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Abstract	

	
Software	 defect	 prediction	 is	 often	 performed	 in	 research	 to	 determine	 the	

performance,	accuracy,	precision,	and	performance	of	the	prediction	model	or	method	used	in	
research,	using	various	software	metric	datasets	such	as	NASA	MDP.	In	this	research,	we	used	
Deep	Neural	Network	to	classify	the	software	metrics	dataset	modules	into	Defective	and	Non-
Defective.	The	data	validation	technique	used	to	validate	the	model	is	Stratified	10-Fold	Cross	
Validation.	Performance	of	the	Deep	Neural	Network	model	is	reported	using	Area	Under	the	
Curve	(AUC)	for	evaluation	measurement.	AUC	of	Deep	Neural	Network	is	obtained	as	0.815	
on	MC1	dataset	and	0.889	on	PC1	dataset.	Both	AUC	values	 obtained	 in	 the	MC1	and	PC1	
datasets	are	included	in	Good	Classification	category.	

	
Keywords:		Software	Defect	Prediction,	Deep	Neural	Network,	Area	Under	Curve,	NASA	MDP,	
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1. INTRODUCTION	

Software	defect	prediction	is	one	of	the	software	engineering	studies	that	are	
of	 great	 concern	among	 researchers.	Predicting	 software	defects	 is	 important	 for	
identifying	 defects	 in	 the	 early	 stages	 of	 software	 development.	 This	 early	
identification	is	critical	to	producing	a	cost-effective	and	quality	software	product	
[8].	The	accurate	prediction	of	defect-prone	software	modules	can	certainly	assist	
testing	effort,	reduce	costs,	and	improve	software	quality	[3].	

Popular	public	data	sets	for	Software	Defect	Prediction	are	software	metric	
datasets	 such	 as	 NASA	 MDP	 and	 PROMISE.	 Predicting	 software	 defects	 using	 a	
dataset	 that	 uses	 software	 metrics	 may	 be	 useful	 for	 improving	 software	
development	 quality.	 Almost	 all	 datasets	 for	 predicting	 software	 defects	 have	
software	metrics	in	them	[4].	

Classification	 algorithms	 is	 a	 popular	 machine	 learning	 approach	 for	
software	defect	prediction.	It	categorizes	the	software	code	attributes	into	defective	
or	 not	 defective,	 which	 is	 collected	 from	 previous	 development	 projects.	
Classification	algorithms	can	also	predict	which	components	are	more	likely	to	be	
defect-prone,	supports	better-targeted	testing	resources,	and,	therefore,	improved	
efficiency.	 For	 prediction	 modeling,	 software	 metrics	 are	 used	 as	 independent	
variables	 and	 fault	 data	 is	 used	 as	 the	 dependent	 variable	 [1].	 A	 wide	 range	 of	
classification	 techniques	 have	 already	 been	 proposed	 in	 the	 predicting	 software	
defect.		

In	 the	 field	 of	 Software	 Defect	 Prediction,	 various	 techniques	 has	 been	
proposed.	Manjula	&	Florence	[9]	proposed	a	hybrid	approach	by	combining	genetic	
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algorithm	and	with	Deep	Neural	Network	on	PROMISE	datasets.	They	did	feature	
optimization	with	genetic	algorithm	and	Deep	Neural	Network	for	its	classification.	
Jayanthi	 &	 Florence	 [6]	 used	 Artificial	 Neural	 Network	 (ANN)	 and	 performed	
Principle	Component	Analysis	for	feature	reduction	on	NASA	MDP	datasets.	Wahono	
et	 al.	 [11]	 used	 various	 classification	 algorithm,	 i.e.	 Logistic	 Regression,	 Linear	
Discriminant	 Analysis,	 Naıv̈e	 Bayes,	 k-NN,	 K*,	 Neural	 Network,	 Support	 Vector	
Machine	and	Decision	Tree.	

In	this	research,	we	propose	Deep	Neural	Network	to	classify	the	software	
metrics	dataset.	The	dataset	to	be	used	is	D’’	NASA	MDP	Datasets	[10].	Area	Under	
Curve	(AUC)	is	used	to	evaluate	the	performance	of	classifier.	

	
2. RESEARCH	METHODOLOGY	

The	research	method	that	will	be	used	in	this	research	are	comprised	of	1)	
problem	 understanding	 2)	 data	 collection	 3)	 data	 understanding	 4)	 data	
preparation	5)	modeling	and	6)	evaluation.	

	
	

 
	

Figure	1	Research	Methodology	
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2.1 Problem	Understanding	

Before	did	some	data	mining	on	datasets,	it	is	necessary	to	understand	the	
problems,	needs,	and	goals.	In	this	research,	it	is	quite	clear	that	it	has	been	stated	
earlier	that	the	goal	to	be	achieved	is	to	create	a	deep	neural	network	model	that	
can	classify	software	metrics	dataset	into	Defective	and	Non-Defective.	

	
2.2 Data	Collection	

The	data	used	in	this	research	are	collected	from	the	D’’	NASA	MDP	dataset,	
which	is	a	dataset	of	preprocessing	results	conducted	in	the	research	of	Shepperd	et	
al.	[10].	
	
2.3 Data	Understanding	

Next	 is	 the	 Data	 Understanding	 phase.	 Data	 Understanding	 is	 needed	 to	
understand	 how	 the	 dataset	 used	 in	 this	 study	 can	 achieve	 the	 Problem	
Understanding	phase's	goals.	At	this	phase,	the	focus	is	on	understanding	the	data	
by	exploring	the	data,	understanding	the	data's	features	and	formats,	and	verifying	
the	quality	of	the	data.	D’’	NASA	MDP	dataset	has	gone	through	various	data	cleaning	
processes	[10],	so	it	only	needs	a	little	preparation	for	the	modeling	phase.	

	
2.4 Data	Preparation	

At	 the	 data	 preparation	 phase,	we	 prepared	 data	 for	 the	modeling	 phase.	
Some	necessary	preparations,	such	as	selecting	data	and	changing	the	data	format	
to	fit,	are	required	by	the	machine	learning	model.	

	
2.5 Modeling	

Machine	 learning	 models	 are	 made	 at	 this	 modeling	 phase,	 including	
determining	the	machine	 learning	model	 to	be	built,	determining	the	parameters	
used	 and	 determining	 how	 the	 model	 will	 be	 trained	 using	 existing	 data.	
Simultaneously,	parameter	and	data	splitting	techniques	adjustments	will	also	be	
used	to	achieve	the	best	results.	

	
2.6 Evaluation	

After	the	modeling	phase,	we	need	to	evaluate	the	results	obtained	from	the	
modeling	 stage.	 This	 evaluation	 phase	 includes	 evaluating	 the	 overall	 results	 to	
determine	whether	the	results	obtained	reach	the	goals	or	not,	then	reviewing	the	
process	that	has	been	executed,	whether	the	process	was	executed	properly,	or	 if	
something	needs	to	be	fixed	from	the	existing	process.	

	
3. RESULTS	AND	DISCUSSION	
3.1 Results	

	

 
Figure	2	Research	Procedure	
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3.1.1 Collecting	Data	
The	data	used	in	this	research	are	collected	from	the	D’’	NASA	MDP	dataset,	

which	is	a	dataset	of	preprocessing	results	conducted	in	the	research	of	Shepperd	et	
al.	[10].	In	this	research,	MC1	and	PC1	datasets	are	used	for	applying	software	defect	
prediction.	 These	 datasets	 contain	 various	 feature	 sets	 and	 a	 various	 number	 of	
modules.	The	detail	of	the	datasets	is	given	in	Table	1.	

	

Table	1	D’’	NASA	MDP	dataset	details	
Datasets	 Number	of	

Metrics	
Number	of	
Modules	

Number	of	
Defective	

Number	of	
Non-Defective	

MC1	 38	 1988	 46	 1942	
PC1		 37	 705	 61	 644	
	

The	next	step	is	preprocessing	the	data	to	ensure	that	the	data	is	ready	for	
the	modeling	process.	

	
3.1.2 Label	Encoding	

Label	Encoding	 is	 the	process	of	 converting	 labels	 into	numeric	 form.	The	
deep	neural	network	model	used	later	uses	the	sigmoid	activation	function	on	the	
output	 layer.	The	sigmoid	activation	 function	can	only	process	class	 labels	 in	 the	
form	of	numeric	form,	so	it	is	necessary	to	change	the	labels	on	the	dataset	D	''	NASA	
MDP	to	numeric	form.	

	

Table	2	Label	Encoding	results	
Initial	Label	 Label	Encoding	

Result	
Meaning	of	The	

Label	
Y	 1	 Defective	
N	 0	 Non-Defective	

	
	

3.1.3 Normalization	
Normalization	is	a	scaling	technique	in	which	the	values	are	scaled	so	that	

the	end	usually	ranges	between	0	and	1.	In	each	D''	NASA	MDP	dataset	has	a	different	
range	of	each	feature,	so	it	is	necessary	to	carry	out	the	normalization	process.	The	
scaling	technique	used	in	normalization	step	is	the	Min-Max	scaling.	The	formula	for	
the	Min-Max	is	as	follows:	

𝑋′ = !"!#$%
!#&'"!#$%

	 ...(1)	
	
Example	of		data	that	has	gone	through	the	label	encoding	and	normalization	

process	are	given	in	Table	3.	
	

Table	3	D’’	NASA	MDP	dataset	details	
LOC_BLANK	 BRANCH_COUNT	 CALL_PAIRS	 LOC_CODE_AND_COMMENT	 Defective	
0.069602	 0.104110	 0.086957	 0.033333	 1	
0.021307	 0.010959	 0.028986	 0.011111	 0	
0.012784	 0.065753	 0.086957	 0.050000	 0	
0.001420	 0.000000	 0.000000	 0.000000	 0	



	
	 	 	

Journal	of	Data	Science	and	Software	Engineering.	

Deep Neural Network on Software Defect Prediction (Arie Sapta Nugraha) | 86 
 

Volume	02	No.	02	2021	

3.1.4 Classication	Algorithm	
D''	NASA	MDP	dataset	that	has	gone	through	the	preprocessing	is	classified	

using	 a	 Deep	 Neural	 Network	 and	 validated	 using	 the	 Stratified	 K-Fold	 Cross	
Validation	 technique	with	 a	 value	 of	 K	 =	 10.	 Deep	 Neural	 Network	 architecture	
details	are	given	in	Figure	2.	

	

 
Figure	2	Deep	Neural	Network	Architecture	

	

The	data	validation	technique	used	 in	this	work	 is	Stratified	10-Fold	Cross	
Validation.	Stratified	10-Fold	Cross	Validation	is	a	variation	of	Cross	Validation.	The	
difference	between	Stratified	10-Fold	Cross	Validation	and	10-Fold	Cross	Validation	
in	general	 is	 that	Stratified	10-Fold	can	divide	ten	 folds	and	ensure	that	 the	 folds	
have	the	same	number	of	classes.	

	
3.1.5 Evaluation	

Evaluate	each	method's	classification	results	on	the	dataset	using	AUC	to	get	
the	performance	value	of	each	classification	algorithm.	AUC	is	an	excellent	method	
to	obtain	performance	results	from	a	classification	algorithm	in	general	and	AUC	is	
also	usually	used	to	compare	one	classification	algorithm	with	another	[5].	The	AUC	
is	a	popular	performance	measure	in	class	imbalance,	and	a	high	AUC	value	indicates	
better	performance	[7].	The	AUC	measure	is	calculated	as	the	area	of	the	ROC	curve	
using	the	equation	below.	

	

𝐴𝑈𝐶 = ()*+!"#$",+!"#$
-

	 ...(2)	
	
The	general	guidelines	used	for	the	classification	of	the	AUC	value	as	used	in	

the	research	of	Wahono	et	al.	[9]	are	as	follows:	
1. 0.90	-	1.00	=	Excellent	Classification	
2. 0.80	-	0.90	=	Good	Classification	
3. 0.70	-	0.80	=	Fair	Classification	
4. 0.60	-	0.70	=	Poor	Classification	
5. 0.50	-	0.60	=	Failure	
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Below	are	the	results	of	AUC	evaluation	of	software	defect	prediction	using	
D''	NASA	MDP	dataset	MC1	and	PC1.	The	model	used	to	predict	this	dataset	is	the	
Deep	 Neural	 Network	 (DNN).	 The	 evaluation	 results	 are	 in	 the	 form	 of	 AUC	
performance	values	which	can	be	seen	in	Table	4.	

	
Table	4	AUC	results	

Dataset	 AUC	
MC1	 0.815	
PC1	 0.889	

	

	
	

Figure	3	D’’	NASA	MDP	Dataset	AUC	Results		
	

According	to	AUC	results	are	shown	in	Table	4,	AUC	of	Deep	Neural	Network	
is	obtained	as	0.815	on	MC1	dataset	and	0.889	on	PC1	dataset.	MC1	has	a	higher	AUC	
value	than	PC1	AUC	value.	Both	AUC	values	obtained	in	the	MC1	and	PC1	datasets	
are	included	in	Good	Classification	category	based	on	general	guidelines.	

	
3.2 Discussion	

Software	defect	prediction	used	D"	NASA	MDP	datasets.	D"	NASA	MDP	dataset	
is	different	 from	 the	original	NASA	MDP	dataset.	D"	NASA	MDP	dataset	has	been	
through	a	data	cleaning	process,	so	the	dataset	has	no	missing	value	than	the	original	
NASA	MDP	dataset,	which	has	many	missing	values	in	each	dataset.	

Before	dividing	it	into	training	data	and	testing	data,	preprocessing	is	done	to	
make	it	easier	for	the	model	to	train	the	data.	The	preprocessing	step	that	needs	to	
perform	 is	 not	 too	 much	 because	 the	 dataset	 has	 been	 cleaned,	 making	 the	
preprocessing	 step	easier.	The	 first	 thing	 to	do	 at	 the	preprocessing	 step	 is	 label	
encoding.	This	label	encoding	process	helps	change	the	shape	of	the	labels	on	the	
dataset	to	a	form	that	is	easier	for	machine	learning	models	to	read	because	most	
machine	learning	algorithms	work	better	with	numerical	data,	especially	for	deep	
learning	models.	Data	normalization	was	applied	on	the	D"	NASA	MDP	dataset.	Data	
normalization	needs	 to	be	 applied	because	 the	dataset	D"	NASA	MDP	has	 a	 very	
varied	range	of	values	on	each	feature.	The	very	varied	range	of	values	will	affect	the	
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classifier's	performance	so	that	it	is	necessary	to	normalize	it.	The	technique	used	
in	the	normalization	stage	is	Min-Max	with	a	scaling	value	between	0	and	1.		

Deep	 Neural	 Network	 is	 used	 as	 a	 classification	 algorithm.	 Deep	 Neural	
Network	needs	to	be	trained	first	before	being	able	to	classify	data	into	Defective	
and	Non-Defective.	We	set	optimizer,	learning	rate,	batch	size	and	epoch	as	follows:	

	
• Optimizer	 	:	Adam	
• Learning	Rate		:	0.01	
• Batch	Size	 	:	64	
• Epoch	 	 	:	50	

	
The	data	validation	technique	used	 in	this	work	 is	Stratified	10-Fold	Cross	

Validation.	Stratified	10-Fold	Cross	Validation	is	a	variation	of	Cross	Validation.	The	
difference	between	Stratified	10-Fold	Cross	Validation	and	10-Fold	Cross	Validation	
in	general	 is	 that	Stratified	10-Fold	can	divide	ten	 folds	and	ensure	that	 the	 folds	
have	the	same	number	of	classes.	This	technique	is	good	to	avoid	when	one	of	the	
folds	 contains	 only	 one	 of	 the	 two	 classes	 because	 the	 data	 used	 is	 unbalanced.	
Several	 tests	 also	 show	 that	 using	 stratification	 in	 the	 K-Fold	 Cross	 Validation	
validation	can	slightly	improve	the	results	[12].		

AUC	value	is	used	in	this	work	as	an	indicator	to	evaluate	the	software	defect	
prediction	 model's	 performance.	 The	 AUC	 evaluation	 results	 are	 calculated	 by	
collecting	the	probability	values	obtained	from	the	model	prediction	results	and	the	
original	label	from	the	validation	results	using	the	stratified	k-fold	cross	validation	
in	one	data	frame.	After	that,	we	calculate	AUC	based	on	data	in	the	data	frame.	This	
AUC	calculation	technique	is	called	the	AUC	Merge	[2].	AUC	results	from	the	software	
defect	prediction	model	using	DNN	obtained	the	AUC	value	as	0.815	on	MC1	dataset	
and	0.889	on	PC1	dataset.	According	to	the	general	guidelines	for	the	classification	
of	AUC	values,	the	AUC	evaluation	results	on	the	MC1	and	PC1	datasets	are	proved	
that	the	DNN	model	used	on	both	datasets	is	a	good	classification	model.	

	
4. CONCLUSION	

Early	 detection	 of	 software	 defects	 has	 an	 important	 role	 in	 the	 software	
development	life	cycle,	especially	at	the	software	testing	stage,	affecting	the	quality	
of	 the	software.	Researchers	have	been	developed	various	techniques	 in	previous	
studies	 to	 overcome	 the	 problem	 of	 predicting	 software	 defects.	 This	 paper	
proposed	Deep	Neural	Network	as	a	classifier	to	classify	the	modules	in	the	software	
metrics	dataset	 into	Defective	and	Non-Defective.	According	 to	 the	 results	of	 this	
research,	 the	 Deep	Neural	 Network	model's	 performance	 is	 reported	 using	 Area	
Under	the	Curve	(AUC)	for	evaluation	measurement.	AUC	of	Deep	Neural	Network	is	
obtained	 as	 0.815	 on	 MC1	 dataset	 and	 0.889	 on	 PC1	 dataset.	 Both	 AUC	 values	
obtained	in	the	MC1	and	PC1	datasets	are	included	in	Good	Classification	category	
based	on	general	guidelines.	
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