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ABSTRACT This study presents a lower bound model for predicting the strip footing bearing capacity on 
rock masses with two sets of ubiquitous closed discontinuities. The model explicitly considers the intact 
rock’s strength and the discontinuities, as well as its number and orientation. The model validation was 
presented. The parametric study of footings on rock masses with two discontinuity sets having the same 
strength was performed, and the results were graphically reported in detail. It was observed that the bearing 
capacity was controlled primarily by the rock structures, such as the discontinuity sets and orientation, as 
well as the discontinuity strength. It is also controlled by the intact rock strength for a very limited number 
of cases. The minimum bearing capacity factor is independent of the intact rock friction angle, but it is a 
linear function of discontinuity cohesion. Furthermore, it is expressed in relation to UCS, in which the ratio 
for the maximum bearing capacity was insignificantly affected by intact rock friction angle, and not linearly 
correlated to discontinuity cohesion. This bearing capacity factor for rock masses with low discontinuity 
strengths tends to be more sensitive to variations in discontinuity orientation. The exception to the above 
points are that some rock mass conditions would lead to unexpected rock footing bearing capacities, 
indicating that good characterization processes of rock masses are always essential. Subsequently, the 
practical significance of this study was briefly discussed.  

KEYWORDS Rock footings; Rock masses; Bearing capacity; Discontinuity orientation; Discontinuity 
strength 

 

 

1 INTRODUCTION 
Strip footings are often the first selection when designing foundations on rock masses, and one of 
the design criteria is whether the rock mass is able to resist the imposed bearing pressure. This 
simply means that there is a need to analyze the rock footing bearing capacity, which is typically 
determined using empirical formulas or even prescribed values (e.g., Goodman, 1980), because of 
the difficulty in deriving the theoretical bearing capacity. This challenge primarily arises from the 
inability to properly characterize the rock mass structures and conditions such as discontinuity 
number, orientation, and strength. Despite this challenge, theoretical solutions were still developed 
for footings on rock masses with implicit discontinuities (e.g., Merifield et al., 2006 & Chakraborty 
and Kumar, 2015). Prakoso and Kulhawy (2004a) proposed the theoretical solutions for strip 
footings on rock masses with explicit sets of ubiquitous closed discontinuities, and further extend 
this study with "nominally open" vertical discontinuities (Prakoso and Kulhawy, 2006). Prakoso 
and Kulhawy (2006, 2011) performed Monte Carlo simulations and found that the variability of 
intact rock strength does not significantly affect the footing bearing capacity. The importance of 
rock discontinuities has also been reported by Prakoso and Kulhawy (2004b).  

This present study is an extension of the lower bound models for rock foundations proposed by 
Prakoso and Kulhawy (2004a), and it presents the bearing capacity of strip footings on rock masses 
with two sets of ubiquitous closed discontinuities. The model explicitly considers the strength of 
the intact rock and the discontinuities, as well as its number and orientation. Furthermore, a 
synthesis of general practical trends of the bearing capacity factor is to be highlighted.  
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2 LOWER BOUND BEARING CAPACITY MODEL 
Prakoso and Kulhawy (2004a) proposed a conservative lower bound bearing capacity model for 
strip foundations generally known as the Bell model (Bell, 1915), coupled with a simple 
discontinuity strength as shown in Figure 1a. This model assumes inherently that the discontinuity 
spacing is small relative to the mobilized rock mass, and therefore the discontinuity spacing is not 
considered explicitly in the model.  The overall approach can be easily performed manually or 
implemented in a spreadsheet program, and therefore may serve as a more rational alternative to 
arbitrarily prescribed values in many building codes. 

The lower bound bearing capacity of a strip footing on a rock mass surface is presented in the 
following format: 

𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑐𝑐𝑟𝑟 ∙ 𝑁𝑁𝑐𝑐𝑐𝑐  (1) 

Where cr = rock material cohesion and Ncs = bearing capacity factor. The rock mass weight 
affected by the footing is insignificant when compared to cr, hence, it is not taken into account in 
the model. The consequences of this assumption were that the footing width and its embedment 
depth do not significantly affect the bearing capacity (Galindo et al., 2017). The strength of the 
rock material and the discontinuities follow the Mohr-Coulomb criterion. The criterion used is 
admittedly a simplified approach, but it helps to have a consistent strength criterion for both the 
rock material and the discontinuities. Furthermore, the values used in this criterion could be 
derived from linearization processes of more advanced strength criteria for both the rock material 
and the discontinuities (e.g., Hoek, 2007). 

The shear strength of the rock material is given by: 

𝜏𝜏𝑟𝑟 = 𝑐𝑐𝑟𝑟 + 𝜎𝜎 𝑡𝑡𝑡𝑡𝑡𝑡 𝜙𝜙𝑟𝑟  (2) 

Where φr = rock material friction angle, and the shear strength along the i-th discontinuity set 
having an orientation angle of θ to the horizontal plane as shown in Figure 1 is expressed as 
follows: 

𝜏𝜏𝑗𝑗𝑗𝑗 = 𝑐𝑐𝑗𝑗𝑗𝑗 + 𝜎𝜎 𝑡𝑡𝑡𝑡𝑡𝑡 𝜙𝜙𝑗𝑗𝑗𝑗  (3) 

In which cji and φji are discontinuity cohesion and friction angle of the i-th discontinuity set, 
respectively. Meanwhile, the discontinuity has no tensile strength. 

The Bell model for a rock mass with two discontinuity sets is shown schematically in Figure 1b.  
The two discontinuity sets have orientation angles of θ1 and θ2 (= θ1 + Δθ, less than 180°). The 
method proposed by Prakoso and Kulhawy (2004a) is extended to two discontinuity sets with 
different strengths as detailed in the appendix. 

The results of this current model in terms of Ncs, were validated against those developed by 
Sutcliffe et al. (2004).  The bearing capacity factor for strip footings on rock masses with two 
discontinuity sets (Δθ = 15º, 45º, and 75º and same discontinuity strength parameters) was 
compared with that of Sutcliffe et al. (2004) as shown in Figure 2. It is noted that the results 
reported by Sutcliffe et al. (2004) have been further validated by Salari-Rad et al. (2013), in which 
two different sets of discontinuity strength parameters were considered for each Δθ value. Similar 
to the findings discussed in Prakoso and Kulhawy (2004), Ncs based on the current model was 
lower than that based on the other models, but the trend of Ncs variation with discontinuity 
orientation angle θ1 was similar for all parameter combinations. Based on the six combinations 
shown, the difference in Ncs between the two models depends on different rock mass parameters 
including discontinuity strength and orientation parameters. This validation process complements 
the one performed by Prakoso and Kulhawy (2004a) for strip footings on rock masses with one and 
two discontinuity sets (Δθ = 90º and the same discontinuity strength parameters) with those from 
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plasticity and finite element models reported by Davis (1980), Booker (1991), Alehossein et al. 
(1992), and Yu and Sloan (1994). 

a)   b)  
Figure 1. Assumptions: a) State of stress at failure for discontinuities, and b) lower bound capacity model for rock masses 
with one discontinuity set (modified after Prakoso and Kulhawy, 2004a).  

3 PARAMETRIC STUDY  
This is a parametric study for rock masses with two discontinuity sets that has similar strengths, 
even though the model is able to analyze different discontinuity strengths. For a reference, the 
values of Ncs for intact rock with φr = 30º, 35º, 40º, and 45º are 13.8, 18.0, 24.0, and 32.9, 
respectively. The lower bound bearing capacity was also expressed in terms of its ratio to the intact 
rock uniaxial compressive strength (qult/UCS), hence, the ratios for the above φr values are 4.00, 
4.69, 5.60, and 6.83, respectively. 

Three Δθ values were considered, and Figures 3, 4, and 5 show the results for Δθ = 90º, 60º, and 
30º, respectively. The general shape of Ncs curve, for any combination of discontinuity friction 
angle φj and discontinuity cohesion cj/cr, is different for rock masses having varying Δθ values, 
indicating a significant effect of the discontinuity orientation properties on rock footing bearing 
capacity. 

The general shape of Ncs curves for Δθ = 90º in Figures 3a through 3d is similar, relatively 
independent of combination of φj and cj/cr. Figures 3a and 3b suggest that, for rock masses with 
relatively low discontinuity shear strength, Ncs (= 13.8 – 32.9) is controlled by the intact rock 
strength for only very narrow ranges of discontinuity orientation angle θ1 (θ1 < 2º and θ1 > 88º). 
Similarly, Figures 3c and 3d suggest that, for rock masses with relatively high discontinuity shear 
strength, Ncs is controlled by the intact rock strength only for rock masses with relatively vertical or 
horizontal discontinuity sets (θ1 < 5º and θ1 > 85º).  For all these cases, beyond those discontinuity 
orientation angles, Ncs could drop very significantly with a slight change in θ1. 
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a)  

b)  

c)  
Figure 2. Result comparison of the model of Sutcliffe et al. (2004) and current model for rock masses with two 
discontinuity sets: a) Δθ = 15º, b) Δθ = 45º, and c) Δθ = 75º.  

According to Figure 3, Ncs for rock masses with orthogonal discontinuity sets reaches its minimum 
for θ1, ranging from about 15º to 75º. It was observed that the range does not change significantly 
as the discontinuity shear strength changes, meaning that the intact rock friction angle φr has 
practically no effect on Ncs. However, the discontinuity cohesion cj/cr has a more significant effect 
on Ncs such that Ncs for rock masses with lower discontinuity strength was lower. 

A comparison between Figures 4a and 4b as well as 4c and 4d for rock masses with Δθ = 60º 
showed that a change in φj altered the general shape of Ncs curves, while a change in cj/cr affected 
Ncs local peak shapes and values. Furthermore, Ncs local peak values are in most cases affected by 
the intact rock friction angle φr. 

This means that the existence of one vertical and/or horizontal discontinuity set (θ1 = 0, 30º, and 
90º) does not result in high Ncs, and no range of these values was controlled solely by the intact 
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rock strength as shown in Figure 4. Also, Ncs reaches its minimum in different ranges of θ1,  
depending on the discontinuity strength parameters. 

It was also observed that a comparison between Figures 5a and 5b as well as 5c and 5d for rock 
masses with Δθ = 30º showed that a change in φj widened the “plateau” of high Ncs values, and an 
increase in cj/cr also widen the “plateau” of high Ncs values. Furthermore, Ncs local peak values of 
the “plateau” of high Ncs values are affected by φr. 

This simply means that the existence of vertical and/or horizontal discontinuity sets (θ1 = 0, 60º, 
and 90º) does not result in high Ncs, and no range of these values was controlled solely by the intact 
rock strength as shown in Figure 5. Ncs also reaches its minimum at θ1 of about 30º, and θ1 value  
does not change significantly with the changes in discontinuity shear strength. 

a)   b)  

c)  d)  
Figure 3. Bearing capacity factor – two discontinuity sets with Δθ= 90º.  
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4 DISCUSSIONS  
The results of this model were synthesized to obtain the general trends in the bearing capacity of 
strip footings on rock masses with two discontinuity sets. It was observed from the cases presented 
in the twelve figures above that the bearing capacity was not controlled by the intact rock strength, 
except for a very limited number of cases. The bearing capacity was controlled primarily by the 
rock structures including the number of discontinuity sets, θ, and Δθ, as well as the discontinuity 
strength such as φj and cj/cr. 

The minimum Ncs for each combination of φj, cj/cr, and Δθ in Figures 3 to 5 were also examined. It 
is noted that the minimum Ncs is the most conservative Ncs value for rock strip footing design 
purposes.  Furthermore, the minimum Ncs is independent of the intact rock friction angle φr in all 
cases, except for the cases in Figure 4d. This minimum Ncs in general is a linear function of cj/cr, 
and for example, its value for cases in Figure 4a is linearly correlated to Figure 4c. 

The maximum Ncs for each combination of φj, cj/cr, and Δθ in Figures 4 and 5 were examined, while 
Figure 3 is independent of φj and cj/cr. It was observed that this maximum Ncs is a function of the 
intact rock friction angle φr, except for the cases in Figure 4a. However, φr has an insignificant 
effect when examined in terms of the ratio of maximum bearing capacity to UCS. The ratio varied 
from 3.07 to 3.11 for a relatively wide range of φr in Figure 4b, and varied from 3.83 to 3.87 for 
cases in Figure 5b. It was also observed that cj/cr does not significantly affect the ratio in Figure 4d 
(cj/cr = 0.5), as the ratio varied from 3.47 to 3.77, and does not linearly correlate with the ratio for 
cases in Figure 4b (cj/cr = 0.1). 

The ratio of maximum to minimum Ncs is generally a function of discontinuity strength, and it is 
used as an indicator for the sensitivity level of bearing capacity to any variation in θ. The ratios for 
cases with φr = 45° in Figures 4b and 4d, indicated a lower and higher discontinuity strengths of 
6.63 and 1.49, respectively, meanwhile Figures 5b and 5d, showed a lower and higher discontinuity 
strengths of 13.35 and 2.94, respectively. 

All the exceptions identified above indicated that some rock mass conditions have the potential to 
result in unexpected rock footing bearing capacities. These exceptions include higher and lower 
bearing capacity factors in Figure 3 and 4, which highlights the importance of a good 
characterization process of rock masses when designing rock footings. 

The mean and coefficient of variation of the empirical bearing capacity of footings on rock masses 
in terms of ratio to UCS were 3.46 and 26.8% as reported by Prakoso and Kulhawy (2003), while 
the minimum and maximum ratios were 2.40 and 5.21, respectively.  Although they are not directly 
comparable and need a more in-depth examination, the empirical ratios were in the same range of 
maximum bearing capacity ratios.  This means that the minimum bearing capacity ratios were too 
low, and the intact rock bearing capacity ratios were too high to be implemented in the rock footing 
designs. 

5 CONCLUSIONS 
This study presented a lower bound model for the bearing capacity of strip footings on rock masses 
with two discontinuity sets. It is important to note that this model has the ability to handle two 
discontinuity sets having different cohesion and friction angle values, but it was used to perform a 
parametric study of footings on those rock masses with the same discontinuity strength. It covered 
different rock structures and discontinuity strengths, and the results are highlighted below.  

• The bearing capacity was primarily controlled by the rock structures including the number 
of discontinuity sets, θ, and Δθ as well as the discontinuity strength, which include φj and 
cj/cr. This was controlled by the intact rock friction angle φr for a very limited number of 
cases. 
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• The minimum bearing capacity factor was independent of the intact rock friction angle φr, 
but it was a linear function of cj/cr. 

• The bearing capacity factor was also expressed in terms of its ratio to UCS. It was 
observed that the ratio for the maximum bearing capacity was insignificantly affected by 
φr, and not linearly correlated to cj/cr. 

• The bearing capacity factor for rock masses with low discontinuity strengths tended to be 
more sensitive to variations in θ.  

• The exception to the above four conclusions were that some rock mass conditions lead to 
unexpected rock footing bearing capacities, indicating that a good rock mass 
characterization process is always essential. 

In addition, the ratio for the maximum bearing capacity was relatively comparable with the 
empirical bearing capacity of footings on rock masses.  However, this comparison requires a more 
in-depth examination in the future. 

a)   b)  

c)  d)  
Figure 4. Bearing capacity factor – two discontinuity sets with Δθ= 60º.  
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a)   b)  

c)  d)  
Figure 5. Bearing capacity factor – two discontinuity sets with Δθ= 30º.  
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APPENDIX 
The procedure proposed by Prakoso and Kulhawy (2004a) is extended herein for two discontinuity 
sets having different discontinuity cohesion and friction angle values. 

1) To calculate the strength of Zone I. 

 a) Calculate the strength of rock material with σ3 = 0. 

 𝜎𝜎1𝑟𝑟 = 2 ∙ 𝑐𝑐𝑟𝑟 ∙ tan(45° + 𝜙𝜙𝑟𝑟/2) (A1) 

 b) Transform the discontinuity angles θ1 and θ2 for Zone I (θ1 = 0 to 90°). 

 𝜃𝜃1∗ = 90° − 𝜃𝜃1  (A2a) 

 For 𝜃𝜃1∗ ≥ Δ𝜃𝜃   𝜃𝜃2∗ = 𝜃𝜃1∗ − Δ𝜃𝜃  (A2b) 
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 For 𝜃𝜃1∗ < Δ𝜃𝜃   𝜃𝜃2∗ = Δ𝜃𝜃 − 𝜃𝜃1∗ (A2c) 

  Transform the discontinuity angles θ1 and θ2 for Zone I [θ1 = 90° to (180° – ∆θ)]. 

 𝜃𝜃1∗ = 𝜃𝜃1 −  90° (A2d) 

 For 𝜃𝜃1∗ + Δ𝜃𝜃 ≤  90°  𝜃𝜃2∗ = 𝜃𝜃1∗ + Δ𝜃𝜃  (A2e) 

 For 𝜃𝜃1∗ + Δ𝜃𝜃 > 90°   𝜃𝜃2∗ = 180− 𝜃𝜃1∗ − Δ𝜃𝜃 (A2f) 

 c) Calculate the strength of discontinuities for θ1 = 0 to 90°. Eq. A1 is used to satisfy the 
no tension requirement of the first discontinuity set, θ1

* ≤ φj1 while the equation below 
is used for θ1

* > φj1 

 𝜎𝜎1𝑗𝑗1 = 2 ∙ 𝑐𝑐𝑗𝑗1
�1−𝑢𝑢𝑡𝑡𝑡𝑡𝜙𝜙𝑗𝑗1 𝑢𝑢𝑡𝑡𝑡𝑡𝜃𝜃1∗⁄ � ∙ 𝑐𝑐𝑗𝑗𝑡𝑡(2𝜃𝜃1∗) (A3a) 

Eq. A1 is also used to satisfy the no tension requirement for the second discontinuity 
set, θ2

* ≤ φj2, while the equation below was used for θ2
* > φj2: 

 𝜎𝜎1𝑗𝑗2 = 2 ∙ 𝑐𝑐𝑗𝑗2
�1−𝑢𝑢𝑡𝑡𝑡𝑡𝜙𝜙𝑗𝑗2 𝑢𝑢𝑡𝑡𝑡𝑡𝜃𝜃2∗⁄ � ∙ 𝑐𝑐𝑗𝑗𝑡𝑡(2𝜃𝜃2∗) (A3b) 

 d) Calculate the strength of Zone I. 

 𝜎𝜎1−𝐼𝐼 = min�𝜎𝜎1𝑟𝑟,𝜎𝜎1𝑗𝑗1,𝜎𝜎1𝑗𝑗2� (A4) 

2) To calculate the strength of Zone II. 

 a) Establish the confining stress. 

 𝜎𝜎3−𝐼𝐼𝐼𝐼 = 𝜎𝜎1−𝐼𝐼 (A5) 

 b) Calculate the strength of rock material. 

 𝜎𝜎1𝑟𝑟 = 𝜎𝜎3−𝐼𝐼𝐼𝐼 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡2(45° + 𝜙𝜙𝑟𝑟/2) + 2 ∙ 𝑐𝑐𝑟𝑟 ∙ tan(45° + 𝜙𝜙𝑟𝑟/2) (A6) 

 c) Transform the discontinuity angle θ2 for Zone II, whereθ1 = 0 to 90°. 

 𝜃𝜃1∗∗ = 𝜃𝜃1  (A7a) 

 For 𝜃𝜃1∗∗ + Δ𝜃𝜃 ≤  90°  𝜃𝜃2∗∗ = 𝜃𝜃1∗∗ + Δ𝜃𝜃  (A7b) 

 For 𝜃𝜃1∗∗ + Δ𝜃𝜃 > 90°   𝜃𝜃2∗∗ = 180° − 𝜃𝜃1∗∗ − Δ𝜃𝜃 (A7c) 

  Transform the discontinuity angle θ2 for Zone II and [θ1 = 90° to (180° – ∆θ)]. 

 𝜃𝜃1∗∗ = 180° − 𝜃𝜃1 (A7d) 

 For 𝜃𝜃1∗∗ ≥ Δ𝜃𝜃   𝜃𝜃2∗∗ = 𝜃𝜃1∗∗ − Δ𝜃𝜃  (A7e) 

 For 𝜃𝜃1∗∗ < Δ𝜃𝜃   𝜃𝜃2∗∗ = Δ𝜃𝜃 − 𝜃𝜃1∗∗ (A7f) 

 d) Calculate the strength of discontinuities for θ1 = 0 to 90°. Eq. A6 is used to satisfy the 
no tension requirement for the first discontinuity set, θ1

** ≤ φj1, and, for θ1
** > φj1, the 

following equation is used: 

 𝜎𝜎1𝑗𝑗1 = 𝜎𝜎3−𝐼𝐼𝐼𝐼 + 2 ∙ 𝑐𝑐𝑗𝑗1 + 2 ∙ 𝜎𝜎3−𝐼𝐼𝐼𝐼 ∙ 𝑢𝑢𝑡𝑡𝑡𝑡𝜙𝜙𝑗𝑗1
�1−𝑢𝑢𝑡𝑡𝑡𝑡𝜙𝜙𝑗𝑗1 𝑢𝑢𝑡𝑡𝑡𝑡𝜃𝜃1∗∗⁄ � ∙ 𝑐𝑐𝑗𝑗𝑡𝑡(2𝜃𝜃1∗∗) (A8a) 



Vol 1, Issue 2, August, 2022 Indonesian Geotechnical Journal 
  

11 

 Eq. A6 is used to satisfy the no tension requirement for the second discontinuity set, 
θ2

** ≤ φj2, while for θ2
** > φj2, the following equation is used: 

 𝜎𝜎1𝑗𝑗2 = 𝜎𝜎3−𝐼𝐼𝐼𝐼 + 2 ∙ 𝑐𝑐𝑗𝑗2 + 2 ∙ 𝜎𝜎3−𝐼𝐼𝐼𝐼 ∙ 𝑢𝑢𝑡𝑡𝑡𝑡𝜙𝜙𝑗𝑗2
�1−𝑢𝑢𝑡𝑡𝑡𝑡𝜙𝜙𝑗𝑗2 𝑢𝑢𝑡𝑡𝑡𝑡𝜃𝜃2∗∗⁄ � ∙ 𝑐𝑐𝑗𝑗𝑡𝑡(2𝜃𝜃2∗∗) (A8a) 

 e) Calculate the strength of Zone II (end bearing capacity). 

 𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢 = 𝜎𝜎1−𝐼𝐼𝐼𝐼 = min�𝜎𝜎1𝑟𝑟,𝜎𝜎1𝑗𝑗1,𝜎𝜎1𝑗𝑗2� (A9) 
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