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Abstract
The 2D topography pro�ers a new challenge of modeling surface waves with a 4-point finite di�erence (FDM) model. Topographic
representation of wave propagation over a certain area will result in loss of accuracy of the numerical model. Then from this
the need for appropriate modifications to reduce calculation errors. The existing approach requires value representation as
an internal extrapolation solution for temporary exterior conditions. It is finally by providing boundary conditions and initial
conditions in the system. However, the scheme sometimes becomes unstable for very irregular topography. 1D extrapolation
along the parallel path is known to produce a simple and e�icient scheme. During extrapolation, the stability of the 1D hyperbolic
Schema improved by disregarding the nearest interior boundary point, which is less than half the la�ice distance. Given the
limited di�erence so that the stencils from both sides of the central evaluation point can be used as a 2D form modification if
there are not enough inside points. So that in propagation space, waves that move and change according to changes in time. It
will be following the wave nature of one source that travels in the x and y fields whose amplitude will change exponentially
against propagation time. It is by the nature of surface wave motion.
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1. INTRODUCTION

PDP continues to grow, from science and engineering problems
and involves mathematical models (Feng et al., 2018). One of
the uses of PDP is wave modeling. See (Liu et al. (2016); Raissi
et al. (2019)). The two-dimensional wave phenomenon can be
formulated with a mathematical model approach using Partial
Di�erential Equations (PDP) (Seadawy (2017); Raissi and Karni-
adakis (2018)). The nonlinear evolution equation often used to
describe some physical aspects that appear in various �elds of
nonlinear science (Yokus et al., 2017). where the value parame-
ters change with time and distance (Stynes et al. (2017); Jin et al.
(2014); Zheng et al. (2015); Le Vot et al. (2017)) and recognize
numerical integration (Rogov, 2019). One method used is the
�nite di�erence method (FDM).

The FDM has a simple form, �exibility (Yan et al. (2016);
Mori and Romao (2015)). To build numerical solutions, it is nec-
essary to carry out the proper discretization as initial conditions
and boundary conditions that can provide approximate solu-
tions for surface wave motion (Gerdt and Robertz, 2019). The
main advantage of FDM is that it is an asymptotic algorithm
that can simulate an entire wave�eld without losing accuracy.

In frequency-domain modeling, attenuation can be substituted
directly with the equation of system characteristics or imaginary
coe�cients. But in its application, the frequency domain will
be hampered by a linear system depending on the size of the
given equation (Yuan et al., 2018). From this, much of the focus
of publications in simulating wave propagation as an attenua-
tive medium with the time-domain method of �nite di�erence
(Xing and Zhu, 2018). A mechanical model can simulate quality
factors that are almost constant over a speci�ed frequency range.
Variable storage entered into the convolution stress and strain
relationship corresponding to numerical implementation.

The domain of a function partitioned to obtain several po-
sitions, and the approximation results show the derivative of
the Taylor series expansion at one or more partition points (Li
and Zeng, 2015). A reasonable discretization must provide a
convergence of numerical solutions in the boundary when ini-
tial conditions tend to be zero. Except for certain limitations so,
convergence cannot be built directly. Consistency and stabil-
ity analyzed as conditions needed for convergence. In contrast,
consistency indicates that when the grid distance tends to zero
and stability provides error limits in numerical data with rela-
tively small interference solutions. Based on this, the purpose
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of this study is to �nd out the numerical solutions of the two-
dimensional wave equation using the 4 point FDM approach as
a surface wave simulator.

2. EXPERIMENTAL SECTION

2.1 Methods
Studying 2D cases requires 1D literature, to learn some things
related to consider second-order, constant density with the wave
equation presented

1
c2
)2u
)t2 − ∇

2u = f (x, t) (1)

with

∇2u = )2u
)x2 , u(x, t)

is pressure, c is the speed of the wave, and f (x, t) is a representa-
tion of the grid solution xt = x0+tΔx , where t = 0, 1, 2, . . . , (x−1).
The standards are spatially criticized even to the order M is

)2u
)t2 |xt ≈ f

(Dxxu)t
(Δx)2 , (2)

Where,

(Dxxu)t = a0ut +
M/2
∑
k=1

am(ut+mut−m), and (3)

a0 =
M/2
∑
m=1

2
m2 , am = (−1)m

M/2
∑
m=n

2
M

(m!)2
(m − n)!(m + n)! ,

For m = n = 1, 2, 3, . . . , M/2 (Martin et al., 2015). The second-
order time-stepping scheme is

uk+1t − 2ukt + uk−1t = (
ciΔt
Δx )

2

(Dxxu
k
) + Δt

2f tk (4)

With sample time tk = t0 + kΔt if the boundary of the right
side of the domain is at the dot xb = x(x−1) + �Δx, � �(0, 1) with
initial conditions )2mu(t,xb)

)t2m = 0 with a limit m�N . if c(x) is
the closest constant from the initial condition. So, as a result
of the extrapolation of polynomials to degrees M into shape
u(x) = ∑M

m=0 bm(x − xb)m . 1+M/2 is a result of initial conditions
bm = 0 with a positive m value = 0, 2, 4, . . . while the other
coe�cient ism = 1, 3, 5, . . . of additional value-solution solutions
M/2 for each grid. For the case M = 4 then the extrapolation
formula is

(
ux
ux+1 ) = EI (

ux−2
ux−1 ) (5)

Figure 1. The Illustration of a two-dimensional hyperbolic
scheme

with

EI = (
− (1−� )(1−2� )(1+� )(1+2� ) − 4(1−� )1+2�
− 4(2−� )(1−� )(1+� )(1+2� ) − 3(2−� )(1−2� )� (1+2� ) ) (6)

In this case, the element EI2,2 with the denominator � , which
is near zero, will cause instability. The scheme labeled I , be-
comes unstable when � ↓ 0 at the last term of the mesh point.
However, instability can be suppressed by reducing the time
step by choosing �0 = 1/2 , Then extrapolation for the 4tℎ order
becomes,

(
ux
ux+1 ) = EI I (

ux−3
ux−2 ) (7)

EI = (
− 4� (1−� )
(2+� )(3+2� ) − 3(1−� )(1+2� )(1+� )(3+2� )

− 3(2−� )(1−2� )(2+� )(3+2� ) − 8� (2−� )
(1+� )(3+2� ) ) (8)

With the following illustration as shown in Figure 1 (Ghosh and
Constantinescu, 2016).

Similarly, if the second-order time step scheme is presented
in two coordinates as a Laplacian function ∇2u = )2u

)x2 +
)2u
)y2 .

where the x-axis representation de�ned as,

)2u
)x2 |t,j =

ukt,j+1 − 2ukt,j + ukt,j−1
Δx2 (9)

The y-axis is de�ned as

)2u
)y2 |i,j =

ukt+1,j − 2ukt,j + ukt−1,j
Δy2 (10)

As for the representative t according to equation (4) obtained

)2u
)t2 |k =

uk+1t,j − 2ukt,j + uk−1t,j
Δt2 (11)

The next step is to determine the boundary conditions, u(0, y, t) =
0; u(2, y, t) = 0; u(x, 2, t) = 0 while the initial system condition is

u(0, y, t) = 0, 05cos(�x)sin(�y); )u(x, y, 0))t = 0 (12)
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With a hose 0≤x≤2, 0≤y≤2, and 0≤t ≤2, With the parame-
ters used as follows c2 = 0, 025, B = [0404], T = 8, mx = my =
100, n = 50 where T is the periodization and n are many itera-
tions.

3. RESULTS AND DISCUSSION

The FDM method is a topographic representation of the propa-
gation of waves in a certain area, which in its application can
be used to analyze partial di�erential equations that are di�cult
to solve analytically, such as the 4-point FDM method obtained
from the equation,

(
ukt,j+1 − 2ukt,j + ukt,j−1

Δx2 + ukt+1,j − 2ukt,j + ukt−1,j
Δy2 ) = 1

c2
uk+1t,j − 2ukt,j + uk−1t,j

Δt2
(13)

Equation 13 describes the discrete form of the 2-dimensional
wave equation at the approximate point of calculation. The
network of points on the x and y axes is assumed to be the
proportion of a rectangular plane. So from equation (13) by
algebraic manipulation, the iteration formula is obtained like
equation (14)

ukt,j+1 = rxukt,j+1+rxukt,j11+2ukt,j−2rxukt,j−2ryukt,j+ryukt+1,j+ryukt−1,j−uk−1t,j (14)

with
rx = c2 Δt

2
Δx2 , ry = c

2 Δt2
Δy2 and Δx = xf

mx ,Δy =
yf
my ,Δt =

T
n . xf

is largest x-axis limit and yf is largest y-axis limit. Equation (14)
only applies to k > 0 at the beginning where k = 0, then there
is a term with a time index = -1. The last term in the iteration
formula of equation (14) distributed through the �rst derivative
formula. So obtained,

u1t,j − u−1t,j
2Δt = i′0(xj , yt ) (15)

u1t =
rxu0t,j+1+rxu0t,j−1+ryu0t+1,j

2 (16)
+ryu0t−1,+2u0t,j−2rxu0t,j−2ryu0t,j i

′
0 (xj ,yt )Δt

2

from equation (10) the condition of the stability of the system
is obtained

r = 4c2Δt2
Δx2 + Δy

2 ≤ 1 (17)

The program de�nes PDP as follows

)2u(x, y, t)
)x2 + )2u(x, y, t)

)y2 − 1
0, 025

)2u(x, y, t)
)t2 = 0 (18)

Figure 2. Visualization Results

Based on equation 18, solutions for real and imaginary sys-
tems can be obtained, which write in equations 19 and 20. If the
real system is di�erent, then the solution of equation (18) is

(x, y) =
{

ek
e−k andt =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

e
√
4(0,025k2)

2 i

e
−√4(0,025k2)i

2 i
(19)

If the system is imaginary, then the solution of equation (18) is

(x, y) =
{

eik
e−ik andt =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

e
√
4(0,025k2)

2 i

e
−√4(0,025k2)i

2 i
(20)

with value , where l is the length of the path, the plane traversed.
In this case, the system is considered imaginary so the general
solution obtained is

u(x, y, t) = Csinn�l xsin
n�
l ycos

√
4(0, 025(n�l )2)

2 t (21)

Based on the scheme in Figure 1 and equation 18, the analysis
results can be obtained in the form of wave visualization using
the 4-point FDM method (Figure 2).

Based on Figure 2, when observed at each change in iteration
time, it is known that the wave crests and troughs have changed.
The visualization of changing waves due to an increase in itera-
tion time of 0.64 s, where the formed waves change and shift to
the right and continue continuously until the speci�ed iteration
limit. The shape of this visualization change because by the
changing in the quantization of time that occurs exponentially
if in real-time or imaginary it will form a sinusoidal state.

4. CONCLUSIONS

Modi�ed FDM modi�cation allows the merging of topography in
2D wave schemes whose density is constant for the second order.
The existing extrapolation scheme was modi�ed and simpli�ed
from the form of 1D operations. With additional extrapolation
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constraints that do not include the closest point of the speci�ed
limit in half grid spacing. It allows the method to run at the same
stability as an interior scheme. Although the implementation
of the 1D scheme for coordinate directions results in a simpler,
more stable, and more robust scheme, it will lose its accuracy
if the problem given more complexity. Because accuracy will
also be reduced, but this interior model might be acceptable in
practice. So based on the results of this study, it can be concluded
that by involving initial conditions and boundary conditions, the
stability of the system obtained in the propagation space. The
simulation wave moves and changes with time. It is under the
wave nature of one source that travels in the x and y plane, such
as the nature of surface motion.
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