PREDICTION OF CASH WITHDRAWAL DATA AT ATM MACHINES USING THE SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE METHOD (SARIMA)

Fitrinadi¹, Irwan Budiman², Andi Farmadi³, Dodon Turianto Nugrahadi⁴, M. Itqan Mazdadi⁵

^{1,2,3,4,5}Computer Science Study Program FMIPA ULM A. Yani St. Km 36 Banjarbaru, South Kalimantan Email: J1F114021@mhs.ulm.ac.id¹, irwan.budiman@ulm.ac.id², andifarmadi@ulm.ac.id³, dodonturianto@ulm.ac.id⁴, mazdadi@ulm.ac.id⁵

Abstract

Data mining is a series of processes to explore the added value of knowledge that has been unknown from a data set. Many algorithms can be used in solving a problem related to prediction or forecasting a new data value for the future based on pre-existing data. Sarima model is a model in time series analysis. The performance of the Seasonal Autoregressive Integrated Moving Average (SARIMA) method produces a suitable or good model used to predict cash withdrawal data at ATM machines. The data used in the study is a dataset of ATM transactions originating from Finhacks. The result of error using MAPE (Mean Absolute Percenttage Error) on the predicted result of cash withdrawal data at atm machines is K1 16.75%, K2 18.09%, K3 7.85%, K4 5.67%, and K5 11.80%. So it can be concluded that the data matches using the SARIMA model that has been selected because the MAPE value is smaller than 20%.

Keywords : Data Mining, Finhacks, SARIMA, MAPE, ATM

1. INTRODUCTION

Data mining is a process that uses statistical techniques, mathematics, artificial intelligence and machine learning to extract and identify useful information and related knowledge from a variety of large databases. Data mining is the process of discovering interesting knowledge, patterns, and information from a large set of data through descriptive, comprehension and prediction processes using a model or algorithm. [5].

Figure 1 Data Mining Process (Source: Fayyad, 1996)

Prediction is the science to predict future events. This can be done by retrieving historical data or past data and projecting into the future with a mathematical model form [1].

Many algorithms can be used in solving a problem related to prediction or forecasting a new data value for the future based on pre-existing data. One of the methods that can be used is Autoregressive Integrated Moving Average (ARIMA) or Seasonal Autoregressive Integrated Moving Average (SARIMA). However, the Autoregressive Integrated Moving Average (ARIMA) method can only predict data that does not contain iterations (seasonal) and the Seasonal Autoregressive Integrated Moving Average (SARIMA) method itself can make predictions with data containing seasonality [2].

2. RESEARCH METHOD

To obtain the best Seasonal Autoregressive Integrated Moving Average (SARIMA) model that can be used to predict the amount of cash withdrawals at future ATMs:

- a) Tabulate the data of cash withdrawal amount at atm machines from January 2018 March 2018.
- b) Plot time series, ACF and PACF for original data.
- c) Identify the data whether it is stationary or not. If the data has not been stationary in average then differentiation is done and if the data has not been stationary in its variance then transformation is carried out.
- d) Plot the timeline, ACF and PACF of the differentiation and transformation result data as well as determine the model. If it is stationary, immediately specify the model.
- e) Estimate the parameters of the obtained model.
- f) Test the model's suitability. If the model is not sufficient then identification of the new model is carried out.
- g) Select the best model by looking at the smallest Mean Square Error (MSE) or Standard Error Estimated (SEE) value.

3. RESULT AND DISCUSSION

3.1. Data Collection

The data used in this study is atm transaction dataset obtained from Finhacks. This dataset was obtained from Finhacks supported by BCA. The data used is daily withdrawal data with a period of three months, namely from January to March 2018 with the total data used is 415 data obtained from 5 samples of ATM numbers and has 4 attributes namely numbers, ATM numbers, dates, and withdrawals.

3.2. Preprocessing Data

3.2.1 Data Filtering

Data filtering aims to select the data to be used. Here there are 5 sample data that will be used, namely 5 ATM numbers with ATM numbers symbolized with K, namely K1, K2, K3, K4, and K5.

3.2.2 Data Sharing Training dan Testing

The process after the data is filtered is then done the sharing of training data and testing data. Where data sharing is done by using excel with data training sharing as much as 76 data and data testing as much as 7 data per K or ATM number. Data testing is divided by 1 week because it will be done forecasting in the next 1 week and will be compared with the actual data and forecasting data or predictions.

3.2.3 Data Mining and Evaluation

Data mining process is done with 5 experiments with 5 different ATM or K numbers using Seasonal Autoregressive Integrated Moving Average (SARIMA) method. The design of this study can be seen in Table 5 as follows.

Experiment	Dataset	Method
1	K1	SARIMA
2	K2	SARIMA
3	КЗ	SARIMA
4	K4	SARIMA
5	K5	SARIMA

For syntax diagram of time series (original data plot) data on cash withdrawal amount at ATM machine K1 – K5 in RStudio can be seen as follows:

```
title("Penarikan Uang di ATM")
plot(1:76,y=dataobjek,type="l",xaxt="n")
axis(1, at=1:83, labels=mydata$Tanggal[1:83],las=3)
```


Figure 3. Plot Time Series Money Withdrawal Data at ATM machine K1

Figure 4. Plot Time Series Money Withdrawal Data at K2 ATM machines

Figure 5 Plot Time Series Money Withdrawal Data at ATM machine K3

Figure 6. Plot Time Series Money Withdrawal Data at K4 ATM machines

Figure 7. Plot Time Series Money Withdrawal Data at K5 ATM machines

3.2.4 ACF and PACF

ACF is an autocorrelation function that indicates the magnitude of the correlation that explains the relationship between t-time data and subsequent t+1 data by looking at the ACF plot formed does not have significant changes between lags. ACF serves to identify the kestasioneran data and to identify the time series model to be used.

PACF is a partial autocorrelation coefficient that measures the level of tightness of the partial relationship between the embed at the t-time and the equalization at the time of t+1 when the lag used is 1,2,3, and so on with notation (\emptyset kk= k = 1.2.3...). PACF is used in the formation of models and orders of ARIMA. For syntak looking for ACF and PACF in RStudio can be seen as follows:

```
acfku<-acf(transformasidata, lag.max=20)
acfku
pacfku<-pacf(transformasidata, lag.max=20)
pacfku
```

And here are the ACF and PACF obtained from running using RStudio.

Figure 8. ACF Money Withdrawal Data at K1 ATM Machine

Figure 9. PACF Data on Withdrawal of Money at K1 ATM Machine

Figure 10. ACF Data on Withdrawal of Money at K2 ATM Machine

Figure 11. PACF Data on Withdrawal of Money at K2 ATM Machine

Figure 12. ACF Money Withdrawal Data at K3 ATM Machine

Figure 13. PACF Data on Withdrawal of Money at K3 ATM Machine

Figure 15 PACF Money Withdrawal Data at K4 ATM Machine

Figure 16. ACF Money Withdrawal Data at K5 ATM Machine

Figure 17. PACF Data on Withdrawal of Money at K5 ATM Machine

3.3 Data Transformation

Syntax data transformation for K1:

```
transformasidata=log(mydata$K1[1:76])
transformasidata
```

E11	10 10115	10 54001	10 50410	10 17766	10 66550	10 45000	10 05074
[T]	10.1011)	10. 34201	18.30410	18.42/00	19.00000	18.45990	18.05054
[8]	18.72041	18.45072	18.51735	18.55039	18.53267	18.56435	18.01796
[15]	18.61295	18.38142	18.54467	18.61047	18.30077	18.67105	17.95307
[22]	18,69414	18,63297	18.34326	19.13265	18.46470	18.92206	18.20377
[29]	18.78359	18.89971	19,26440	18.94393	18.82481	18.76958	18.28142
[36]	18.75358	18.66715	18.46899	18.47327	18.41667	18.64981	18.00819
[43]	18.49300	18.48787	18.50640	18.48225	18.61666	18.35133	17.81279
[50]	18.54599	18.65970	18.45557	18.17478	18.54113	18.73366	18.08381
[57]	18.35294	18.95776	19.39051	18.97082	18.93679	18.63620	18.12429
[64]	18.57297	18.45218	18.47659	18.37830	18.58365	18.54290	18.04088
[71]	18,63901	18.22952	18.43261	18.69071	18.80424	18,25167	

Figure 18. Data Transformation Results In K1

Syntax data transformation for K2:

```
transformasidata=log(mydata$K2[1:76])
transformasidata
```

[1]	18.08100	18.47327	18.43261	18.35026	18.60508	18,38505	17.93536
[8]	19.24244	18.37516	18.44684	18.48225	18.46326	18.49718	17.89896
[15]	18.54907	18.30021	18.47612	18.54643	18.21243	18.61089	17.82557
[22]	18.63539	18.57039	18.25875	19.09515	18.39022	18.87557	17.94747
[29]	18.73000	18.85214	19.23161	18.89847	18.77345	18.71521	18.09910
[36]	18,69831	18.60675	18.39485	18.39946	18.33839	18.58831	17.88795
[43]	18.42068	18.41517	18.43508	18.40911	18.55302	18.26753	17.66459
[50]	18.47753	18.59883	18.38038	18.07396	18.47232	18.67726	17.97283
[57]	18.26928	18.91293	19.36166	18.92659	18.89100	18.57383	18.01796
[64]	18.50640	18.37673	18.40303	18.29682	18.51781	18.47422	17.92474
[71]	18.57683	18.13433	18.35561	18.63175	18.75178	18.15867	

Figure 19. Data Transformation Results in K2

Syntax data transformation for K3:

```
transformasidata=log(mydata$K3[1:76])
transformasidata
```

[1]	19.05620	19.22268	19.20367	19.16642	19.28715	19.18195	19.00373
[8]	19.31697	19,17751	19.21027	19.22693	19.21796	19.23405	18.99138
[15]	19.25923	19.14460	19.22403	19.25793	19.10781	19.29009	18.96736
[22]	19.30259	19.26976	19.12699	19.56459	19.18429	19.39599	18.89443
[29]	19.35225	19.41966	19.65207	19.44618	19.37581	19.34434	19.09922
[36]	19.33537	19.28799	19.18638	19.18847	19.16119	19.27871	18.98770
[43]	19.19817	19.19564	19.20481	19.19287	19.26117	19.13069	18.91873
[50]	19.22470	19.28399	19.17985	19.05355	19.22223	19.32429	19.01677
[57]	19.13142	19.45458	19.73937	19.46255	19.44187	19.27147	19.03289
[64]	19.23848	19,17821	19.19009	19.14314	19.24398	19.22313	19.00010
[71]	19.27297	19.07665	19.16879	19.30072	19.36400	19.08620	

Figure 20. Data Transformation Results In K3

Syntax data transformation for K4:

```
transformasidata=log(mydata$K4[1:76])
transformasidata
```

[1]	19.55015	19.70771	19.64269	19.61884	19.69730	19.62875	19.51846
[8]	19.71719	19.62590	19.64695	19.65775	19.65193	19.66238	19.51109
[15]	19.67886	19.60501	19.65586	19,67800	19.58195	19.69925	19.49688
[22]	19.70757	19.68580	19.59394	19.88971	19.63024	19.79642	19.55595
[29]	19.74097	19.78715	19.95367	19.80560	19.75700	19.73561	19.57662
[36]	19.72955	19.69786	19.63158	19.63292	19.61551	19.69170	19.50891
[43]	19.63915	19.63752	19.64343	19.63574	19.68014	19.59625	19.46853
[50]	19.65630	19.69521	19.62740	19.54853	19.65470	19.72210	19.52627
[57]	19.59672	19.81147	20.01896	19.81705	19.80259	19.68692	19.53599
[64]	19.66527	19.62635	19.63396	19.60409	19.66886	19.65528	19.51629
[71]	19.68791	19.56267	19.62034	19.70633	19.74895	19.56856	

Figure 21. Data Transformation Results in K4

Syntax data transformation for K5:

```
transformasidata=log(mydata$K5[1:76])
transformasidata
```

[1]	18.88127	19.07665	19.05461	19.01124	19.15088	19.02936	18.81845
[8]	19.18499	19.02418	19.06227	19.08156	19.07118	19.08979	18.80356
[15]	19.11882	18.98571	19.07820	19.11732	18.94245	19.15425	18.77450
[22]	19.16855	19.13093	18.96504	19.46308	19.03208	19.31636	18.89256
[29]	19.22515	19.30134	19.55947	19.33115	19.25185	19.21616	18.93231
[36]	19.20595	19.15185	19.03451	19.03695	19.00513	19.14120	18.79912
[43]	19.04822	19.04528	19.05593	19.04206	19.12105	18.96938	18.71521
[50]	19.07898	19.14726	19.02691	18.87811	19.07613	19.19333	18.83411
[57]	18.97025	19.34057	19.65484	19.34949	19.32631	19.13289	18.85344
[64]	19.09490	19.02500	19.03883	18.98400	19.10125	19.07716	18.81407
[71]	19.13461	18.90557	19.01401	19.16642	19.23848	18.91690	

Figure 22. Data Transformation Results In K5

After the data transformation, then performed a search for the best model. Transforming data by using the Box-Cox transformation method if the data used is not stationary in variants. Differencing data when the data used is not stationary in average. Furthermore, check the stationary data that has been transformed or differentiated (differencing). This stage is done up to stationary data.

3.4 Best Model And Forecasting

Sarima model is a development of ARIMA model by adding seasonal or seasonal influences. Next, the process of searching for the best model and predictive results using the best model. Here are the best model search results and prediction results from the best models by using RStudio.

The syntax used in RStudio to find the best model on K1 – K5 is as follows: dataseasonal<-auto.arima(dataobjek, trace=TRUE, test="kpss", ic="bic") plot(1:76,y=dataobjek,type="l",xaxt="n") axis(1, at=1:83, labels=mydata\$Tanggal[1:83],las=3)

3.4.1 Best Model K1-K5

	Best Model K1 – K5					
Model K1	Model K2	Model K3	Model K4	Model K5		
ARIMA(2,0,2)(1,	ARIMA(2,0,2)(1,	ARIMA(2,0,2)(1,	ARIMA(2,0,2)(1,	ARIMA(2,0,2)(1,		
0,1)[7]	0,1)[7]	0,1)[7]	0,1)[7]	0,1)[7]		
ARIMA(0,0,0)	ARIMA(0,0,0)	ARIMA(0,0,0)	ARIMA(0,0,0)	ARIMA(0,0,0)		
ARIMA(1,0,0)(1,	ARIMA(1,0,0)(1,	ARIMA(1,0,0)(1,	ARIMA(1,0,0)(1,	ARIMA(1,0,0)(1,		
0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]		
ARIMA(0,0,1)(0,	ARIMA(0,0,1)(0,	ARIMA(0,0,1)(0,	ARIMA(0,0,1)(0,	ARIMA(0,0,1)(0,		
0,1)[7]	0,1)[7]	0,1)[7]	0,1)[7]	0,1)[7]		
ARIMA(0,0,0)	ARIMA(0,0,0)	ARIMA(0,0,0)	ARIMA(0,0,0)	ARIMA(0,0,0)		
ARIMA(1,0,0)	ARIMA(1,0,0)	ARIMA(1,0,0)	ARIMA(1,0,0)	ARIMA(1,0,0)		
ARIMA(1,0,0)(2,	ARIMA(1,0,0)(2,	ARIMA(1,0,0)(2,	ARIMA(1,0,0)(2,	ARIMA(1,0,0)(2,		
0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]		
ARIMA(1,0,0)(2,	ARIMA(1,0,0)(2,	ARIMA(1,0,0)(2,	ARIMA(1,0,0)(1,	ARIMA(1,0,0)(2,		
0,1)[7]	0,1)[7]	0,1)[7]	0,1)[7]	0,1)[7]		
ARIMA(1,0,0)(1,	ARIMA(1,0,0)(1,	ARIMA(1,0,0)(1,	ARIMA(1,0,0)(0,	ARIMA(1,0,0)(1,		
0,1)[7]	0,1)[7]	0,1)[7]	0,1)[7]	0,1)[7]		
ARIMA(0,0,0)(2,	ARIMA(0,0,0)(2,	ARIMA(0,0,0)(2,	ARIMA(1,0,0)(2,	ARIMA(0,0,0)(2,		
0,0)[7]	0,0)[7]	0,0)[7]	0,1)[7]	0,0)[7]		

Table 2. Best Model K1-K5

ARIMA(2,0,0)(2,	ARIMA(2,0,0)(2,	ARIMA(2,0,0)(2,	ARIMA(0,0,0)(1,	ARIMA(2,0,0)(2,
0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]
ARIMA(1,0,1)(2,	ARIMA(1,0,1)(2,	ARIMA(1,0,1)(2,	ARIMA(2,0,0)(1,	ARIMA(1,0,1)(2,
0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]
ARIMA(0,0,1)(2,	ARIMA(0,0,1)(2,	ARIMA(0,0,1)(2,	ARIMA(1,0,1)(1,	ARIMA(0,0,1)(2,
0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]
ARIMA(2,0,1)(2,	ARIMA(2,0,1)(2,	ARIMA(2,0,1)(2,	ARIMA(0,0,1)(1,	ARIMA(2,0,1)(2,
0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]
ARIMA(1,0,0)(2,	ARÍMA(1,0,0)(2,	ARÍMA(1,0,0)(2,	ARÍMA(2,0,1)(1,	ARIMA(1,0,0)(2,
0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]
			ARIMA(1,0,0)(1,	
			0,0)[7]	
Best model:				
ARIMA(1,0,0)(2,	ARIMA(1,0,0)(2,	ARIMA(1,0,0)(2,	ARIMA(1,0,0)(1,	ARIMA(1,0,0)(2,
0,0)[7	0,0)[7]	0,0)[7]	0,0)[7]	0,0)[7]

3.4.2 Predicted Result

After knowing the best model results obtained from the SARIMA model, it can be known the data of prediction results in the next 7 periods in K1 - K5. For synnot prediction on ATM machine number K1 – K5 on RStudio and the result of prediction can be seen as follows:

Predictive syntax for each K1 K1 – K5

dataseasonal<-auto.arima(dataobjek, trace=TRUE, test="kpss", ic="bic")</pre>

10.010 011100.000				
		Predicted Resul	t	
Model K1	Model K2	Model K3	Model K4	Model K5
73462838	68071879	187074918	319802322	155850576
110572300	104411015	221560505	344700600	190560301
95109530	89662122	208071306	332775225	177245201
103903567	97247609	215538697	339739910	184988006
110974055	102047952	221875643	349645649	191429879
122694805	113958992	232346697	354625757	202020352
100039622	94251545	212593821	334289044	182118182

Table 3. Predicted Result

3.5 Mean Absolute Percentage Error (MAPE)

MAPE is calculated using absolute errors in each period divided by real observation values for that period. Then, the absolute percentage error averages. MAPE is an error measurement that calculates the percentage size of deviations between actual data and forecasting data [4].

$$MAPE = \left(\frac{100\%}{n}\right) \sum_{t=1}^{n} \frac{|Xt - Ft|}{Xt}$$

For:

Xt = actual data in period t Ft = forecast value in period t n = amount of data Forecasting capability is very good if it has a MAPE value of less than 10% and has good forecasting capability if the MAPE value is less than 20% [3]. For syntax looking mape (Mean Absolute Percent Error) K1 in RStudio can be seen as follows:

```
df<-data.frame(mydata$K1[77:83],finalforecastvalues)
col_headings<-c("Data Aktual","Data Prediksi")
names(df)<-col_headings
attach(df)
percentage_error=(abs(df$`Data Aktual`-df$`Data Prediksi`)/(df$`Data
Aktual`))
nilaier<-
data.frame(mydata$K1[77:83],finalforecastvalues,percentage_error)
col_headings<-c("Data Aktual","Data Prediksi","Error")
names(nilaier)<-col_headings
nilaier
MAPE<-mean(percentage_error)
MAPE
```

Mape 1st Calculation Result					
Number	Actual Data	Prediction Data	Error		
1	62750000	73462838	0.17072252		
2	118150000	110572300	0.06413627		
3	110800000	95109530	0.14161074		
4	96200000	103903567	0.08007865		
5	78750000	110974055	0.40919435		
6	152750000	122694805	0.19676069		
7	112450000	100039622	0.11036352		
2nd MAPE Calculation Result					
Number	Actual Data	Prediction Data	Error		
1	55250000	68071879	0.23207021		
2	110650000	104411015	0.05638486		
3	103300000	89662122	0.13202206		
4	88700000	97247609	0.09636538		
5	71250000	102047952	0.43225195		
6	145250000	113958992	0.21542863		
7	104950000	94251545	0.10193859		
	3nd MAI	PE Calculation Result			
Number	172850000	187074918	0.08229631		

1	228250000	221560505	0.02930775
2	220900000	208071306	0.05807467
3	206300000	215538697	0.04478282
4	188850000	221875643	0.17487764
5	262850000	232346697	0.11604833
6	222550000	212593821	0.04473682
7	172850000	187074918	0.08229631
	4nd MAI	PE Calculation Result	
Number	Actual Data	Prediction Data	Error
1	293450000	319802322	0.08980175
2	348850000	344700600	0.01189451
3	341500000	332775225	0.02554839
4	326900000	339739910	0.03927779
5	309450000	349645649	0.12989384
6	383450000	354625757	0.07517080
7	343150000	334289044	0.02582240
	5nd MA	PE Calculation Result	
Number	Actual Data	Prediction Data	Error
1	142550000	155850576	0.09330464
2	197950000	190560301	0.03733114
3	190600000	177245201	0.07006715
4	176000000	184988006	0.05106822
5	158550000	191429879	0.20737861
6	294670000	202020352	0.31441833
7	192250000	182118182	0.05270127

3.6 Result

Based on the results of mining data and evaluation above, table can be created that contains prediction results using seasonal autoregressive integrated moving average (SARIMA) method.

Table 5. Predictive results using SARIMA Method

Nomor ATM	Model Terbaik	MAPE	
K1	ARIMA(1,0,0)(2,0,0)[7]	16.75%	
K2	ARIMA(1,0,0)(2,0,0)[7]	18.09%	
K3	ARIMA(1,0,0)(2,0,0)[7]	7.85%	
K4	ARIMA(1,0,0)(1,0,0)[7]	5.67%	
К5	ARIMA(1,0,0)(2,0,0)[7]	11.80%	

This study aims to find out the similarity of seasonal autoregressive integrated moving average (SARIMA) prediction model that is suitable to predict the amount of cash withdrawal at atm machines. Then, to obtain the error level comparison data predicted the amount of cash withdrawals at atm machines with seasonal autoregressive integrated moving average (SARIMA) method. The dataset used is an ATM transaction dataset that has 17 attributes and which is used only 4 attributes. The data used as much as 415 data is taken from 5 ATM machine numbers. Before the data mining process and evaluation of data first in filterization then in the sharing of data testing and data training where for data testing has a total of 76 data per each ATM machine number while for data testing has a total of 7 data per each ATM machine number with a total of every 83 data for each ATM machine number. Atm machine number is symbolised with the letters K, namely K1, K2, K3, K4, and K5.

Researchers made predictions with 415 data using seasonal autoregressive integrated moving average (SARIMA) method where the data is a combination of data from several ATM machine numbers. Then the data mining process is carried out in each ATM number until it gets the best model on the Seasonal Autoregressive Integrated Moving Average (SARIMA) method. Furthermore, the best model is predicted to get the results of prediction data in the future. Then to lookup the MAPE value the actual data and the predictive data are calculated using a formula so that in can mape values. From the implementation using ATM transaction dataset by using 5 ATM machine numbers, mape K1 with MAPE value of 16.75%, MAPE K2 of 18.09%, MAPE K3 of 7.85%, MAPE K4 of 5.67%, and MAPE K5 of 11.80%.

4. CONCLUSION

The performance of the Seasonal Autoregressive Integrated Moving Average (SARIMA) method results in a suitable or good model used to predict cash withdrawal data at ATM machines with the best model K1 being ARIMA(1,0,0)(2,0,0)[7], for the K2 the best model is ARIMA(1,0,0)(2,0,0)[7], the best K3 model ARIMA(1,0,0)(2,0,0)[7], the K4 best model ARIMA(1,0,0)(1,0,0)[7], and the K5 model is ARIMA(1,0,0)(2,0,0)[7].

The result of error using MAPE (Mean Absolute Percenttage Error) on the predicted result of cash withdrawal data at atm machines is K1 16.75%, K2 18.09%,

K3 7.85%, K4 5.67%, and K5 11.80%. So it can be concluded that the data matches using the SARIMA model that has been selected because the MAPE value is smaller than 20%.

5. SUGGESTIONS

It is expected that the next research can try to implement the Seasonal Autoregressive Integrated Moving Average (SARIMA) method by using other data that has more time.

LIBRARY LIST

- [1] Abdullah, Dahlan DKK "**Implementasi Metode Rough Set Untuk Menentukan Data Nasabah Potensial Mendapatkan Pinjaman**", Universitas Putra Indonesia YPTK Padang. ISSN : 2460 – 4690. Vol. 1. 2015.
- [2] Aprilla, C., D. A. Baskoro, L. Ambarwati, & I W. S. Wicaksana., "**Belajar Data mining dengan RapidMiner**", Jakarta, 2013.
- [3] Margi, Kristien. "Analisa dan Penerapan Metode Single Exponential Smoothing Untuk Prediksi Penjualan Pada Periode Tertentu". https://jurnal.umk.ac.id (diakses pada tanggal 7 November 2020).
- [4] Purwanto, Hari & Agustina, Rini, "**Sistem Informasi Peramalan Transaksi Tunai ATM Menggunakan Triple Exponential Smoothing**", Universitas Kanjuruhan Malang, *ISSN : 2615-8388*, 2019.
- [5] Zaki, Mohammed J., Meira Jr, Wagner "**Kernel Data Mining and Analysis**", Cambridge University Press: Cambridge. 2014.