8. CPU Performance Comparison

Table 3. Confusion matrix trash detection offline testing (Salimi [3])

Actual Values

n=100 Positive Negative

Predicted Values Positive TP = 67 FP = 12

Negative FN = 14 TN = 7

Table 4. Confusion matrix target detection offline testing (Dewantara [4])

Actual Values

n=100 Positive Negative

Predicted Values Positive TP = 67 FP = 12

Negative FN = 13 TN = 8

Table 5. Confusion matrix trash detection offline testing (ours)

Actual Values

n=100 Positive Negative

Predicted Values Positive TP = 72 FP = 10

Negative FN = 13 TN = 5

Table 6. Confusion matrix target detection offline testing (ours)

Actual Values

n=100 Positive Negative

Predicted Values Positive TP =75 FP = 7

Negative FN = 12 TN = 6

Table 2. FPS comparison

Running on Trash Detection (fps) Target Detection (fps)

Windows 3.221 4.442

Linux (ROS) 7.003 8.515

121Kisron et. al.: Improved Performance of Trash Detection and Human Target Detection Systems Using Robot
Operating System (ROS)

The results obtained on the trash detection system accuracy
77,00%, precision 87,80%, recall 82,75%, and F1 score
85,20%, while the target detection results in performance
accuracy 81%, precision 91,46%, recall 86,20%, and F1
score 88,42 %. Table 7 shows the performance comparison
based on accuracy, precision, recall and F1 score.

In real implementation there are differences in the
frames that are processed. by using ROS frames that are
processed more than using the previous researches. Table
11, 12, 13, 14, 15 and 16 show the detail of trash and target
detection for each experiment. Where from the results
of the tests we did, the technique we used had a better
performance than the results in [3] and [4].

From the result of the experiments above, we can
observe that there is an increase in each parameter. This is

directly proportional to the reduction in processor workload,
thereby increasing detection results. The combination of
HOG and GLCM features is also considered to be able
to improve system performance. Research by Gue and
Liu [16] proved that the combination of HOG and GLCM

Table 7. Confusion matrix trash detection for real implementation
(Salimi [3])

Actual Values

n=100 Positive Negative

Predicted Values Positive TP =60 FP = 15

Negative FN = 13 TN = 22

Table 8. Confusion matrix target detection for real implementation
(Dewantara [4])

Actual Values

n=100 Positive Negative

Predicted Values Positive TP =79 FP = 18

Negative FN = 23 TN = 25

Table 9. Confusion matrix trash detection for real implementation (ours)

Actual Values

n=100 Positive Negative

Predicted Values Positive TP =168 FP = 37

Negative FN = 51 TN = 82

Table 10. Confusion matrix target detection for real implementation
(ours)

Actual Values

n=100 Positive Negative

Predicted Values Positive TP =94 FP = 30

Negative FN = 25 TN = 48

Table 11. Detail trash detection offline testing result (Salimi [3])

Trash Detection
Detection

AccuracyOrganic Non-
Organic

Not
Trash

Actual Organic 25 7 3 71,42%

Non-Organic 4 26 5 74,28%

Not Trash 2 5 23 76,67%

n=100 Average 74,12%
			

Table 12. Detail trash detection offline testing result (ours)

Trash Detection
Detection

AccuracyOrganic Non-
Organic

Not
Trash

Actual Organic 26 6 3 74,28%

Non-Organic 4 29 2 82,85%

Not Trash 2 4 24 80,00%

n=100 Average 93,04%
			

Table 13. Detail trash detection for real implementation result (Salimi [3])

Trash Detection
Detection

AccuracyOrganic Non-
Organic

Not
Trash

Actual Organic 58 13 9 72,50%

Non-Organic 10 56 9 74,67%

Not Trash 3 5 22 73,33%

n=185 Average 73,50%
			

Table 14. Detail trash detection for real implementation result (ours)

Trash Detection
Detection

AccuracyOrganic Non-
Organic

Not
Trash

Actual Organic 147 31 22 73,50%

Non-Organic 24 137 20 75,69%

Not Trash 12 20 93 74,40%

n=506 Average 74,53%
			

Table 15. Performance comparison of offline testing

Performance
Indicator

Off Trash Detection
(%)

Human Target
Detection (%)

Salimi [3] Ours Dewantara
[4] Ours

Accuracy 74,00% 77,00% 75,00% 81,00%

Precision 84,81% 87,80% 84,81% 91,46%

Recall 82,71% 82,75% 83,75% 86,20%

F1 Score 83,75% 85,20% 84,27% 88,42%

Table 16. Performance comparison of real implementation

Performance
Indicator

Real Trash Detection
(%)

Human Target
Detection (%)

Salimi [3] Ours Dewantara
[4] Ours

Accuracy 74,54% 73,96% 71,72% 72,08%

Precision 80,00% 81,95% 81,44% 75,80%

Recall 82,19% 76,71% 77,45% 78,99%

F1 Score 81,08% 79,24% 79,39% 77,36%

122 Jurnal Rekayasa Elektrika Vol. 17, No. 2, Juni 2021

features from images then fed into SVM for experiments
demonstrated effectiveness. The combination of the two in
image classification is superior to the use of HOG alone or
GLCM alone.

V.	 Conclusion

After evaluating system performance and integration,
it can be concluded that by using the publish-subscribe
method on ROS Performance, the trash detection system
can run at a speed of 7,003 fps. Meanwhile, the target
detection system is capable of running at a speed of 8,515
fps. In addition to this increase, CPU usage has also
decreased, which originally with a single process using
CPU resources is quite large with an average of 52% to
26% only. This of course will maintain the stability of
system performance and also the devices used and can use
one camera to run two systems simultaneously. In addition
to a decrease in CPU usage, there was an increase in the
performance of each system which was able to achieve
77% accuracy, 87.80% precision, 82.75% recall and
85.20% F1 Score in the trash detection and classification
system. Then the detection system for human and social
persuasive targets has increased in accuracy reaching
81%, precision reaching 91.46%, recall reaching 86.20%
and F1 Score reaching 88.42%.

The next task is to integrate with communication
systems and navigation systems. Then after integration,
the robot will run in a real environment, namely in the
form of public facilities. Then it can be evaluated the
robot’s performance based on the results obtained.

Reference

[1]	 Badan Pusat Statistik, “Laporan Indeks Perilaku Ketidakpedulian
lingkungan hidup indonesia 2018,” pp. 44, 2018, doi: 978-602-
432-210-0.

[2]	 BPS, “Badan Pusat Statistik: Statistical Yearbook of Indonesia
2018, accessed: www.bps.go.id.,” 2018.

[3]	 I. Salimi, B. S. B. Dewantara and I. K. Wibowo, “Visual-based
trash detection and classification system for smart trash bin
robot,” 2018 International Electronics Symposium on Knowledge
Creation and Intelligent Computing (IES-KCIC), 2018, pp. 378-
383, doi: 10.1109/KCIC.2018.8628499.

[4]	 B. S. B. Dewantara, F. Ardilla and A. A. Thoriqy, “Implementation
of Depth-HOG based Human Upper Body Detection On A Mini
PC Using A Low Cost Stereo Camera,” 2019 International
Conference of Artificial Intelligence and Information Technology

(ICAIIT), 2019, pp. 458-463, doi: 10.1109/ICAIIT.2019.8834580.

[5]	 Kisron, B. S. B. Dewantara and F. Ardilla, “Self Monitoring,
Failure-Detection and Decision-Making System to Support
E-TrashBot (EEPIS Trash Bin Robot) Operations: Preliminary
Report,” 2018 10th International Conference on Information
Technology and Electrical Engineering (ICITEE), 2018, pp. 1-6,
doi: 10.1109/ICITEED.2018.8534932.

[6]	 Kisron, B. S. B. Dewantara and F. Ardilla, “Early Warning
and IoT-based Reporting System for Mobile Trash Bin Robot
Application,” 2018 International Electronics Symposium on
Knowledge Creation and Intelligent Computing (IES-KCIC),
2018, pp. 341-348, doi: 10.1109/KCIC.2018.8628550.

[7]	 F. A. Haq, B. S. B. Dewantara and B. S. Marta, “Room Mapping
using Ultrasonic Range Sensor on the ATRACBOT (Autonomous
Trash Can Robot): A Simulation Approach,” 2020 International
Electronics Symposium (IES), 2020, pp. 265-270, doi: 10.1109/
IES50839.2020.9231734.

[8]	 A. Roy et al., “Performance comparison of machine learning
platforms,” INFORMS Journal on Computing, vol. 31, no. 2, pp.
207–225, 2019, doi: 10.1287/ijoc.2018.0825.

[9]	 A. Ashari, I. Paryudi, and A. Min, “Performance comparison
between naïve bayes, decision tree and k-nearest neighbor in
searching alternative design in an energy simulation tool,”
International Journal of Advanced Computer Science and
Applications, vol. 4, no. 11, pp. 33–39, 2013, doi: 10.14569/
ijacsa.2013.041105.

[10]	 A. Kika, “Multithreading image processing in single-core and
multi-core CPU using java,” International Journal of Advanced
Computer Science and Applications, vol. 4. No. 9, pp. 165-169,
2013, doi: 10.14569/IJACSA.2013.040926.

[11]	 S. Al-Aidid and D. Pamungkas, “Sistem pengenalan wajah dengan
algoritma haar cascade dan local binary pattern histogram,”
Jurnal Rekayasa Elektrika, vol. 14, no. 1, pp. 62–67, 2018, doi:
10.17529/jre.v14i1.9799.

[12]	 C.C. Chang and C.J. Lin, “LIBSVM: a library for support vector
machines”, ACM Trans. Intelligent System Technology, Vol. 2,
No. 27, pp. 1–27, 2011.

[13]	 A. Martinez and E. Fenandez. 2013. Learning ROS for Robotics
Programming. Birmingham, UK: Packt Publishing.

[14]	 E. Fernandez, L. S. Crespo, A. Mahtani and A. Martinez. 2015.
Learning ROS for Robotics Programming - Second Edition.
Birmingham, UK: Packt Publishing

[15]	 A. Vyas, S. Yu, and J. Paik. 2018. Fundamentals of Digital Image
Processing. In: Multiscale Transforms with Application to Image
Processing. Signals and Communication Technology. Springer,
Singapore. https://doi.org/10.1007/978-981-10-7272-7_1.

[16]	 G. Jianyue and L. Haoting. 2020. Investigation of Image
Classification Using HOG, GLCM Features, and SVM Classifier.
In: Long S., Dhillon B.S. (eds) Man-Machine-Environment
System Engineering. MMESE 2020. Lecture Notes in Electrical
Engineering, vol 645. Springer, Singapore. https://doi.
org/10.1007/978-981-15-6978-4_49.

