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Abstract

A computational method based on modification of block pulse functions
is proposed for solving numerically the linear Volterra-Fredholm integral
equations. We obtain integration operational matrix of modification of
block pulse functions on interval [0, T ). A modification of block pulse
functions and their integration operational matrix can be reduced to
a linear upper triangular system. Then, the problem under study is
transformed to a system of linear algebraic equations which can be used
to obtain an approximate solution of linear Volterra-Fredholm integral
equations. Furthermore, the rate of convergence is O(h) and error anal-
ysis of the proposed method are investigated. The results show that the
approximate solutions have a good of efficiency and accuracy.

Keywords: Integration Operational Matrix, Linear Volterra-Fredholm Integral
Equations, εMBPFs.

1. Introduction

An integral equation is defined as an equation in which the unknown function X(t) to
be determined appear under one or more integral signs. The subject of integral equations is
one of the most useful mathematical tools in pure and applied mathematics. It arise naturally
in physics, chemistry, biology, and engineering applications modelled by initial value problems
for a finite interval [a, b]. It also arise as representation formulas for the solutions of differ-
ential equations. Indeed, a differential equation can be replaced by an integral equation that
incorporates its boundary conditions [4]. It has enormous applications in many physical prob-
lems. Many initial and boundary value problems associated with ordinary differential equation
(ODE) and partial differential equation (PDE) can be transformed into problems of solving
some approximate integral equations [8].

The Volterra-Fredholm integral equation, which is a combination of disjoint Volterra and
Fredholm integrals, appears in one integral equation. The Volterra-Fredholm integral equa-
tions arise from parabolic boundary value problems, mathematical modelling of the spatio-
temporal development of an epidemic, various physical, biological, and chemical applications
[10, 11]. There are several techniques for approximating the solution such as moving least
square method and Chebyshev polynomials [1], collocation and Galerkin methods [2], parame-
terized pseudospectral integration matrices [9], triangular functions [5], Taylor polynomial [12],
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and Legendre collocation method [7]. In this paper, we apply a numerical method based on
the modification of block pulse functions and integration operational matrix to consider the
following linear Volterra-Fredholm integral equation:

X(t) = f(t) +

∫ t

0

K1(s, t)X(s)ds+

∫ β

α

K2(s, t)X(s)ds, t ∈ [0, T ), (1)

where X(t) is the unknown function, f(t) is analytic function, while K1(s, t) andK2(s, t) are
the kernels of L2 functions. In order to obtain an approximate solution for Eq. (1) based
on modification of block pulse functions, we derive a new integration operational matrix and
reduce our problem to solving a system of linear algebraic equations. Moreover, a new technique
for computation of the linear terms in such equations is presented. Furthermore, convergence
analysis of modification of block pulse functions is investigated. We also demonstrate the
efficiency and accuracy of the proposed method.

2. Materials and Methods

2.1. Definition of Modified Block Pulse Functions. A set of ε modified block pulse func-
tions (εMBPFs) ψi(t), i = 0, 1, ,m on the interval [0, T ) are defined as

ψ0(t) =

{
1, t ∈ [0, h− ε) = I0,
0, otherwise,

ψi(t) =

{
1, t ∈ [ih− ε, (i+ 1)h− ε) = Ii,
0, otherwise,

for i = 1, 2, . . . ,m− 1 and

ψm(t) =

{
1, t ∈ [T − ε, T ) = Im,
0, otherwise,

with a positive integer value for m and h = T
m .

2.2. Properties of MBPFs. The important properties of εMBPFs are as follows

• Disjointness:

ψi(t)ψj(t) =

{
ψi(t), i = j,

0, i 6= j,

where i, j = 0, . . . ,m.
• Orthogonality: ∫ T

0

ψi(t)ψj(t)dt = hδij ,

where i, j = 1, . . . ,m− 1 and δij is Kronecker delta.
• Completeness: ∫ T

0

f2(t)dt =

∞∑
i=0

f2
i ‖ψi(t)‖2,

where

fi =
1

∆(li)

∫ T

0

f(t)ψi(t)dt, (2)

and ∆(li) is length of interval Ii
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2.3. Function Approximation. Rewriting Eq. (2) in the vector form we have

f(t) '
m∑
i=0

fiψi(t) = FTΨ(t) = ΨT (t)F,

in which

F = (f0 f1 . . . fm)T

and

Ψ(t) = (ψ0(t) ψ1(t) . . . ψm(t))T .

Moreover, any two dimensional function k(s, t) ∈ L2([0, T1) × [0, T2)) can be expanded
with respect to εMBPFs such as

k(s, t) ' ΨT (s)KΨ(t) = ΨT (t)KTΨ(s),

where Ψ(s) and Ψ(t) are m1 and m2 dimensional εMBPFs vectors respectively, and K =
(kij), i = 0, 1, . . . ,m1, j = 0, 1, . . . ,m2 is the m1 ×m2 ε modified block pulse coefficient matrix
with

kij =
1

∆(Ii)∆(Ij)

∫ T1

0

∫ T2

0

k(s, t)Ψi(s)Ψj(t)dtds.

For convenience, we put m1 = m2 = m. We defining Ψm+1(t) = (Ψ0(t) Ψ1(t) . . . Ψm(t))T ,
we have

Ψm+1(t)ΨT
m+1(t) =


ψ0(t) 0 . . . 0

0 ψ1(t) . . . 0
...

...
. . .

...
0 0 . . . ψm(t)


(m+1)×(m+1)

Furthermore

ΨT
m+1(t)Ψm+1(t) = 1,

and

Ψm+1(t)ΨT
m+1(t)F = DFΨm+1(t),

where DF usually denotes a diagonal matrix whose diagonal entries are related to a constant
vector F = (f0 f1 . . . fm)T .

2.4. Intergration Operational Matrix. Similar to block pulse functions,∫ t

0

Ψm+1(s)ds ' QΨm+1(t),

where the integration operational matrix Q of εMBPFs is given by

Q =


h−ε

2 h− ε . . . h− ε
0 h

2 . . . h
...

...
. . .

...
0 0 . . . ε

2


(m+1)×(m+1)

.

So, the integral of every function f(t) can be approximated as follows∫ t

0

f(s)ds '
∫ t

0

FTΨm+1(s)ds ' FTQΨm+1(t).
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3. Result and Discussion

3.1. Solving Volterra-Fredholm Integral Equations by Modification of Block Pulse
Functions. We consider following linear Volterra-Fredholm integral equation

X(t) = f(t) +

∫ β

α

K1(s, t)X(s)ds+

∫ t

0

K2(s, t)X(s)ds, t ∈ [0, T ). (3)

We approximate functions X(t), f(t), k1(s, t), and k2(s, t) by εMBPFs as follows

X(t) ' ΦT (t)W = WTΦ(t),

f(t) ' ΦT (t)F = FTΦ(t),

K1(s, t) ' ΦT (s)K1Φ(t) = ΦT (t)KT
1 Φ(s),

K2(s, t) ' ΦT (s)K2Φ(t) = ΦT (t)KT
2 Φ(s).

In the above approximation, W and F are modified block pulse coefficients vector, K1

and K2 are modified block pulse coefficients matrix.

Substituting above approximation in Eq. (3), we get

WTΦ(t) ' FTΦ(t) +WT

(∫ β

α

Φ(s)ΦT (s)ds

)
K1Φ(t) +WT

(∫ t

0

Φ(s)ΦT (s)ds

)
K2Φ(t). (4)

Let Ki
j be the ith row of the constant matrices Kj , j = 1, 2, 3.Ri be the ith row of the

integration operational matrix Q,DKi
j

be diagonal matrices with Ki
j as its diagonal entries.

By the relation
∫ β
α

Φ(s)ΦT (s)ds = hI(m1+1)×(m2+1) and assuming m1 = m2 = m, we have(∫ β

α

Φ(s)ΦT (s)ds

)
K1Φ(t) = hIK1Φ(t) = B1Φ(t), (5)

where B1 = hIK1 = hK1.

Furthermore,

(∫ t

0

Φ(s)ΦT (s)ds

)
K2Φ(t) =


R0Φ(t) 0 . . . 0

0 R1Φ(t) . . . 0
...

...
. . .

...
0 0 . . . RmΦ(t)



K0

2

K1
2

...
Km

2

Φ(t)

=


R0Φ(t)K0

2Φ(t)
R1Φ(t)K1

2Φ(t)
...

RmΦ(t)Km
2 Φ(t)



=


R0Φ(t)Φ(t)TK0

2
T

R1Φ(t)Φ(t)TK1
2
T

...

RmΦ(t)Φ(t)TKm
2
T



=


R0DK0

2

R1DK1
2

...
RmDKm

2

Φ(t) = B2Φ(t), (6)
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where

B2


k00

(
h−ε

2

)
k01(h− ε) . . . k0mh− ε

0 k11

(
h
2

)
. . . k1m(h)

...
...

. . .
...

0 0 . . . kmm
(
ε
2

)


(m+1)×(m+1)

,

with substituting (5) and (6) in (4), we get

WTΦ(t) ' FTΦ(t) +WTB1Φ(t) +WTB2Φ(t).

Then,
WT (I −B1 −B2) ' FT

So, by getting N = (I −B1 −B2)2 and replacing ' by =, we have

NW = F.

Which is a linear system of equations with upper triangular coefficients matrix that gives the
approximate modified block pulse coefficient of the unknown X(t).

3.2. Error Analysis. In the following theorems, for simplicity we assume T = 1 and h = 1
m .

Theorem 3.1. If f̂m(t) =
∑m
i=0 fiψi(t) and fi = 1

∆(Ii)

∫ 1

0
f(t)ψi(t)dt, i = 0, . . . ,m then:

i δ =
∫ 1

0
(f(t)−

∑m
i=0 fiψi(t))

2dt, achieves its minimum value.

ii {f̂m(t)} approaches f(t) pointwise.

iii
∫ 1

0
f2(t)dt =

∑∞
i=0 f

2
i ‖ψi‖2.

Proof. Proof is like similar theorem in [3] but intervals of integration have to redefine as
Ii, i = 0, . . . ,m in (3.1)

Theorem 3.2. Assume:

i f(t) is continuous and differentiable in [−h, 1 +h] with bounded derivative, that is |f ′(t)| <
M.

ii f̂ ih
k

(t), i = 0, . . . , k−1, are correspondingly BPFs, h
kMBPFs,. . . , (k−1)h

k MBPFs expansions

of f(t) base on m+ 1εMBPFs over interval [0, 1).

iii f̄(t) = 1
k

∑k−1
i=0 f̂ ih

k
(t).

Then ∥∥∥f(t)− f̂ ih
k

(t)
∥∥∥ = O(h), and ‖f(t)− f̄(t)‖ = O

(
h

k

)
in [h, 1− h].

Proof. Trapezoidal rule for integral is∫ b

a

f(t)dt =
b− a

2
(f(a) + f(b))− (b− a)3f

′′
(η)

12

=
b− a

12
(f(a) + f(b)) + E, η ∈ [a, b], (7)

where E is error of integration. Suppose ti = i
m = ih and Ii = [ti−1, ti]. The representation

error when f(t) is represented by a series of BPFs over every subinterval
[
ti, ti + h

k

]
, i =

0, . . . ,m− 1 is

ei(t) = f(t)− fiψi(t) = f(t)− fi,
where fi = 1

h

∫ (i+1)h

ih
f(t)dt. From (7),

fi =
1

2
(f(ti) + f(ti + h)) + E.

It is obvious that if f(t) = C (constant), then ei(t) = 0. So, this error is computed for
f(t) = t in interval [ti, ti + h

k ], i = 1, . . . ,m− 1.
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For this function E = 0, so

ei(t)[ti,ti+ h
k ] = |t− fi| =

∣∣∣∣t− ti + ti+1

2

∣∣∣∣ =

∣∣∣∣t− (ti +
h

2

)∣∣∣∣ ≤ h

2
,

then this error with BPFs is h
2M .

Similarly, the error when f(t) is represented in a series of εMBPFs over every subinterval
[ti, ti + h

k ] is

ei(t)[ti,ti+
h
k ] =

∣∣∣∣∣∣t−
∑k−1

j=0

(
ti −

(
jh
k

)
+ ti+1 −

(
jh
k

))
2k

∣∣∣∣∣∣
=

∣∣∣∣∣∣t−
∑k−1

j=0

(
ti −

(
jh
k

)
+ ti + h−

(
jh
k

))
2k

∣∣∣∣∣∣
=

∣∣∣∣t− (ti +
h

2

)
− (k − 1)h

2k

∣∣∣∣
≤ h

2k
.

So, the error with εMBPFs is h
2kM .

For I0 in
[
0, hk

]
we have

ei(t)[0,hk ] =

∣∣∣∣∣∣t−
k−1∑
j=0

h−
(
jh
k

)
2k

∣∣∣∣∣∣
=

∣∣∣∣t− (h2 − (k − 1)h

4k

)∣∣∣∣
=

∣∣∣∣t− (h4 +
h

4k

)∣∣∣∣
= O

(
h

4

)

So, the error is O
(
h
4

)
also for In
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Now,

‖ei(t)‖2 =

∫ ti+
h
k

ti

|ei(t)|2dt

=

∫ ti+
h
k

ti

h2

4k2
M2dt

=
h3

4k3
M2,

‖ei‖2 =

∫ 1

0

e2(t)dt

=

∫ 1

0

 m∑
i=1

k−1∑
j=0

ei(t)

2

dt

=

m∑
i=1

k−1∑
j=0

∫ 1

0

e2
i (t)dt

=

m∑
i=1

k−1∑
j=0

‖ei(t)‖2

=
1

h
.k.

h3

4k3
M2

=
h2

4k2
M2.

We define the representation error between f(s, t) and its 2D-εMBPFs expansion fij over every
subregion Dij , is defined as

eij(s, t) = f(s, t)− fij ,

where Dij :=
{

(s, t)
∣∣ti ≤ s ≤ ti + h

k , tj ≤ t ≤ tj + h
k

}
.

Based on Taylors expansion and similarity to the above discussion,

‖e(s, t)‖ =
h

2k
M.

Theorem 3.3. Assume that

i P (ω ∈ Ω : ‖u(ω, t)‖ < C) = 1
ii ‖ki‖ < C, i = 1, 2.

Then

sup(E(‖u− ū‖)2)
1
2 = O

(
h

k

)
, t ∈ [h, 1− h].

0 ≤ t ≤ T

Proof. For a complete proof see [6].

3.3. Examples of linear Volterra-Fredholm integral equations.

Example 3.4. consider the linear Volterra-Fredholm integral equation

f(t) = 1−
∫ t

0

(t− s)f(s)ds+

∫ π

0

f(s)ds,

with the exact solution is f(t) = cos t.
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Table 1. The exact and approximate solution of Example 3.4 for m = 257

t Exact Approximation
0 1 1.004

0.3 0.9553 0.958
0.6 0.8254 0.8274
0.9 0.6216 0.6234
1.2 0.362 0.3641
1.5 0.07053 0.07265
1.8 -0.2268 -0.2256
2.1 -0.5046 -0.5035
2.4 -0.7373 -0.7365
2.7 -0.9043 -0.9049
3 -0.99 -0.9927

Figure 1. The trajectory of the exact and approximation solution of Example 3.4

Example 3.5. consider the linear Volterra-Fredholm integral equation

f(t) = t− 2et + e−t + 1 +

∫ t

0

setf(s)ds+

∫ 1

0

es+tf(s)ds,

with the exact solution is f(t) = e−t.
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Table 2. The exact and approximate solution of Example 3.5 for m = 257

t Exact Approximation
0 1 0.9991

0.1 0.9048 0.9017
0.2 0.8187 0.8162
0.3 0.7408 0.7388
0.4 0.6704 0.6688
0.5 0.6065 0.6054
0.6 0.5488 0.548
0.7 0.4966 0.496
0.8 0.4493 0.449
0.9 0.4066 0.4064
1 0.3679 0.3683

Figure 2. The trajectory of the exact and approximation solution of Example 3.5

4. Conclusions

The εMBPFs and their integration operational matrix are used to obtain the solution
of linear Volterra-Fredholm integral equations. The present method reduces a linear Volterra-
Fredholm integral equations into a system of algebraic equations. The convergence and error
analysis of the proposed method are investigated. Some numerical examples are given, we plot
approximate and exact solution to demonstrate the efficiency and accuracy of the proposed
method. The results show that the approximate solutions of the proposed method have a good
of efficiency and accuracy.
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