ANALISIS LOSSES JARINGAN DAN ALTERNATIF PERBAIKAN PADA PENYULANG JATIWANGI RAYON MAJALENGKA

1)Muhammad Soleh, 2) Taryo

1,2) Program Studi Teknik Elektro, FT. Universitas 17 Agustus 1945 Cirebon Jl. Perjuangan No. 17 Kota Cirebon 45135 m.soleh77@yahoo.co.id,

Abstrak- Listrik merupakan salah satu komoditi strategis dalam perekonomian Indonesia, karena selain digunakan secara luas oleh masyarakat terutama untuk keperluan penerangan, listrik juga merupakan salah satu sumber energi utama bagi sektor industri.

Susut energi pada jaringan merupakan masalah utama PT. PLN (Persero) Distribusi Jawa Barat dan banten Rayon Majalengka. Upaya yang dilakukan untuk menurunkan susut adalah memperbaiki jaringan yang ada dan menekan susut non teknis akibat pencurian listrik. Energi listrik yang hilang dalam perjalanan penyaluran energi listrik baik di saluran transmisi maupun ditsribusi disebut dengan rugi-rugi atau susut enrgi teknis. Sedangkan susut energi non teknis berkaitan dengan pengukuran energi listrik di sisi pelanggan.

Besar susut teknis pada penyulang Jatiwangi adalah 195,01 kW, sedangkan besar susut non teknisnya adalah 445, 96 kW. Susut tahunan pada Penyulang Jatiwangi adalah 3.505.541,85 kWh. Perbaikan Losses dengan cara menaikan tegangan 1 kV didapatkan arus sebesar 214,89 ampere yang sebelum nya adalah 225 Ampere. Perbaikan Losses pada jaringan SUTM Susut konduktor berkurang sebanyak 29,77 kW yang sebelumnya adalah sebesar 161,27 kW.

Kata kunci Losses, Feeder, Susut Tenis dan Susut Non Teknis

1. PENDAHULUAN

Di dalam penyediaan tenaga listrik, dapat dibedakan secara jelas tiga proses penyampaian tenaga listrik, yaitu pembangkitan, transmisi, dan distribusi yang dapat dianggap sebagai produksi atau pembuatan, pengangkutan, dan penjualan eceran tenaga listrik.

Losses jaringan adalah selisih antara KWH beli PLN Distribusi dengan KWH jual ke pelanggan. Disini tampak jelas bahwa PLN Distribusi mengalami kerugi- an akibat losses tersebut, sehingga PLN Distribusi harus menekan losses tersebut agar kerugian PLN tidak terlalu besar. (Hariasih, Susanti, 2005).

Pendistribusian listrik di UPJ Rayon Majalengka Penyulang Jatiwangi sering mengalami masalah losses energi listrik, losses disini diartikan sebagai adanya energi yang hilang baik secara teknis maupun non teknis. Hal ini dapat dilihat dari adanya selisih yang cukup besar antara energi listrik yang dikirimkan dari gardu induk dengan energi listrik yang didapatkan dari konsumsi pelanggan.

2. DASAR TEORI

2.1 Susut Energi Pada Jaringan

Energi listrik yang hilang dalam perjalanan baik di saluran transmisi maupun di saluran distribusi disebut dengan rugi-rugi atau losses teknis. Sedangkan losses non teknis lebih banyak disebabkan oleh masalah-masalah yang berkaitan dengan pengukuran pemakaian energi listrik di sisi [1].Sehingga Pada dasarnya susut energi pada sistem distribusi primer berdasarkan penyebabnya dapat dibedakan menjadi:

2.2 Susut energi teknis

Pada dasarnya Susut energi teknis ini berdasarkan susut energi pada komponen yang diakibatkan ada kesalahan pada komponen tersebut. Sehingga berdasarkan Berdasarkan persamaan dasar susut daya besar susut pada penghantar adalah:

$$P_{kond} = I^2.R_{sal.} (2.1)$$

Keterangan:

P_{kond} = Susut daya pada penghantar (W)

 $R_{\text{\tiny cal}}$ = resistansi total penghantar (Ω)

I = arus beban rata-rata (A)

Sedangkan susut transformator terdiri dari susut inti besi dan susut tembaga. Besarnya susut inti besi konstan (tidak dipengaruhi pembebanan pada transformator). Besarnya susut tembaga transformator Disebabkan resistansi di kumparan trafo.Rugi-rugi tembaga sebanding dengan kuadrat arus atau kuadarat kVA. Dengan kata lain, rugi-rugi tembaga setengah beban penuh sama dengan seperempat rugi-rugi beban penuh. Besarnya rugi-rugi ini dapat diketahui melalui tes hubung singkat. [2].

Rugi-rugi transformator daya dapat dituliskan dengan persamaan berikut [2]:

Arus nominal transformator :

$$I_{n} = \frac{K trans}{V} (A)$$
 (2.2)

Tahanan tembaga

$$\mathbf{R}_{\mathrm{cu}} = \frac{P \, cu}{I n^2} (\Omega) \tag{2.3}$$

Susut tembaga

$$\mathbf{P}_{\mathrm{cu}} = \mathbf{I}^2 \, \mathbf{R}_{\mathrm{cu}} \, (\mathbf{W}) \tag{2.4}$$

Susut total transformator

$$P_{trans} = P_{fe} + P_{cu}(W)$$
 (2.5)

Keterangan:

 $I_n = arus nominal (A)$

 $K_{trans} = kapasitas transformator (kVA)$

 R_{cu} = tahanan tembaga

 $P_{cu} = susut tembaga (W)$

 $P_{fe} = susut besi (W)$

2.3 Susut energi non teknis

Susut energi non teknis merupakan susut energi yang bukan diakibatkan kesalahan sistem, dalam arti penyebab susut energi adalah dari luar sistem atau yang berhubungan dengan sistem.

2.4 Penentuan Pemakaian Penghantar

Untuk menentukan jenis penghantar baik itu kawat berisolasi maupun kabel, harus ditentukan berdasarkan pertimbangan teknis yang meliputi tegangan nominalnya, konstruksi (ukuran), dan KHA (kuat hantar arusnya). Konstruksi atau luas penampang dari penghantar juga dapat ditentukan dengan melihat rapat arus nominal suatu penghantarnya. Pada dasarnya, penentuan rapat arus ini berhubungan dengan suhu maksimum penghantar yang akan ditimbulkan oleh aliran arus [1]. Rapat arus (S) ini dapat dinyatakan sebagai berikut:

$$S = \frac{I}{A} \tag{2.6}$$

Keterangan:

 $S = rapat arus (A/mm^2)$

A = luas penampang kabel (mm²)

I = arus lewat (A)

Berdasarkan konstruksi dan kuantitasnya juga akan mempengaruhi besarnya nilai resistansi dari penghantar, yang besarnya didasarkan oleh hukum Ohm dalam panas sebagai pengganti satuan listrik [1], yaitu:

$$\mathbf{R} = \frac{\rho \cdot L}{\mathbf{A}} \tag{2.7}$$

Keterangan:

 $R = nilai resistansi (\Omega)$

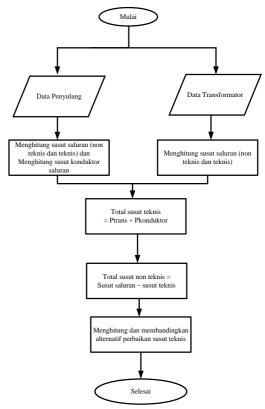
A= luas penampang penghantar (mm²)

 ρ = resistivitas penghantar (Ω /m)

Sedangkan besarnya nilai susut energi dalam kWh nya tiap bulan adalah :

$$\mathbf{P}_{kWh} = \mathbf{P}_{susutTotal} \cdot \mathbf{F}_{LS} \cdot 720 \tag{2.8}$$

Keterangan:

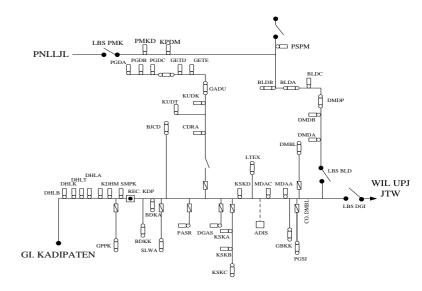

 P_{kWh} = susut energi (kWh)

 $P_{susuttotal} = susut daya total (W)$

 F_{LS} = faktor losses

3. METODE PENELITIAN

Dalam merancang penelitian metode yang digunakan penulis gunakan adalah metode survey ke lapangan baik dengan pencatatan, pengamatan dan wawancara dengan pejabat pengelola Rayon Majalengka dengan tujuan agar data yang didapat lebih akurat dan nyata pada saat itu.



4. PEMBAHASAN 4.1 Data Penelitian

Studi yang dilakukan adalah studi susut energi pada sebuah penyulang, yaitu penyulang Jatiwangi, nama ini merupakan identifikasi nama penyulang dari UPJ Majalengka. Data spesifikasi objek studi ini didapatkan berdasarkan data-data dari UPJ Majalengka dan APJ Sumedang.

4.1.1 Data Penyulang

Pada penyulang jatiwangi terdapat 42 Gardu yang tesebar untuk melayani jaringan listrik di masyarakat baik rumah tinggal maupun beberapa industri yang berada di pelayanan penyulang jatiwangi.

Gambar 1. Single Line Penyulang Jatiwangi

4.1.2 Data Beban

Pada penyulang Jatiwangi terdapat 42 gardu dengan jumlah pelanggan sekitar 15.721. Berikut data beban pada penyulang jatiwangi.

Tabel 1. Data beban Pada Penyulang Jatiwangi

Unit	Kode feeder	no_tiang trafo	Daya (kva)	Merk	Jumlah pelanggan	Beban x1	beban x2	beban x3	Beban x0
53521	JTWI	DHLB	100	VOLTRA	153	66	64	88	51
53521	JTWI	DHLK	100	B&D	391	112	80	101	73
53521	JTWI	DHLT	160	STARLITE	510	115	157	146	95
53521	JTWI	DHLA	100	UNINDO	232	93	90	96	66
53521	JTWI	KDSR	100	Unindo	262	122	106	108	61
53521	JTWI	KDHM	100	VOLTRA	221	83	53	49	56
53521	JTWI	GPPK	100	B&D	406	85	90	61	62
53521	JTWI	SMPK	50	Unindo/J P	34	10	10	17	8
53521	JTWI	BDKK	250	EBG	462	68	137	69	52
53521	JTWI	BDKA	160		1	39	20	29	15
53521	JTWI	SWLA	160	UNINDO	27	32	53	35	23
53521	JTWI	BJCD	200	UNINDO	743	227	256	232	92
53521	JTWI	PASR	50	Sheny ang	223	50	85	82	44
53521	JTWI	CDRA	100	SINTRA	192	74	73	73	50
53521	JTWI	KUDT	100	Starlite	481	54	57	78	52
53521	JTWI	KUDK	100	B&D	50	133	63	115	75
53521	JTWI	GADU	250	Starlite	843	223	222	271	154
53521	JTWI	GETE	100	Starlite	370	122	123	90	58
53521	JTWI	GETD	100	TRAFIND O	233	78	52	68	56
53521	JTWI	DPGD	250	SINTRA	833	161	140	212	110
53521	JTWI	PGDC	50	B&D	30	31	15	43	36
53521	JTWI	PGDB	50	Unindo	59	53	60	70	52
53521	JTWI	PGDA	100	Morawa	587	168	194	135	119
53521	JTWI	DGAS	50	SHENYAN G	277	57	30	83	62
53521	JTWI	KSKA	100	Trafindo	296	129	49	88	93
53521	JTWI	KSKB	100	VOLTRA	240	84	42	81	65
53521	JTWI	KSKC	250	TRAFIND O	800	249	240	274	149
53521	JTWI	KSKD	100	UNINDO	223	70	94	146	65
53521	JTWI	LTEX	160	UNINDO	254	131	72	176	98
53521	JTWI	ADIS							
53521	JTWI	DHLB	100	VOLTRA	153	66	64	88	51
53521	JTWI	DHLK	100	B&D	391	112	80	101	73
53521	JTWI	DHLT	160	STARLITE	510	115	157	146	95
53521	JTWI	DHLA	100	UNINDO	232	93	90	96	66
53521	JTWI	KDSR	100	Unindo	262	122	106	108	61
53521	JTWI	KDHM	100	VOLTRA	221	83	53	49	56
53521	JTWI	GPPK	100	B&D	406	85	90	61	62
53521	JTWI	SMPK	50	Unindo/J P	34	10	10	17	8
53521	JTWI	BDKK	250	EBG	462	68	137	69	52
53521	JTWI	BDKA	160		1	39	20	29	15
53521	ITWI	SWLA	160	UNINDO	27	32	53	35	23
53521	JTWI	BJCD	200	UNINDO	743	227	256	232	92
53521	JTWI	PASR	50	Shenyang	223	50	85	82	44
53521	JTWI	CDRA	100	SINTRA	192	74	73	73	50
53521	JTWI	KUDT	100	Starlite	481	54	57	78	52
53521	JTWI	KUDK	100	B&D	50	133	63	115	75
53521	JTWI	GADU	250	Starlite	843	223	222	271	154
53521	JTWI	GETE	100	Starlite	370	122	123	90	58
53521	JTWI	GETD	100	TRAFIND	233	78	52	68	56
53521	JTWI	DPGD	250	O SINTRA	833	161	140	212	110
53521	JTWI	PGDC	50	SINTRA B&D	30	31	140	43	36
			50		30 59	53	60		36 52
53521	JTWI	PGDB		Unindo				70	
53521 53521	JTWI JTWI	PGDA DGAS	100 50	M orawa SHENYAN	587 277	168 57	194 30	135	119
				G					
53521	JTWI	KSKA	100	Trafindo	296	129	49	88	93
53521	JTWI	KSKB	100	VOLTRA	240	84	42	81	65
53521	JTWI	KSKC	250	TRAFIND O	800	249	240	274	149
53521	JTWI	KSKD	100	UNINDO	223	70	94	146	65
53521	JTWI	LTEX	160	UNINDO	254	131	72	176	98
53521	JTWI	ADIS							

4.1.2 Data Konduktor

Pada penyulang Jatiwangi memiliki panjang keseluruhan 27,47 kilo meter, dan terdapat 3 jenis kabel yang digunakan dengan panjang yang berbeda — beda yaitu jenis A3CS 3x150mm sepanjang 8,88 km, jenis kabel A3C 3x150mm sepanjang 13, 02 km, jenis kabel AC 3x70mm sepanjang 1,07 km serta A3C 3x35mm sepanjang 4,49. Hal tersebut ditunjukkan pada tabel 4.1 sebagai berikut: Tabel 4.2 Data penggunaan konduktor

4.1.3 Data Losses

Pendistribusian listrik di Penyulang Jatiwangi UPJ Rayon Majalengka sering mengalami masalah susut (*losses*) energi listrik, *losses* disini diartikan sebagai adanya energi yang hilang baik secara teknis maupun non teknis. Hal ini dapat dilihat dari adanya selisih yang cukup besar antara energi listrik yang dikirimkan dari gardu induk dengan energi listrik yang didapatkan dari konsumsi pelanggan. Tabel 2. menunjukan data *losses* per penyulang pada rayon Majalengka.

Tabel 2. Data losses per penyulang

Area	Rayon	Penyulang		Beli		Jual	kWh Susut	% susut	Keterangan
K1	1	CDR	Rp	3.143.572	Rp	801.189	2342383	75	Exim Error
K2	2	DRM/KTHT	Rp	221.029	Rp	13.855	207174	94	Exim Error
K2	3	JTW	Rp	1.775.575	Rp	2.223.257	447683	25	
K2	4	KRD	Rp	392.552	Rp	338.541	54011	14	
K2	5	LJL	Rp	2.273.701	Rp	2.190.452	83249	4	
K2	6	MJL	Rp	4.985.496	Rp	4.203.306	782190	16	
K3	7	RGL	Rp	5.374.467	Rp	4.141.291	1233176	23	
K3	8	RKI	Rp	2.875.062	Rp	3.081.494	-206432	-7	
K1	9	TJG	Rp	2.447.292	Rp	1.707.181	740111	30	
M1	10	JTGD	Rp	-	Rp	112.889	-112889		
	11	TOMO	Rp	980.080	Rp	-			
	12	WDO	Rp	1.957.902	Rp	1.976.492	-18590	-1	
	13	GRGE	Rp	104.027	Rp	-	104027	100	·
	Total			26.530.753	Rp	20.789.946	5740806,8	21,638311	

4.2 Perhitungan Susut Energi

4.2.1 Susut Total Saluran

Setelah data didapatkan, perhitungan susut total dihitung dari selisih kWh jual dan beli. Susut total pada penyulang Jatiwangi sebesar 447.683 kWh dengan nilai arus rata – rata sebesar 225 A dan arus puncak sebesar 231 A yang didapatkan pada pengukuran langsung di lapangan. Sedangkan untuk faktor pembebanan (L_f) penyulang majalengka bisa didapatkan dengan persamaan (2.11):

Faktor Pembebanan (L_f) =
$$\frac{I rata - rata}{I Puncak}$$
=
$$\frac{174}{225}$$
= 0,773

Sehingga didapatkan besar faktor *losses* (F_{Ls}) dengan mengacu pada faktor pembebanan penyulang mengacu pada persamaan (2.12) sebagai berikut:

Faktor Losses (
$$F_{LS}$$
) = 0,2L_f + 0,8 L_f²
= 0,2 (0,773) + 0,8 (0,773)²
= 0,155 + 0,478
= 0,633

Sehingga, susut daya pada penyulang Jatiwangi dapat dihitung dengan persamaan (2-8):

$$P_{\text{susut}} = \frac{P \text{ kwh}}{FLs.720}$$

$$= \frac{292 \cdot 134}{0.633 \cdot x \cdot 720}$$

$$= \frac{292 \cdot 134}{455.77}$$

$$= 640, 97 \text{ kW}$$

4.1.2 Susut Konduktor

Susut konduktor adalah susut yang terjadi akibat adanya hambatan dalam pada konduktor penyulang. Konduktor yang digunakan pada penyulang Jatiwangi adalah tipe konduktor tanpa isolasi (kabel udara) dengan tipe kabel A3CS 3X150 sepanjang 8,8791 km, A3C 3X150

sepanjang 13,02744, A3C 3X70 sepanjang 1,06896, A3C 3X35 sepanjang 4,49718. Besarnya nilai resistansi tiap ukuran kabel pada jenis kabek A3C di tunjukkan pada table 3. berikut ini :

Tabel 3. Nilai Resistansi Konduktor Kabel A3CS

		Resistansi Insulasi					
Ukuran	Resistansi Konduktor		Pada Suhu udar	a sekitar 35°C	Pada Suhu udar	a sekitar 40°C	Berat Kabel (kg/km)
UKUIAII	pada 20°C (Ω / km)	pada 20°C (Ω / km)	80	000	8	000	Derat Kanel (kg/kiii)
3x35	0,524	40	128	132	117	120	439
3x50	0,387	30	158	163	144	148	569
3x70	0,268	30	200	206	182	188	781
3x95	0,193	30	249	256	227	234	1.062
3x120	0,153	30	290	299	264	273	1.299
3x150	0,124	20	334	345	305	315	1.597
3x185	0,0991	20	387	400	352	364	1.978
3x240	0.0754	20	470	485	429	442	2.572

a. Kabel A3CS 3x150mm²

Resistansi tipe kabel A3CS 3x150mm pada penyulang Jatiwangi (l=21,9 km) ini adalah sebagai berikut:

$$P = 0.124 \Omega / \text{km}$$

Merujuk ke pesamaan (2.7), Maka besar R keseluruhan adalah:

$$R_{sal} A3CS 3x150mm^2 = 0,124 x 21,9$$

= 2,72 Ω

Sehingga didapatkan nilai susut konduktor berdasarkan persamaan (2.1) sebesar:

$$P_{kond}$$
 = $I^2 \times R_{sal} A3CS 3x150mm^2$
= $225^2 \times 2,72$
= 137.700 W
= 137.7 kW

b. Kabel A3CS 3x70mm²

Resistansi tipe kabel A3CS 3x70mm pada penyulang Jatiwangi (l = 1,06 km) ini adalah sebagai berikut:

$$P = 0.268 \Omega / \text{km}$$

Merujuk ke pesamaan (2.7), Maka besar R keseluruhan adalah:

$$R_{sal} A3CS 3x70mm^2 = 0,268 x 1,06$$

= 0,284 Ω

Sehingga didapatkan nilai susut konduktor berdasarkan persamaan (2.1) sebesar:

$$P_{kond}$$
 = $I^2 \times R_{sal} A3CS 3x70mm^2$
= $180^2 \times 0,284$
= $9201,6 W$
= $9.2 kW$

c. Kabel A3CS 3x35mm²

Resistansi tipe kabel A3CS 3x35mm pada penyulang Jatiwangi (*l* =4,49 km) ini adalah sebagai berikut:

$$P = 0.524 \Omega / \text{km}$$

Merujuk ke pesamaan (2.7), Maka besar R keseluruhan adalah:

$$R_{sal} A3CS 3x35mm^2 = 0,524 x 4,49$$

= 2,35 Ω

Sehingga didapatkan nilai susut konduktor berdasarkan persamaan (2.1) sebesar:

$$P_{kond}$$
 = $I^2 \times R_{sal} A3CS 3x35mm^2$
= $117^2 \times 2.35$
= $14.377.5 \text{ W}$

= 14,37 kW

Jadi total losses yang terjadi pada konduktor adalah 161,27 kW.

4.1.3 Susut Transformator

Perhitungan susut transformator didapat dari penjumlahan susut masing-masing transformator distribusi. Susut transformator yang dimaksud disini adalah susut inti besi (P_{Fe}) dan susut tembaga (P_{cu}) . Susut inti besi dianggap konstan karena susut inti besi tidak dipengaruhi pembebanan transformator, sedangkan susut tembaga transformator besarnya tergantung pada arus beban pada transformator. Susut inti besi didapatkan dari nameplate transformator. Untuk mendapatkan nilai susut transformator berbeban. tembaga pada pertama menghitung arus nominal transformator menurut persamaan (2-2). Selanjutnya menghitung resistansi tembaga yang mengacu pada persamaan (2-3). Setelah didapatkan resistansi tembaga, dilakukan perhitungan rugi tembaga dengan menggunakan arus rata-rata transformator. Besarnya rugi tembaga mengacu pada persamaan (2-4) Dari perhitungan diatas didapatkan susut inti besi dan susut transformator, sehingga rugi transformator bisa didapatkan melalui persamaan (2-5). Untuk mempersingkat perhitungan pada laporan ini penulis menggunakan perngakat lunak tambahan menggunakan Microsoft Excel, tetapi penulis tetap menghitung losses pada trafo dalam perhitungan ini dilakukan di gardu PMDK, yaitu:

Arus nominal transformator:

$$I_{n} = \frac{K trans}{V}$$

$$I_{n} = \frac{250.000}{20.000}$$

$$I_{n} = 12.5 A$$

Tahanan tembaga

$$\mathbf{R}_{\text{cu}} = \frac{\rho \, cu}{In^2}$$

$$\mathbf{R}_{\text{cu}} = \frac{0.0175}{12.5^2}$$

$$\mathbf{R}_{\text{cu}} = \frac{0.0175}{156.25} = 0.000112 \, \underline{\Omega}$$

Susut tembaga

Susut total transformator

$$\frac{P_{trans} = P_{fe} + P_{cu}}{P_{trans} = 650 + 5,67}$$

$$\frac{P_{trans} = 655,67}{P_{trans} = 655,67}$$

Berikut tabel 4 Losses transformator penyulang jatiwangi:

Tabel 4.4 Losses transformator penyulang Jatiwangi

No	Nama Gardu	Kapasitas	Merk Trafo (kVA)	Pfe (w)	In	Tahanan Tembaga	Pcu (w)	Susut Total (w)
-1	PMKD	250	Starlite	650	12,5	0,000112	5,67	655,67
2	KPDM	250	Pauwells	600	12,5	0,000112	5,67	605,67
3	PSPM	400	Unindo	930	20	0,00004375	2,21484375	932,2148438
4	PGDA	250	Unindo	650	12,5	0,000112	5,67	655,67
5	PGDB	400	Unindo	930	20	0,00004375	2,21484375	932,2148438
6	PGDC	315	Unindo	770	15,75	7,05467E-05	3,571428571	773,5714286
7	GETD	200	Unindo	680	10	0,000175	8,859375	688,859375
8	GETE	400	Unindo	930	20	0,00004375	2,21484375	932,2148438
9	GADU	60	Starlite	1300	31,5	1,76367E-05	0,892857143	1300,892857
10	KUDK	400	Unindo	930	20	0,00004375	2,21484375	932,2148438
-11	KUDT	350	Sintra	820	17,5	5,71429E-05	2,892857143	822,8928571
12	BJCD	200	Starlite	680	10	0,000175	8,859375	688,859375
13	CDRA	315	Starlite	770	15,75	7,05467E-05	3,571428571	773,5714286
14	BLDB	630	Starlite	1300	31,5	1,76367E-05	0,892857143	1300,892857
15	BLDA	200	Starlite	690	10	0,000175	8,859375	698,859375
16	BLDC	315	Starlite	770	15,75	7,05467E-05	3,571428571	773,5714286
17	DMDP	630	Starlite	1300	31,5	1,76367E-05	0,892857143	1300,892857
18	DMDB	400	Starlite	930	20	0,00004375	2,21484375	932,2148438
19	DMDA	200	Unido	680	10	0,000175	8,859375	688,859375
20	DMBL	400	B&D	930	20	0,00004375	2,21484375	932,2148438
21	LTEX	315	B&D	770	15,75	7,05467E-05	3,571428571	773,5714286
22	KSKD	250	Starlite	680	12,5	0,000112	5,67	685,67
23	MDAC	250	Starlite	680	12,5	0,000112	5,67	685,67
24	MDAA	400	Starlite	930	20	0,00004375	2,21484375	932,2148438
25	PGSI	315	Starlite	770	15,75	7,05467E-05	3,571428571	773,5714286
26	GBKK	400	B&D	930	20	0,00004375	2,21484375	932,2148438
27	KSKC	315	B&D	770	15,75	7,05467E-05	3,571428571	773,5714286
28	KSKB	250	B&D	680	12,5	0,000112	5,67	685,67
29	KSKA	400	B&D	770	20	0,00004375	2,21484375	772,2148438
30	DGAS	315	B&D	770	15,75	7,05467E-05	3,571428571	773,5714286
31	PASR	250	B&D	680	12,5	0,000112	5,67	685,67
32	SLWA	400	Unindo	930	20	0,00004375	2,21484375	932,2148438
33	BDKA	315	Sintra	770	15,75	7,05467E-05	3,571428571	773,5714286
34	BDKK	250	SIntra	80	12,5	0,000112	5,67	85,67
35	GPPK	250	Unindo	680	12,5	0,000112	5,67	685,67
36	DHLB	400	B&D	930	20	0,00004375	2,21484375	932,2148438
37	DHLK	250	Unindo	680	12,5	0,000112	5,67	685,67
38	DHLT	630	Unindo	1300	31,5	1,76367E-05	0,892857143	1300,892857
39	DHLA	400	Unindo	930	20	0,00004375	2,21484375	932,2148438
40	KDHM	250	Starlite	680	12,5	0,000112	5,67	685,67
41	AMPK	400	Starlite	930	20	0,00004375	2,21484375	932,2148438
			Tota	Losses				33741,63618

4.2 Total Susut Teknis

Total susut teknis adalah besarnya energi yang hilang dalam penyaluran daya listrik pada penyulang. Pada penelitian ini, susut teknis dibatasi hanya pada susut konduktor penyulang dan susut transformator daya pada penyulang.

Besarnya susut total teknis adalah:

$$\begin{aligned} P_{teknis} &= P_{konduktor} + P_{transformator} \\ &= 161.27 + 33,74 \\ &= 195,01 \text{ kW} \end{aligned}$$

4.3 Susut Non Teknis

Susut non teknis adalah susut yang diakibatkan oleh hal-hal non teknis seperti kesalahan pembacaan meter, pencurian listrik, gangguan dan lain-lain. Besarnya susut non teknis bisa dihitung dari selisih susut total saluran dengan susut teknis.

Susut non teknis (kW) = Susut total - Susut teknis

4.4 Susut Energi Tahunan

Susut tahunan adalah besarnya Losses dalam jangka waktu satu tahun. Pada PLN distribusi rayon jatiwangi, diadakan evaluasi susut energi pada beberapa periode waktu dalam setahun, yaitu perbulan, triwulan, dan pertahun. Evaluasi ini diperlukan untuk menekan susut energi pada

penyulang.

Besar susut tahunan pada penyulang Jatiwangi menurut persamaan (2.8) adalah:

$$\begin{array}{ll} P_{kWh}(tahunan) & = P_{susut\ total}\ x\ F_{LS}\ x\ 8640 \\ & = 640,97\ x\ 0,633\ x\ 8640 \\ & = 3.505.541,85\ kWh \end{array}$$

4.5 Alternatif Perbaikan Losses

Berdasarkan perhitungan terlihat bahwa nilai susut energi terbesar adalah pada penghantar dan transformator (susut teknis) sebesar 30,42% dari nilai susut totalnya. Untuk itu, dalam permasalahan ini penulis lebih memberikan solusi dengan memproritaskan solusi penurunan susut energi pada penghantar dan transformator.

4.5.1 Perbaikan Susut Pada Jaringan SUTM

Perbaikan susut pada jaringan SUTM adalah perbaikan yang dilakukan hanya pada sisi penyulang yang dilakukan dengan cara menaikan tegangan penyulang dan penggantian konduktor penyulang. Berikut adalah skenario-skenario perbaikan pada jaringan SUTM:

1. Menaikan Tegangan Penyulang menjadi 21 kV

Maksud skenario 1 ini adalah menaikkan tegangan sumber dari gardu induk dari 20 kV menjadi 21 kV. Harga ini masih dalam toleransi SPLN 1 tahun 1978. Toleransi yang diizinkan sebesar 5% dari tegangan SUTM (20 kV). Dapat dijelaskan dengan persamaan sebagai berikut:

$$P_L = V_L \times I_L \times \cos\Theta$$

$$P_1 = V_1 \times I_1 \times \cos\Theta$$
Dimana:

 P_L = Daya pada perhitungan lapangan

 P_1 = Daya pada skenario 1

Daya pada saluran dianggap sama (PL = P1). Sehingga:

$$P_L = P_1 = 20000 \times 225 \times 0,85$$

= 3.825.000 W
= 3.825 kW

Pada perhitungan lapangan, dengan daya saluran sebesar 3.825 kW pada rating tegangan 20.000 V didapatkan arus saluran sebesar 225 A. Sedangkan jika skenario 1 dijalankan, rating tegangan dinaikan sampai 21.000 V, maka mengacu pada persamaan (2-9) didapatkan:

Sehingga arus penyulang pada skenario 1 menjadi 214,89 ampere.

2. Mengganti Konduktor dengan Nilai Resisitansi yang Lebih Kecil

Dapat terlihat bahwa nilai susut daya penghantar berbanding lurus dengan nilai resistansi penghantar. Semakin kecil resistansi pada penghantar, maka akan semakin kecil pula nilai susut daya pada penghantar.

Dalam hal ini penulis mengambil solusi dengan mengganti tipe kabel A3CS menjadi XLPE NA2XSEKBY Karena nilai resistansi kabel XLPE NA2XSEKBY lebih kecil daripada A3CS. Sehingga nilai totalnya dengan panjang penyulang 27,4 km adalah sebesar:

a. Kabel XLPE NA2XSEKBY 3x150mm²

Resistansi tipe kabel XLPE NA2XSEKBY 3x150mm pada penyulang Jatiwangi (l=21,9 km) ini adalah sebagai berikut:

$$P = 0.0175 \Omega / \text{km}$$

Merujuk ke pesamaan (2.7), Maka besar R keseluruhan adalah:

R_{sal} XLPE NA2XSEKBY 3x150mm²

 $= 0.0175 \times 21.9$

 $= 0.383 \Omega$

Sehingga didapatkan nilai susut konduktor berdasarkan persamaan (2.1) sebesar:

$$P_{kond}$$
 = $I^2 \times R_{sal} \times LPE \times NA2 \times SEKBY \times 3x150 mm^2$
= $225^2 \times 0,383$
= $19.389 \times W$
= $19.4 \times W$

b. Kabel XLPE NA2XSEKBY 3x70mm²

Resistansi tipe kabel XLPE NA2XSEKBY 3x70mm pada penyulang Jatiwangi (l=1,06 km) ini adalah sebagai berikut:

$$P = 0.0235 \Omega / \text{km}$$

Merujuk ke pesamaan (2.7), Maka besar R keseluruhan adalah:

0,2491 <u>Ω</u>

=

Sehingga didapatkan nilai susut konduktor berdasarkan persamaan (2.1) sebesar:

$$\begin{array}{ll} P_{kond} &=& I^2 & x & R_{sal} \\ NA2XSEKBY \ 3x70mm^2 \\ &=& 180^2 x \ 0,2491 \\ &=& 8070,8 \ W \\ &=& 8,07 \ kW \end{array}$$

c. Kabel XLPE NA2XSEKBY 3x35mm²

Resistansi tipe kabel XLPE NA2XSEKBY 3x35mm pada penyulang Jatiwangi (*l* =4,49 km) ini adalah sebagai berikut:

$$P = 0.0378 \, \underline{\Omega} \, / \, \mathrm{km}$$

Merujuk ke pesamaan (2.7), Maka besar R keseluruhan adalah:

$$R_{sal}$$
 XLPE NA2XSEKBY $3x35mm^2 = 0,0378 \times 4,49$
= $0,1697 \Omega$

Sehingga didapatkan nilai susut konduktor berdasarkan persamaan (2.1) sebesar:

 $= 117^2 \times 0.1697$

= 2.323 W= 2.3 kW

Jadi total losses yang terjadi pada konduktor adalah 29,77 kW.

5. KESIMPULAN

Dari penelitian ini, dapat disimpulkan:

- 1. Besar susut teknis pada penyulang Jatiwangi adalah 195,01 kW, sedangkan besar susut non teknisnya adalah 445, 96 kW.
- Susut tahunan pada Penyulang Jatiwangi adalah 3.505.541,85 kWh
- 3. Perbaikan Losses dengan cara menaikan tegangan 1 kV didapatkan arus sebesar 214,89 ampere yang sebelum nya adalah 225 Ampere.
- 4. Perbaikan Losses pada jaringan SUTM Susut konduktor berkurang sebanyak 29,77 kW yang sebelumnya adalah sebesar 161,27 kW.

DAFTAR PUSTAKA

- [1]. Asosiasi Profesionalis Elektrikal Indonesia (APEI) Daerah Jawa Barat (2003), *Materi Kursus Pengembangan Ahli Madya dan Utama*.
- [2]. Gonen, T. (1986), Electric Power Distribution System Engineering, Mc Graw-Hill.
- [3]. Kurtz, S., (1990), *The Lineman's and Cableman's Handbook*, Mc Graw-Hill.
- [4]. Putranto, D., H.T. (2000), Analisis Rugi-rugi Daya di Jaringan pada Sistem Distribusi Tegangan Menengah 20 kV, Universitas Jenderal Ahmad Yani, Bandung.
- [5]. Standard PLN 50 (1997), Spesifikasi Transformator Distribusi.
- [6]. Sulasno (2000), Teknik dan Sistem Distribusi Tenaga Listrik, Badan Penerbit Universitas Diponegoro, Semarang.
- [7]. Unindo (---), Three Phase TransformerData.
- [8]. Zuhal (2000), Dasar Teknik Tenaga Listrik dan Elektronika Daya, Gramedia, Jakarta.