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Abstract  

 
The new composite material Al(III)-TiO2 has been synthesized and applied as a modifier of 

graphene paste electrode for the determination of fipronil pesticide by cyclic voltammetry. The 

methods were to synthesis of Aluminum-Titanium dioxide (AT), preparation of graphene paste 

electrode with mass varied Al(III)-TiO2 (GAT) (0.05 g, 0.1 g, 0.2 g), and fipronil electroanalytic 
respons. Addition of Al(III)-TiO2 to the graphene paste electrode shows redox properties which 

are well characterized by a fast electron transfer process. Based on the results of 
measurements in a solution containing fipronil, it is known that fipronil is oxidized at a potential 

value of 0.26 V. Furthermore, the fipronil oxidation process on the GAT surface is influenced 
by diffusion control, this is powered by R2 value 0.91 when plotted between peak oxidation 

currents (Ipa) vs. root scan rate. Other results show that measurement linearity is in the range 
0.01 to 0.09 µg/L with a limit of detection (LOD) value of 0.0164 μg/L. Moreover, GAT shows 

good stability in the determination of fipronil with% RSD equal to 5%. 
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1. Introduction  

Organic pesticides have been widely used in 
agriculture because they have high 
performance to eradicate pests, diseases, and 
weeds in plants. However, there are negative 
impacts caused to living things due to 
contamination of hazardous substances. One 
type of insecticide that is classified as 
Pollutant Organic Persistance (POPs) is 
Fipronil (Maulidiyah et al., 2019). Fipronil is a 
member of a group of phenyl pyrazole 
compounds (5-amino–1-[2,6-dichloro-4-
(trifluoro-methyl)phenyl]-4 (trifluoromethyl) 
sulfinyl]-1H-pyra-zole-3-carbonitrile) (Wang 
et al., 2016). Fipronil is a insecticide that is 
designed for plants such as wheat, rice, 
cotton, sorghum, corn, and other grains. 
Excessive use of pesticides can cause 
residues from pesticides to be difficult to 
accumulate in the environment and body 
(Kim et al., 2019). 

Electrochemical techniques have been 
reported as techniques with good sensitivity 
and selectivity for the determination of 
fipronil pesticide compounds (Nurdin et al., 
2019a). The presence of fipronil in the 
environment is a serious concern due to its 
toxic nature (Tu et al., 2019), the slow 

degradation process (Stafford et al., 2018), 
and its impact on aquatic animals and marine 
invertebrates (Gunasekara et al., 2007; Guo 
et al., 2018). The results of a recent study 
reported that fipronil has a high affinity for 
human receptors which triggers nerve 
disorders (Gan et al., 2012; Kim et al., 2019; 
Ly et al., 2019). In addition, the degradation 
of fipronil will produce derivative compounds 
such as desulfinyl which are far more 
dangerous than fipronil molecules (Vasylieva 
et al., 2015). 

In general, the detection of fipronil was 
carried out using a high-performance liquid 
chromatograph (HPLC), thin-layer 
chromatography (TLC) method, and gas 
chromatography-mass spectrometry (GC-
MS) technique (Vı́lchez et al., 2001; Jimenez 
et al., 2008; Wang et al., 2014). 
Furthermore, some measurement techniques 
based electrochemical that are being 
developed includes amperometry (Pesavento 
et al., 2009), potentiometry (Prasad et al., 
2007), voltammetry (Alizadeh 2009), and 
chronopotentiometric (Đurović et al., 2016). 
Simple tool preparation (Zhang et al., 2014), 
low cost of measurement (Ensafi et al., 
2013), short measurement time (Janegitz et 
al., 2012), and good stability (Yang et al., 
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2012) are the reasons why this technique 
continues to be developed for the 
determination of pesticide compounds. The 
performance of the voltammetry method is 
strongly influenced by the working electrode 
as the site of the oxidation reaction and 
reduction of the analyte molecule. 

One of the working electrodes that have been 
developed is the graphene paste electrode. 
Graphene paste electrode is a working 
electrode in voltammetry. Graphene has 
excellent physical and chemical properties 
that can make it an electrical device and 
sensor. Graphene as a material with thin 
sheets of carbon atoms that form a regular 
hexagonal lattice has excellent electrical 
conductivity (Agusu et al., 2018). The 
excellent electrical conductivity of graphene 
makes it easy for the electron exchange 
between analyte molecules to be very 
efficient to be used as a base material for the 
working voltage of a voltammetry cell. 

Modification of working electrodes is an 
important part of developing the technique. 
Modified working electrode carbon-nanotube 
(MWCNT)-glassy carbon electrodes (GCEs) 
(Montes et al., 2016), Graphite-polyurethane 
(GPU) composite electrode (Okumura et al., 
2016), and ZnO@g-C3N4 modified glassy 
carbon electrode (Yin et al., 2019), and 
FeO.TiO2-CPE (Nurdin et al., 2019a) have 
been reported to be able to detect fipronil 
compounds in different samples. Although the 
modification of the electrode shows high 
sensitivity with a low detection limit, 
electrode modification is still an interesting 
study in the past year. It aims to get accurate 
measurements on different matrices such as 
food, soil, and water. 

In this work, we report the performance of 
Al(III)-TiO2 nanocomposites as a new 
composite material in determining fipronil by 
cyclic voltammetry using graphene paste 
electrodes. In general, Al(III)-TiO2 is reported 
to have high oxidation and reduction currents 
(Desireé et al., 2015; Murtada et al., 2018), 
but its application has not been reported as a 
composite material for the development of 
general voltammetry sensors and specifically 
pesticide detection sensors. Graphene paste 
electrodes were chosen in this work by 
considering several advantages such as easily 
updated and modified, cheap, and very low 
current interference. Previous research, we 
have specifically reported TiO2 as an electrode 
composite to detect cypermethrin (Nurdin et 
al., 2019b) and phenol pesticides (Nurdin et 
al., 2019c). 

2. Methodology  
 
2.1. Materials  

The materials used were titanium 
isopropoxide (TTIP, Sigma-Aldrich), 
aluminum isopropoxide (ATIP, Sigma-
Aldrich), citric acid (powder of 98% purity, 
Sigma-Aldrich), graphene powder (Sigma-
Aldrich), paraffin oil (Merck-Germany, d = 
0.88 g cm−3), TiO2 degussa P25 (Merck-
Germany), fipronil compounds (99%, Sigma-
Aldrich, USA), hydrochloric acid (0.1 M, 
Sigma-Aldrich), sodium sulfate (Sigma-
Aldrich), Cd(II) solution (Sigma-Aldrich), and 
Pb(II) solution (Sigma-Aldrich). 

2.2. Preparation of GAT Electrode 

Preparation of GAT electrodes begins by 
synthesizing composite Aluminum-Titanium 
dioxide (AT). The synthesis process was 
carried out using TTIP and ATIP as 
precursors. In summary, ATIP powder is 
dissolved in TTIP solution and added citric 
acid as a complexing agent. Then the mixture 
was heated for 3 hours at a temperature of 
200 oC and continued with a temperature of 
650oC for 5 hours. The  obtained composites 
were mixed with graphene powder and 
paraffin oil at a temperature of 80 oC with a 
composite mass varied between 0.05 g, 0.1 
g, and 0.2 g. The formed paste has been 
homogenized.  

Glass tubes with a diameter of 3 mm were 
used as a paste container and connect to 
copper wire to provide current during 
electrochemical measurements. For compa-
rison, we used the Graphene-TiO2 (GT) 
composite electrode whose preparation refers 
to the procedure reported by (Nurdin et al., 
2019c). Graphene powder, paraffin oil, and 
TiO2 degussa were simultaneously mixed with 
a ratio of 7: 3: 1, and homogenized at 80 oC. 

2.3. Electroanalytical Response of 
Fipronil 

The electroanalytic response of the fipronil 
compound was carried out by the 
voltammetry method using the DY2100B 
potentiostat with three electrode systems 
namely GAT as the working electrode, 
Ag/AgCl saturated in 3.0 M KCl as the 
reference electrode and platinum wire as 
auxiliary electrodes. For analytical purposes, 
fipronil compounds with concentrations of 0.1 
μg/L were made by mixing them in a mixture 
of  hydrochloric  acid  and  sodium  sulfate as
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Figure 1. Scheme of the experimental 

 
 
supporting electrolytes. The fipronil 
concentration was applied in 0.01, 0.03, 0.05, 
0.07, and 0.09 µg/L to determine the linearity 
areas and LOD. We also determination the 
stability for 14 times. Scheme of the 
experimental shown in Figure 1. 
 
3. Results and Discussion  
 
3.1. GAT Response in Fipronil Solution 

Figure 2 shows the performance of the GAT 
electrode in detecting fipronil pesticides (solid 
line) in a solution containing a mixture of 
electrolytes supporting HCl and Na2SO4 of 0.1 
M, respectively. Based on the figure, it can be 
seen that fipronil oxidizes at anodic potential 
(Ea) of 0.26 V with a current anodic peak (Ipa) 
of 262 µA. Compared to the Graphene-TiO2 
(GT) electrode (dot line), the performance of 
GAT in fipronil oxidation is much better, this 
is seen with the value of Ea fipronil in the GT 
of 0.57 V with a small value of the Ipa and a 
widening peak.  

The results of previous studies reported that 
during the oxidation process, fipronil released 
2 protons and electrons (Maulidiyah et al., 
2019). The difference in the potential value of 
the two electrodes explains that the transfer 
of electrons between fipronil molecules and 
GAT electrodes is faster than GT. The 
combination of aluminum composite and TiO2 
(AT) has a significant influence on the 
performance of the electrode. Both cause the 
conductivity and surface area of the GT to 
increase (Munir et al., 2019; Xu et al., 2019). 
In addition, it also increases catalytic activity 
and the effectiveness of the electrode surface 
in fipronil oxidation. In general, the 
electroanalytic response of GAT in fipronil 
oxidation is much faster than MWCNT/GCEs 

(Montes et al., 2016), and GPU(Okumura et 
al., 2016). 

 

Figure 2. Voltammogram cyclic electrode GAT 

(solid line) and GT (dot line) in a 

solution of fipronil 

The effect of AT modifier composition is also 
studied in this work. Like other modifiers, the 
mass of AT can affect the transfer of electrons 
and the resulting peak current on graphene 
paste electrode. Figure 3 shows that the 
addition of AT as much as 0.2 g (Figure 3c) 
causes electron transfer faster than the 
addition of AT at 0.05 g (Figure 3a), and AT 
at 0.1 g (Figure 3b). Addition of AT as much 
as 0.2 g causes a decrease in Ipa fipronil. 
Measurement during this work, a GAT 
electrode is used with an addition of AT of 0.2 
g. The basic consideration is that the 
reduction in Ipa does not significantly change. 
 
The difference in scan rate potential (20 
mV/s, 50 mV/s, 100 mV/s, and 200 mV/s) in 
fipronil oxidation shows a linear relationship 
as shown in Figure 4. The fipronil oxidation 
current increases linearly with an increasing 
potential scan rate (Figure 4A). This linear 
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relationship results from GAT interactions 
with redox species during the formation of 
multiple electrical layers. The potential 
difference in scan rate does not cause a 
significant change in the value of Ea fipronil. 
 

 
Figure 3. Voltammogram cyclic GAT response in 

a solution of fipronil with mass 

variation AT: (a) 0:05 g; (b) 0.1 g; (c) 
0.2 g 

 
Figure 4. (A) Potential scan rate difference; (B) 

Interpolate the peak current vs. root 
scan rate. Linearity, detection limit, 

and GAT stability 

In addition, based on the interpolation results 
of Ipa fipronil versus root scan rate (Figure 
4B), it shows a linear nature for fipronil 
oxidation with a linearity constant (R2) of 
0.91. This result shows that electron transfer 
on the surface of the electrode is controlled 
by the diffusion. This diffusion process is the 

difference in concentration between the 
surface of the electrode and the body of the 
solution which causes the molecules to move 
to the surface of the electrode (Maulidiyah et 
al., 2019). 

A high scan rate will cause the resulting 
diffusion layer to be thin so that the transfer 
of electrons on the electrode surface becomes 
easier and the peak current produced is also 
greater. Conversely, a small scan rate results 
in the thickness of the resulting diffusion 
layer, thus inhibiting the electron transfer 
process at the electrode surface and the 
resulting peak current is small (Nurdin et al., 
2019b). 

3.2. Linearity, Detection Limit, and GAT 
Stability 

Linearity is the ability of the analytical method 
to produce a response that is directly 
proportional to the concentration of the 
analyte (Wibowo et al., 2017). The equation 
of a linear line is determined by making a plot 
between the resulting peak current (µA) and 
the concentration of the fipronil solution 
(µg/L). The detection limit of the 
measurement of fipronil pesticides is studied 
to find out the smallest amount of analyte in 
a sample that can still be detected and still 
gives a significant response compared to the 
blank. The GAT response in the fipronil 
analysis was also carried out with different 
fipronil concentrations ranges of 0.01 to 0.09 
µg/L (Figure 5).  

Figure 5A shows a voltammogram with an 
increase in Ipa that is linear with changes in 
the concentration of fipronil solution. The 
linear concentration of fipronil solution 
measurement from 0.01 to 0.09 µg/L 
obtained an Intercept of 70.75 with a slope of 
325x to obtain a linear equation y = 325x + 
70.75. The purpose of making this linear 
curve is to find out a good working range of 
standard linearity in fipronil measurements. 
The plot between Ipa vs concentration fipronil 
(Figure 5B) shows a linear regression 
equation with a linearity constant (R2) of 
0.96. The level of correlation between the 
correlation value R2 with a range of 0.80-1.0 
has a very strong linear relationship 
(Mursalim et al., 2017). The maximum 
residual limit (MRLs) of fipronil in 
environment ± 0.1 μg/L (Standard 2008). 
Based on the results of the analysis, it is 
known that the detection limit value for the 
fipronil measurement uses GAT of 0.0164 
μg/L.  
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Figure 5. (A) Voltammogram linearity area fipronil 

0.01 to 0.09 µg/L; (B) fipronil linearity 

curve; (C) reproducibility measurements 

Table 1. Comparison of detection results of fipronil 
from various working electrodes 

 

Working 

electrode 

Method 
LOD 
(µg/

L) 

References 

MWCNT/GCE

s 

Ampero

metric 

1.88 (Montes et 

al., 2016) 

Graphite-

polyurethane 

(GPU) 

SWVS 0.80 (Okumura et 

al., 2016) 

 

ZnO@g-

C3N4/GCE 

Electroch

emilumin
scence 

(ECL) 

0.65 (Yin et al., 

2019) 

FeO.TiO2-

CPE 

Cyclic 

voltamm
etry 

(CV) 

1.04 Nurdin et 

al., 2019a) 

Al(III)-

TiO2/Graphe
ne 

Cyclic 

voltamm
etry 

(CV) 

0.016

4 

This work 

In addition, GAT also shows good stability 
(Figure 5C) in detection of fipronil with% RSD 
of 5% (Yuan-Yuan et al., 2015). Several 
comparisons of electrochemical techniques in 
detecting fipronil with the use of electrodes 
and different modifiers are shown in Table 1. 
 

3.3. Effect of Disturbing Ions 

The electrode selectivity used needs to be 
known before the stage application on the 
environment. One way to determine the level 
of selectivity is to add disturbing ions to the 
fipronil solution to determine the 
effectiveness of the electrodes in detecting 
pesticide compounds in the presence of other 
compounds or ions in the same analyte. 

 

Figure 6. GAT response with the presence of 
heavy metal interference ions 

Figure 6 shows the effect of confounding ions 
on the electroanalytical GAT response in the 
fipronil analysis. The interfering ions tested 
are heavy metal ions such as Cd2+ and Pb2+ 
with different ion concentrations. The result 
shows that the GAT response to fipronil 
anodic currents has decreased. However, 
based on the calculation of the standard 
deviation carried out, the decline can still be 
tolerated.  

4. Conclusion  

The electroanalytic response of the GAT 
electrode in a solution containing fipronil has 
been studied in this work. GAT synthesis was 
carried out using the sol-gel method with the 
presence of TTIP and ATIP as precursors. 
During the testing process, we observed that 
fipronil was oxidized at anodic potential of 
0.26 V. This potential was recorded on the use 
of fipronil solution with a concentration of 0.1 
μg / L in a mixture of electrolytes supporting 
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HCl and Na2SO4 with a concentration of 0.1 M 
respectively. The addition of Al (III) -TiO2 
nanocomposite by 0.2 g causes faster 
electron transfer at the GAT surface. The 
resulting detection limit of 0.0164 μg/L shows 
the sensitivity of measurement with good 
stability. In addition, the presence of 
disturbing ions in the form of metal ions Cd2+ 
and Pb2+ does not have a significant effect on 
the anodic current and potential of fipronil. 
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