
125-133Implementation of Event-Based Dynamic Authentication on MQTT Protocol
Rizka Reza Pahlevi, Parman Sukarno, and Bayu Erfianto

VOLUME 15 NOMOR 2 	

Jurnal
Rekayasa Elektrika

Agustus 2019

JRE Vol. 15 No. 2 Hal 75-156 Banda Aceh,
Agustus 2019

ISSN. 1412-4785
e-ISSN. 2252-620X

TERAKREDITASI RISTEKDIKTI No. 36b/E/KPT/2016

I.	 Introduction

Since the establishment of the internet, the
development of hardware and software had increased.
The increasing quality of internet services today creates

innovations. One of the innovation is the Internet of
Things (IoT) [1]–[3]. The IoT makes physical devices
in the environment (such as medical devices, vehicles,
sensors) become part of computer networks and operate
without human intervention [4], [5]. The architecture of

Implementation of Event-Based Dynamic
Authentication on MQTT Protocol

Rizka Reza Pahlevi, Parman Sukarno, and Bayu Erfianto
School of Computing, Telkom University

Bandung, Indonesia, 40257
e-mail: rizkarezapahlevi@student.telkomuniversity.ac.id

Abstrak—Artikel ini mengusulkan mekanisme otentikasi pada protokol MQ Telemetry Transport (MQTT).
Pertukaran data dalam sistem IoT menjadi aktivitas penting. Pertukaran data ini dilakukan dengan komunikasi
antar perangkat Internet of Things (IoT). Protokol MQTT adalah protokol komunikasi yang cepat dan ringan untuk
IoT. Protokol MQTT menggunakan broker sebagai peladen untuk publish/subscribe. Salah satu masalah pada
protokol MQTT adalah tidak adanya mekanisme keamanan pada pengaturan awal. Tahap registrasi client memiliki
kerentanan terhadap serangan client palsu karena tidak adanya mekanisme otentikasi. Mekanisme otentikasi telah
dibuat sebelumnya menggunakan Transport Layer Security (TLS). Namun, mekanisme TLS mengkonsumsi lebih
dari 100 KB memori data dan tidak bersahabat untuk perangkat yang memiliki batasan. Oleh karena permasalahan
tersebut diperlukan mekanisme otentikasi yang cocok untuk perangkat terbatas. Artikel ini mengusulkan protokol
untuk mekanisme otentikasi berbasis kejadian dan dinamis untuk protokol MQTT. Penggunaan berbasis
kejadian diajukan untuk mengurangi beban komputasi perangkat terbatas. Penggunaan dinamis ditujukan untuk
memberikan properti otentikasi yang berbeda pada setiap sesi sehingga dapat meningkatkan keamanan otentikasi.
Dari hasil evaluasi, protokol otentikasi dinamis berbasis kejadian berhasil diterapkan kepada perangkat terbatas
mikrokontroler dan broker. Mikrokontroler sebagai client mampu melakukan proses untuk protokol yang diajukan.
Broker mampu memilah client yang otentik dan perangkat terbatas mampu melakukan komputasi untuk melakukan
proses mutual otentikasi kepada client. Mikrokontroler menggunakan 52% memori untuk protokol yang diajukan
dan hanya mengkonsumsi 2% lebih tinggi dari protokol tanpa keamanan. Broker mampu memilah client yang
otentik dan perangkat terbatas mampu melakukan komputasi untuk melakukan proses mutual otentikasi kepada
client. Broker menggunakan real memori maksimum sebesar 4,3 MB dan penggunaan CPU maksimum 3,7%..

Kata kunci: IoT, otentikasi, dinamis, berbasis kejadiaan, MQTT

Abstract—This paper proposes an authentication mechanism on the MQ Telemetry Transport (MQTT) protocol.
The exchange of data in the IoT system became an important activity. The MQTT protocol is a fast and lightweight
communication protocol for IoT. One of the problems with the MQTT protocol is that there is no security
mechanism in the initial setup. One security attack may occur during the client registration phase. The client
registration phase has a vulnerability to accept false clients due to the absence of an authentication mechanism.
An authentication mechanism has been previously made using Transport Layer Security (TLS). However, the
TLS mechanism consumes more than 100 KB of data memory and is not suitable for devices that have limitations.
Therefore, a suitable authentication mechanism for constraint devices is required. This paper proposes a protocol
for authentication mechanisms using dynamic and event-based authentication for the MQTT protocol. The event-
based is used to reduce the computing burden of constraint devices. Dynamic usage is intended to provide different
authentication properties for each session so that it can improve authentication security. As results, the applied of
the event-based dynamic authentication protocol was successful in the constraint devices of microcontrollers and
broker. The microcontroller, as a client, is able to process the proposed protocol. The client uses 52% of the memory
for the proposed protocol and only consumes 2% higher than the protocol without security. The broker can find
authentic clients and constraint devices capable of computing to carry out mutual authentication processes to clients.
The broker uses a maximum of 4.3 MB of real memory and a maximum CPU usage of 3.7%.

Keywords: IoT, authentication, dynamic, event-based, MQTT
Copyright © 2019 Jurnal Rekayasa Elektrika. All right reserved

Jurnal Rekayasa Elektrika Vol. 15, No. 2, Agustus 2019, hal. 125-133
ISSN. 1412-4785; e-ISSN. 2252-620X, Terakreditasi RISTEKDIKTI No. 36b/E/KPT/2016
DOI: 10.17529/jre.v15i2.13963

Received 01 July 2019; Revised 31 July 2019; Accepted 12 August 2019

125

126

the IoT consists of four-layer: Sensing layer, Network
layer, Service layer, and Applications layer [6]. The
Sensing layer generally contains constraint devices as in
RFC72278 [7]. The constraint device is used to convert
environmental parameters into digital data. The use of
constraint devices to the IoT is intended to be one of them
for device mobilization and resource requirements.

The data from the sensing layer was sent to another
layer using the communication protocol. The network
layer provides a communication protocol between
nodes. One of the communication protocol for the IoT
is Message Queuing Telemetry Transport (MQTT). The
MQTT protocol is an open standard protocol that is issued
by the Organization for the Advancement of Structured
Information Standards (OASIS) that can be used with
devices that have limited memory, low data rates and
are transmitted over the network [8]–[10]. The MQTT
protocol works with the published/subscribed model.
Figure 1 shows a scheme of communication between
the client and the broker. That figure shows the MQTT
protocol scheme which consists of publisher P1, P2, ..., Pn
and subscriber S1, S2, ..., Sn. The task of the publisher is
to send data to the MQTT broker through networks, and
the subscriber is to receive messages from brokers through
networks on certain topics. The clients use the topic to
publish and subscribe.

However, from the advantages possessed by the
MQTT protocol, the MQTT protocol has a threat [8],
[9], especially at MQTT brokers. The activities such as
registering and publishing are using the MQTT broker. The
MQTT protocol does not have a security mechanism in
the default setting [11], [8], [9]. Since the absences of the
security mechanism in the MQTT protocol causes several
problems, one of them is the authentication mechanism [6],
[8], [9], [11]. The authentication mechanism is a method to
prove the authenticity of the client, whether it is legitimate
or not to the broker. Because the broker cannot verify the
client, the broker can accept the connection message from
any client. This phase has a vulnerability to the broker
receiving a fake client. Unauthenticated clients can cause
unauthorized access [6] that results in fake messages,
malfunctions, or collapses.

Authentication issues in the MQTT protocol have been
previously addressed. One mechanism is to use Transport
Layer Security (TLS). The TLS is a security standard
for communication between two parties. The TLS is
providing symmetric, asymmetric, and hash encryption to
accommodate integrity, confidentiality, and authentication.

However, Sorcha Nolan [12] states that TLS added costs
to the process, so it was not suitable for constraint devices.
Gil Reiter [13] states that TLS used more than 100 KB of
memory consumption, which is certainly not a problem
for smartphone, but it is a problem for constraint devices
to RFC7228. Miranda P. et al. [14] states that there was
overhead energy for TLS. To deal with the problem of
energy use in the TLS, Tae Ho Cho et al. [15] proposed
the method. However, Tae Ho Cho et al. proposed method
cannot handle the problem of memory usage [12].

The overconnected handling needed to overcome the
authentication problems. Overconnected is caused by an
end device that cannot prove the authenticity of the client.
This research proposes an event-based authentication
protocol mechanism. The authentication mechanism
proposed in this research consists of two pillars, namely
event-based and dynamic property pillars. The use of
event-based control systems pillar performed when
triggers occur, which potentially reduce computational
and communication burdens and do not require additional
synchronization to the server [16]. The dynamic pillar
makes security attributes on each event change so that
it can improve security. In this research succeeded in
implementing event-based dynamic authentication
on microcontroller devices, and brokers were able to
authenticate clients.

The contribution of this research is to improve security
in the MQTT protocol by using dynamic event-based
authentication. In this research, it introduced a dynamic
authentication security mechanism using an event-based
control system that had not previously been studied on
the IoT. This study proposes a security mechanism that
simultaneously considers computing and memory on
constraint devices such as microcontrollers. Previous
research has tried to solve this problem, but as far as
we know, it does not consider computing devices that
have limitations either. Besides, previous research has
not discussed authentication at the client level on the
IoT system. Therefore, this study took part to improve
authentication security.

II.	 Literature Review

The MQTT protocol is a communication protocol
that uses the publish/subscribe mechanism to requests/
responses [17] [18] [11]. There are four properties at
the MQTT protocol: IP, Payload, Topic, and Port [8].
The MQTT protocol, there are three agents: Publisher,
Subscriber, and Broker. The Publisher works by connecting
the client to the broker and sending messages to the
broker. The subscriber works by connecting the client to
the broker and receives messages on the desired topic.
The broker work to exchange messages, receive messages
and forward messages. The agents have relationships and
are attached to certain attributes. The MQTT protocol, the
topic is an inherent property that must exist.

Budi R. et al. [8] reviewed the security in the MQTT
protocol. The Security required in MQTT includes Figure 1. Existing MQTT Scheme [8], [6]

Jurnal Rekayasa Elektrika Vol. 15, No. 1, Agustus 2019

127

authentication, authorization, and access control. However,
the MQTT protocol does not have it all. The MQTT
protocol only provides authentication without encryption.
The authentication process on the MQTT generally uses a
username and password. The sending of the authentication
message is not encrypted. Budi R. et al. [8] provides a
demonstration of how the MQTT attacks are carried out
on the network by obtaining an MQTT packet from the
network. The attacker registers himself to the broker with
the content from the obtained header data. Furthermore,
the attacker gain access to the resources at the broker. S. N.
Firdous et al. [9] provides categories of attacks and effects
of attacks. The attack categories describes the denial
of service, identity spoofing, information disclosure,
elevation of privileges, and tampering data also explains
how broker are attacked with unauthorized access.

The Transport Layer Security (TLS) security mechanism
has been established to provide security mechanisms. TLS
provides a secure communication channel through two
hosts. TLS uses symmetric and asymmetric functions and
hashes to provide authentication, encryption for data, and
data integrity. TLS provides security for authentication,
authorization, and encryption of data sent. TLS has
become standard security for communication over the
network. TLS in the MQTT protocol has been used to
secure data and maintain the authenticity of the broker
from the message received. However, P. Miranda et al.
provides exposure to how TLS has overhead in computing
[14]. The energy consumed depends on the amount of data
to be sent. Gil Reiter explained that TLS needed at least
100 KB of memory [13]. The computation of TLS security
mechanism that can be done by smart-phones and other
devices that have much memory, but not for devices that
have limitations such as those on RFC7228 [7].

Sorcha Nolan had provided another security mechanism
at MQTT [12]. Sorcha Nolan provides an authentication
mechanism on the MQTT protocol by providing encryption
on the payload. This study aims to provide low computing
and memory usage for the authentication process on the
MQTT protocol payload. Sorcha Nolan succeeded in
providing an authentication mechanism on MQTT content
regarding clients that have limitations. However, this study
does not pay attention to client authentication mechanism,
where it is used to validate the clients that want to uses the
broker resources.

The control system, there are two types, event-based
and time-based. An event-based control system is a control
system that updates its information when a particular event
triggers the function. This control system computation
carried out if certain events trigger the system. This control
scheme is a solution where the device has a limit power
usage [16]. An event-based control system performed
when state changes occur, or there are triggers from other
operations that potentially reduce the computing burden.
In the case of IoT, because not all the IoT devices have
the same delivery time, event-based control system more
efficient. Also, the eventbased control scheme saves
bandwidth because it does not require synchronization to

the server to update the property.

III.	 Methodology and System Design

A.	 Proposed Protocol Concept

The design of the proposed protocol for dynamic
event-based authentication divided into two: event id and
encryption. Pseudo-random number generator is used to
create the event id. The pseudo-random number generator
has a concept where the seed becomes a generator of
current value. Each client owns a seed (each one), and
the broker owns the entire list of client seeds. The event
id is formed by clients who want to register and brokers
to mutually authenticate. Moreover, the event id formed
by the client is called Evk and the broker is called Evb.
The encryption process, the value of the event id is
added with random characters, and then processed with
symmetric encryption using the Fisher Yates Shuffle. The
Fisher-Yates shuffle uses key R as an individual scrambler.
The Fisher-Yates was chosen because it fulfills unbiased
permutation rules. It only requires a portion of time for
a number of individuals, and does not require additional
space [19] [20]. Moreover, the results of encryption from
the client are called Ec(Evk), and the broker is called
Ec(Evb). The Ec(Evk) is used by the client to register to the
broker, and Ec(Evb) is used by brokers to provide mutual
authentication to the client. Because the event id built with
a pseudo-random number generator that is affected by the
seed, the seed must be updated to ensure the dynamic event
id. The update of the event id on the client done after the
client sends a message to the broker. On the broker’s side,
the broker updates the related event id when the broker
declares to accept the relevant client. Moreover, the entire
system is described as in Figure 2.

B.	 Authentication Protocol Design

The proposed protocol, the client who register to the
broker passes through the secure channel, is as shown in
Figure 3. A security channel is formed to process client
registering process to the broker. The client sends a
registration message to the broker along with the Ec(Evk)
security attribute through the CONNECT header. The
MQTT broker receives CONNECT header from the
clients and validates security properties Ec(Evk) from the
clients. If the property Evk (from the Ec(Evk) decryption)
from the client is accepted, then the broker gives a reply
in the form of the security property Ec(Evb) to the client.
The client receives a reply message Ec(Evb) from the
broker and validates the broker security properties. If the
client accepts Evb (from the Ec(Evb) decryption) from
the broker, then the client believes that the sender is a
legitimate broker. This scheme is used to validate the two-
way broker and client authentication.

In the registration process, the client must be able to
prove its authenticity, and the broker must also be able
to verify its authenticity. To complete the registration

Rizka Reza Pahlevi dkk.: Implementation of Event-Based Dynamic Authentication on MQTT Protocol

128

process, the client must form the event id Evk. The
random characters added to the event id that built before.
The random character addition is needed to increase the
security strength of the Fisher-Yates Shuffle. Adding
random characters to the event id is done until it meets the
length m. After the event id has been added with random
characters to the length m, it is processed with the Fisher-
Yates shuffle so that it becomes Ec(Evk). The client sends
this result from Ec(Evk) to the broker. The broker who has
received Ec(Evk) decodes to get Evk. If Evk is accepted,
then the broker forming Evb, then random characters are
added to have the length m and processed with the Fisher-
Yates shuffle to form Ec(Evb), then the Ec(Evb) is sent to
the corresponding client. The related client that receives
Ec(Evb) decode to gets Evb. If Evb is accepted, then the
client has received a message from a legitimate broker.

C.	 System Design

1.	 Client Authentication: The system design for the
proposed protocol consists of two major parts, namely the
formation of event id and encryption. The formation of
event id based on the rules of the pseudo-random number
generator [21]. All seeds used by the client for the pseudo-
random number function are registered with the broker.
Then the client forms the event id. The event id that has
been formed by the client is added by random characters to
the length m then encrypted with the Fisher-Yates Shuffle.
Then the system design is depicted in Figure 4. The event id
formed by the client goes through functions. The functions
have properties that are only known by legitimate broker
and clients. The product of these functions is a number that
is influenced by the initial seed and functions properties.
After the event id is done, a random character is added
until it has a length of m. Both parties have agreed with this
length of m. This m length is needed to improve security
when performing the Fisher-Yates shuffle. The Fisher-
Yates shuffle has the property that each has a probability
1 / m to move. With that probability, optimizing m can
increase the reliability of individual locations. The event
id that has been added with this random character is
processed Fisher-Yates shuffle with key R for the random

factor. The key R consists of an array along m where each
array has a value with a range of 1 <m-1. The product of
event id and random characters that have been subject to
Fisher-Yates are called Ec(Evk). The product Ec(Evk) is
embedded in the CONNECT header along with the ID in
the client registration process. The ID does not store any
sensitive information.

2.	 Broker Authentication: After the broker receives a
registration request from the client, the broker checks
the provisions of the registration form. After the broker
receives the CONNECT packet from the client, the broker
checks whether there is a registration form in the header.
If there is a registration form as specified, then the broker
decodes the message. The broker decoding Ec(Evk) are
pinned on the header using the key R. The product decoding
Ec(Evk) produces event id and random characters. The
broker sorts out event id and random characters and leaves
only the event id Evk. This event id Evk is used by the
broker to find out the authenticity of the client. If the
relevant event id Evk is registered to the broker, then the
broker processes the mutual authentication. The mutual
authentication process carried out by the broker is useful
to inform the client that the sender is a legitimate broker.
After the broker receives an event id from a valid client,
the broker updates the seed of the relevant event id. The
broker was forming the event id Evb from the new seed.
The event id that is added random characters to the length
m and processed with Fisher-Yates shuffle with key R. The
result of the process is called Ec(Evb). The Ec(Evb) result
sent to the related client to the PUBLISH header from
the MQTT protocol. The system design is depicted in
Figure 4.

3.	 Mutual Authentication: After the client receives a
publish from the broker, the client checks the provisions
of the authentication form. After the client receives the
PUBLISH packet from the broker, the client checks
whether there is an authentication form in the header. If
there is an authentication form as specified, then the client
decodes the message. After the client receives Ec(Evb)
from the broker, the client decodes Ec(Evb) with key R.
The result of the Ec(Evb) decoding process leaves the
event id Evb and random characters. Then, the client sort
the event id and random characters. After the event id Evb
is found, the client matches the event id that the client-
owned. If the event id Evb that is sent matches, then the
client believes that the sender is a legitimate broker. If

Figure 3. Proposed secure protocol for MQTT

Figure 2. Proposed design protocol for MQTT

Jurnal Rekayasa Elektrika Vol. 15, No. 1, Agustus 2019

129

the client states that he has a legitimate broker, then the
client updates the previous seed. The event id that uses to
register later becomes dynamic by updating the previous
seed. The system design is illustrated in Figure 4

D.	 CPU and Real Memory Usage

The use of CPU and real memory is done to measure
how much cost must be paid by the MQTT broker in
performing the proposed and the existing protocols and
how much additional memory is given to the constraint
devices. The CPU and real memory measurements on the
MQTT broker are measured by monitoring the process
identifier (PID). This activity records the real memory and
CPU usage of the PID used by the proposed and the existing
protocols. After obtained the CPU and real memory usage
data at the MQTT broker, the data is presented in a graph.
Data samples taken were for 600 seconds (ten minutes)
in each session. Measurement of additional memory on
the constraint devices is done by compiling the code on
the proposed and the existing protocols. The compiler
used to compile the code in the Arduino IDE. The result
from the compilation is the bytes size of the code being
embedded in the constraint device. The subtraction in
code size between the proposed protocol and the existing
protocol give results in the amount of additional memory
needed in the proposed protocol for the constraint device.
The measurement of CPU and real memory usage on
the MQTT broker and the addition of memory on the

constraint devices provide information on costs to be paid
by the proposed protocol.

IV.	 Result and Discussion

A.	 Proposed Protocol Algorithm

An algorithm is needed as a builder to build the
proposed protocol on client and broker. The algorithm 1
and algorithm 2 described is used on clients and broker. In
the client, the end result of this algorithm is Ec(Evk), and
the broker is Ec(Evb). These algorithms are divided into
two parts. The first part is an algorithm to build a pseudo-
random number generator called Pr. The formation of
the Pr refers to the seed. The clients use existing seeds
to forming the Pr and the broker forming the Pr from the
client seeds that owned. The second part is the formation
of Ec. The formation of the Ec on the client is called
Ec(Evk) then the broker is called Ec(Evb).

Algorithm 1: The function used to form Pr from the
previous seed

Figure 4. System design of the proposed protocol

Client Broker

Init Seedi Init Seedi

compute Pri compute Pri

compute Evki compute Evbi

rc ← random characters

Evki ← concat(Evki,rc)

Ec(Evki) ←{Evki,R}

CONNECT(ID,Ec(Evki))

Evki ←{Ec(Evki),R}

validate Evki with Evbi

compute new Seedi+1 compute new Seedi+1 for related client

compute Pri+1 compute Pri+1

compute Evki+1 compute Evbi+1

rc ← random characters

Evbi+1 ← concat(Evbi+1,rc)

Ec(Evbi+1) ←{Evbi+1,R}

PUBLISH(Ec(Evbi+1))

CONACK

Evbi+1 ←{Ec(Evbi+1),R}

validate Evbi+1 with Evki+1

compute new Seedi+2 compute new Seedi+2 for related client

Rizka Reza Pahlevi dkk.: Implementation of Event-Based Dynamic Authentication on MQTT Protocol

130

function ProducePr (seed,q,qroot,n);
Input : seed, q, qroot, n
Output: Pri
Yi : integer, Ti : integer, Pri : integer;
Yi ← power(seed,qroot) modulo q;
Ti ← power(Yi,(qroot × n)) modulo q;
Pri ← Ti ×(qroot ×(q − n)) modulo (Yi × q) ;
return Pri;

The algorithm 1 provides exposure to pseudo-code to
form of the Pr. The value q is the prime number, and qroot
is the prime root of q, and the n is the integer. The first
row forms the Yi, then the Ti, and the last is the Pr. The last
product in this algorithm is to return Pr. The product of the
algorithm 1 it is combined with the algorithm 2 to forming
Ec(Evk) (for the client) or Ec(Evk) (for the broker).

The algorithm 2 forms the last product in the registration
process. The length of Pr is calculated, which used to
specify the length of the random characters rc where is
get from the length of m subtract the length of Pr. After
the random character rc is formed, the random character
rc to be combined with Pr. After merging is done, the
function forming the value of key R as long m as the key
to do Fisher-Yates. After getting the key R, the result of
the merger between Pr and rc as Ev are subjected to the
Fisher-Yates Shuffle by key R, which then produces Ec.

Algorithm 2: The procedure used to form Ec
procedure

ProduceEvConnect ();
Input	: seed, q, qroot, n, m
Output : Ec(Evk)
Pr : integer, lengthPr : integer, lengthrc : integer, rc :
char, Ev : char , R : list of integer, Ec : char ;
Pr ← ProducePr(seed,q,qroot,n);
lengthPr ← lengthof(Pr);
lengthrc ← m − lengthPr;
rc ← randomstring(rc,lengthrc);
Ev ← concat(Pr,rc);
R ← getkeyrandom();
Ec ← randomize(Ev,R);

B.	 Authentication Testing

Protocol testing is carried out in two stages,
namely client authentication to the broker and mutual
authentication broker to the client.
1.	 Client Authentication: on testing the client to the
broker, the attention is the validity of the client to forming
Ec(Evk). The test using m as long as 35. Figure 5 indicates
that the client can form Ec(Evk). The first line of the figure
shows the event id Evk that was formed. Then the second
line indicates the random character is formed, and the
third line shows the merger between Evk with random
characters. The fifth line indicates the results of the third
row is subjected to the Fisher-Yates Shuffle. The sixth line

is the ID, and the seventh line is Ec(Evk) sent. Figure 5
indicates that the event id is hidden by using Fisher-Yates
shuffle. After the broker receives a registration message,
the broker performs the validation. Figure 6 indicates that
the broker can receive the registration message from the
client. This acceptance can be seen in Figure 6 on the last
line. On this line states that sending CONACK with the
message (0,0). Message (0,0) in the MQTT manual states
that 0x00 states the acceptance of the client [17]. From this
process, it is stated that the broker can validate the event
id sent by the client.

2.	 Broker Authentication: in the broker to the client
testing, what the consideration is the client’s ability to
authenticate the broker. The broker formed an event
id Evb from a new seed from the related client to carry
out a mutual authentication process. Furthermore, Evb
from the broker added random character so that it has a
length of 35 and is subject to the Fisher-Yates shuffle.
Figure 7 shows the final result of Ec(Evb) from the broker
that sent to the relevant client. Figure 7 in the last row
indicates that there is Ec(Evb). After the corresponding
client receives Ec(Evb), the client proves the event id that
was received. Figure 8 shows that the client can receive
mutual authentication messages from the broker. The first
line indicates the reception of Ec(Evb). The second line
indicates the decoding results of Ec(Evb). The third and

Figure 6. Broker accept the client registe

Figure 8. The client receives mutual authentication

Figure 5. Microcontroller process the proposed protocol

Figure 7. MQTT packet mutual authentication from broker

Jurnal Rekayasa Elektrika Vol. 15, No. 1, Agustus 2019

131

fourth line is the event id of the broker (Evb) and the event
id of the client (Evk). Because Evb and Evk are the same,
the client receives a broker. From this process stated that
the client could validate the event id sent by the broker.

C.	 Proposed Protocol Security Test

In this test, there are two invalid clients. This invalid
client tries to register to the broker by using a random
event id. Figure 9 indicates that the broker receives a
registration message from the client. The figure indicates
that the broker receives a registration request from the
client. Then the broker performs a decoding process on
the registration message sent. The results of the decoding
process, the broker did not find a match between the event
id that sent with the event id that owned. Furthermore,
the broker gives an “Auth Failed” signal, which states
the authentication failed to the relevant client. After it
is declared not accepted, the broker sends a CONACK
message to the related client with message content (0,5).
As in the manual MQTT manual, the message (0,5) states
that the contents of 0x05 inform the client that it is not
authenticated [17].

D.	 Client Memory Usage

In this test, it is intended to see the validity of the
protocol built on the constraint device. This test uses
ESP8266-12E as a client. This test uses the MQTT as
the MQTT library for the ESP8266-12E and BigNumber

 as the library to support the mathematical process. The
MQTT library accommodates all headers and rules on the
MQTT protocol. The BigNumber library is required to
provide pseudo-random numbers and other mathematical
calculation processes. Using the Arduino IDE

, the compilation results that inform how much memory
usage is done. From the results of the compilation carried
out, the existing MQTT protocol uses 252.584 bytes
or about 50% of the total memory of ESP8266-12E.
Furthermore, the proposed protocol uses 262.404 bytes
or about 52% of the full memory of ESP8266-12E. The
difference in the amount of memory usage is 9.820 bytes
or 2%. This memory usage is 2% greater than the MQTT
protocol without security protocols. Thus, constraint
devices still have more memory space to store other
programs. In addition, with a difference of 2% the memory
usage can reduce the amount of power used to generate
memory. However, it should be noted that ESP8266-12E
uses a 32-bit architecture with an instruction length of 16-
bit. Thus, the compilation of code entered into ESP8266-
12E is not only the size of the proposed protocol, but also
includes the operating system, instructions, and address
memory. Although ESP8266-12E has a flash of 512

Kb, ESP8266-12E actually only has a small space
of around 32 Kb for code space (the rest is for operating
system space, address, instructions).

E.	 Broker Real Memory and Cpu Usage

The specification for the MQTT broker that used is Intel
i5 7200U with 4 GB RAM and using the Ubuntu OS 16.04.
Memory usage is allocated to 256 MB to measure the use
of real memory in the proposed and existing protocols.
Tolerated memory usage of the proposed protocol is
less than 30% of the allocated memory. Analysis of real
memory and CPU usage on the MQTT broker have been
done. This analysis is intended to identify the additional
costs must be paid in implementing the proposed protocol
compared to existing MQTT protocols.

Non-Attack CPU and real memory usage: The scenario
of testing real memory and CPU usage in the existing
MQTT protocol is with three clients who continually
connect at once every five seconds. Figure 10 shows a
graph of the results of real memory and CPU usage in the
existing MQTT protocol taken within ten minutes. Figure
10 indicates that the maximum real memory usage is
around 1.01 MB in the existing protocol. The maximum

Figure 11. The broker real memory and CPU usage in the proposed
MQTT protocol

Figure 9. The broker reject unauthenticated client

Figure 10. The broker memory and CPU usage in existing MQTT
protocol

Rizka Reza Pahlevi dkk.: Implementation of Event-Based Dynamic Authentication on MQTT Protocol

132

CPU usage used in the existing MQTT protocol is around
3.6%. Figure 10 also shows the CPU usage interval of
the existing MQTT protocol. Furthermore, Figure 11
indicates a graph of the results of the real memory and
CPU usage on the proposed MQTT protocol taken within
ten minutes. The scenario for testing the real memory
and CPU usage on the proposed MQTT protocol is that
three clients are continually making connections at once
every five seconds. Figure 11 indicates that the real
memory usage in the proposed protocol is dynamic, and
the maximum is 4.3 MB. The maximum CPU usage for
the proposed MQTT protocol is around 3.7%. Figure 11
also indicates the CPU usage interval on the proposed
MQTT protocol. From the results of Figure 10 and Figure
11 shows differences in the real memory and CPU usage
in the existing MQTT protocol and the proposed MQTT
protocol. From the results of these tests indicates that the
proposed MQTT protocol uses more real memory, which
is 4.3 MB (1.67% from allocated memory) compared to
the existing MQTT protocol use 1.01 MB (0.39% from
allocated memory). The proposed protocol uses 3.29
MB (1.28% of allocated memory) more than the existing
protocol, which is still within the tolerance level (less than
30% of allocated memory). The excessive real memory
usage in the proposed protocol is because MQTT brokers
need additional space in calculating to verify the incoming
clients. On the other hand, maximum CPU usage on the
proposed MQTT protocol was close at 3.7% compared to
the existing MQTT protocol, which reached 3.6%. On the
other hand, CPU usage intervals on the proposed MQTT
protocol are more often compared to existing protocols.
The increasing CPU usage is because the CPU has an
additional burden to perform calculations to validate the
incoming client.

Attack CPU and real memory usage: The testing is done
to see the real memory and CPU usage in the proposed
protocol when the attacker tries to enter. The scenario that
used is made up of two groups. The first group is a three
trusted client, and the second group is two attackers. A
trusted client and attacker try to register with the proposed
MQTT protocol. The attackers try to attack the MQTT
broker by brute force at once every two seconds. According
to the previous explanation that the trusted client rules are

accepted and the attackers are rejected. Figure 12 shows
the real memory and CPU usage when the MQTT broker
is attacked, which is taken within ten minutes. Figure
12 indicates that the real memory usage at the MQTT
broker regularly increases. Maximum real memory usage
is around 3.55 MB, and maximum CPU usage is 2.49%.
However, when viewed from the CPU usage interval, it is
lower than Figure 11. This interval difference is because
the scenarios are different.

V.	 Conclusion

This research has proposed an authentication mechanism
in the MQTT protocol. Authentication problems that
occur in the MQTT protocol can be overcome using the
proposed protocol. The proposed protocol uses the event
based dynamic mutual authentication to accommodate
the authentication mechanism for the MQTT protocol.
Dynamic concepts can change the different authentication
attributes for each session. The event-based concept
can be applied to the constraint devices to support the
authentication process. Authentication is done in two-way
between the client and the broker through a secure channel.
The brokers and the clients can authenticate by validating
the authentication attributes that are sent. The test
indicates that the proposed protocol runs on the constraint
device. The brokers and the constraint devices are able to
carry out the entire process in the proposed protocol. The
proposed protocol can reject registration messages from
the invalid clients that use brute force attacks to the broker.
The implementation of the proposed protocol uses 2%
memory higher than the existing MQTT protocol without
authentication on the constraint device. A sample of
running MQTT brokers for 10 minutes found that MQTT
brokers used a maximum of 4.3 MB of real memory with
maximum CPU usage at 3.7% when accepting authentic
clients. The MQTT broker uses a maximum of 3.55 MB of
real memory with a maximum CPU usage of 2.49% when
rejecting non-authentic clients.

REFERENCES

[1]	 Statista, “Internet of things (iot) connected devices installed
base worldwide from 2015 to 2025 (in billions),” https://www.
statista.com/statistics/471264/iot-number-of-connecteddevices-
worldwide/, 2016, accessed : 2019-06-30.

[2]	 M. Hung, “Leading the iot : Gartner insights on how to lead in a
connected world,” GARTNER, pp. 1–29, 2017.

[3]	 D. Evans, “The internet of things: How the next evolution of the
internet is changing everything,” CISCO white paper, vol. 1, pp.
1–11, 2011.

[4]	 A. F. A. Rahman, M. Daud, and M. Z. Mohamad, “Securing
sensor to cloud ecosystem using internet of things (iot) security
framework,” in Proceedings of the International Conference on
Internet of Things and Cloud Computing, ser. ICC ’16.	 New
York, NY, USA: ACM, 2016, pp. 79:1–79:5.

[5]	 F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi,
“Internet of things security: A survey,” Journal of Network and
Computer Applications, vol. 88, pp. 10 – 28, 2017.

Figure 12. The broker real memory and CPU usage in an attack scenario

Jurnal Rekayasa Elektrika Vol. 15, No. 1, Agustus 2019

133

[6]	 S. Li and L. D. Xu, Securing the Internet of Things, 1st ed.
Massachusetts, USA: Syngress Publishing, 2017.

[7]	 C. Bormann, M. Ersue, and A. Keränen, “Terminology for
Constrained-Node Networks,” RFC 7228, Tech. Rep. 7228, May

[8]	 2014. [Online]. Available: https://rfc-editor.org/rfc/rfc7228.txt

[9]	 S. Andy, B. Rahardjo, and B. Hanindhito, “Attack scenarios and
security analysis of mqtt communication protocol in iot system,”
in Electrical Engineering, Computer Science and Informatics
(EECSI), 2017 4th International Conference on. IEEE, 2017,
pp. 1–6.

[10]	 S. N. Firdous, Z. Baig, C. Valli, and A. Ibrahim, “Modelling and
evaluation of malicious attacks against the iot mqtt protocol,”
in 2017 IEEE International Conference on Internet of Things
(iThings) and

[11]	 IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), June 2017, pp. 748–755.

[12]	 N. Naik, “Choice of effective messaging protocols for iot systems:

[13]	 Mqtt, coap, amqp and http,” in 2017 IEEE International Systems
Engineering Symposium (ISSE), Oct 2017, pp. 1–7.

[14]	 P. Waher, Learning Internet of Things, ser. Community experience
distilled.	 Birmingham B3 2PB, UK: Packt Publishing Ltd.,
2015.

[15]	 S. Nolan, Authenticated Payload Encryption Scheme for Internet
of Things Systems over the MQTT Protocol.	 Dublin, Ireland:
Trinity Collage Dublin, The University of Dublin, 2018.

[16]	 G. Reiter. (2015) Securing all devices in the internet of things.
https://www.ecnmag.com/article/2015/06/securing-all-

devicesinternet-things. Accessed :2019-06-30.

[17]	 P. Miranda, M. Siekkinen, and H. Waris, “Tls and energy
consumption on a mobile device: A measurement study,” in 2011
IEEE Symposium on Computers and Communications (ISCC),
June 2011, pp. 983–989.

[18]	 J. H. C. , Tae Ho Cho, “Adaptive energy-efficient ssl/tls
method using fuzzy logic for the mqtt-based internet of things,”
International Journal of Engineering and Computer Science, vol.
5, no. 12, Nov. 2016. [Online]. Available: http://www.ijecs.in/
index.php/ijecs/article/view/3229

[19]	 D. Ding, Z. Wang, G. Wei, and F. E. Alsaadi, “Event-based
security control for discrete-time stochastic systems,” IET Control
Theory Applications, vol. 10, no. 15, pp. 1808–1815, 2016.

[20]	 A. Banks and R. Gupta, MQTT Version 3.1.1, OASIS Standard,
2014. [18] B. Russell and D. Van Duren, Practical Internet of
Things Security. Livery place 35, Birmingham b3 2pb, UK: Packt
Publishing, 2016.

[21]	 F. Y. Sir Ronald A. Fisher, Statistical tables for biological,
agricultural and medical research, edited by R.A. Fisher and F.
Yates. 6th ed. Edinburgh, Scotland: Oliver and Boyd, 1963, no.
Ed. 6.

[22]	 T. K. Hazra, R. Ghosh, S. Kumar, S. Dutta, and A. K. Chakraborty,
“File encryption using fisher-yates shuffle,” in 2015 International
Conference and Workshop on Computing and Communication
(IEMCON), Oct 2015, pp. 1–7.

[23]	 W. Stallings, Cryptography and Network Security: Principles and
Practice, 6th ed. Upper Saddle River, NJ, USA: Prentice Hall
Press, 2014.

Rizka Reza Pahlevi dkk.: Implementation of Event-Based Dynamic Authentication on MQTT Protocol

Penerbit:
Jurusan Teknik Elektro, Fakultas Teknik, Universitas Syiah Kuala
Jl. Tgk. Syech Abdurrauf No. 7, Banda Aceh 23111
website: http://jurnal.unsyiah.ac.id/JRE
email: rekayasa.elektrika@unsyiah.net
Telp/Fax: (0651) 7554336

	CoPas Agust19 N7.pdf (p.1)
	Naskah 7 Rizka ZHM Rev02.pdf (p.2-10)
	Cove belakang.pdf (p.11)

