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Abstract 

This study investigated the structural and electronic properties of bulk, bilayer, and monolayer SnSe using the density 

functional theory (DFT) method. We succeeded in calculating the bandgap and identifying accurately the transformation 

of the band structure from bulk to monolayer systems using generalized gradient approximation. An increase in the lattice 

parameter a and a decrease in the lattice parameter b were observed when the bulk dimensions were reduced to a monolayer. 

The reduction of van der Waals interactions when the dimensions of a system are reduced is the main factor that causes 

changes in lattice parameters. The indirect bandgap of bulk SnSe (0.56 eV, 0.3∆→0.7Σ) becomes wider in the monolayer 

system (0.94 eV, 0.2∆→0.8Σ). Bandgap widening is predicted due to the emergence of the quantum confinement effect in 

low-dimensional systems. Furthermore, we found the formation of a quasi-degenerate minimum conduction band in the 

monolayer SnSe. With the formation of these bands, we predict the monolayer SnSe will have better thermoelectric 

properties than the bulk or bilayer system. This study provides an in-depth understanding of the electronic structure of 

SnSe and its correlation to thermoelectric properties. 
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INTRODUCTION 
 

Following the isolation of graphene for the 

first time, theoretical and experimental research on 

optimizing the physical properties of graphene has 

increased [1–4]. The superior mechanical, electronic, 

and thermal properties of graphene cannot be 

separated from the quantum confinement effect due 

to dimensional reduction [5]. However, its high 

thermal conductivity and zero bandgap 

characteristics make graphene less suitable for 

thermoelectric and optoelectronic device applications 

[6,7]. These conditions motivated researchers to look 

for other 2D materials with exciting properties, such 

as members of the layered group IV–

monochalcogenides MX (M = Ge, Sn;    X = S, Se, 

Te) [8–10]. Monolayer tin sulfide (SnS) is a p-type 

semiconductor with a moderate bandgap of 1.1 eV 

[11]. By using a charge transfer mechanism, 

monolayer SnS has potential as an acetone sensor for 

diabetes detection [9]. As a result of a unique 

electronic structure giving it a low energy difference 
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between its two maximum valence band extremes, 

monolayer SnS has good thermoelectric properties 

[11]. Monolayer GeSe exhibits a direct bandgap of 

1.59 eV and high charge carrier mobility of 4032.64 

cm2V-1s-1 [12]. Such conditions make monolayer 

GeSe a potential material for use in photovoltaic 

applications. The bandgap can be adjusted by 

reducing the number of layers [12]. The 

characteristics of Mexican-hat on the electronic 

structure of monolayer GeSe can induce ferroelectric 

properties with high Curie temperatures [13]. 

Recently, single-layer single-crystalline tin 

selenide (SnSe) was successfully synthesized using 

the one-pot colloidal route method [14]. The 

morphology of the resulting monolayer SnSe is 

highly dependent on the concentration of control 

agents such as phenanthroline, which regulates 

growth kinetics [14]. Monolayer SnSe shows an 

indirect bandgap of 0.86 eV, which means it is in the 

range of the energy spectrum of sunlight [14]. 

Furthermore, monolayer SnSe exhibits excellent 

photoresponse properties such as high photocurrent, 
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high response time, and high on/off ratio [14]. From 

the computational results, monolayer SnSe exhibits 

an indirect bandgap of 0.91–1.12 eV [15,16]. 

However, the modified Becke–Johnson (mBJ) 

approximation overestimates the bandgap [17]. The 

inclusion of weak van der Waals interactions also 

results in less precise bandgap calculations [15,17]. 

With the application of a slight strain, the energy gap 

of monolayer SnSe undergoes an indirect-direct 

transformation [17]. The low thermal conductivity 

(<3 Wm−1K−1 at 300 K) and the high charge carrier 

mobility (10000 cm2V−1S−1) of monolayer SnSe 

make it a potential material for thermoelectric and 

photovoltaic devices [14,17]. However, there are 

limited reports that discuss the transformation that 

occurs in the electronic structure when the 

dimensions of bulk SnSe are reduced to low-

dimensional nanostructures such as bilayer and 

monolayer systems. 

In this paper, we report a comparison of the 

structural and electronic properties of bulk, bilayer, 

and monolayer SnSe calculated using the density 

functional theory (DFT) method. We demonstrate a 

correlation between the transformation of electronic 

structure and the improvement of physical properties, 

especially thermoelectric properties. We employed 

generalized gradient approximation (GGA) and 

projector augmented wave (PAW) methods. We 

reveal the increase in band convergence in the 

monolayer SnSe system. Band convergence is very 

advantageous in improving the thermoelectric 

properties of the related material. 

 

COMPUTATIONAL METHOD 
 

In this study, bulk SnSe was modeled with its 

unit cell (space group: Pnma) consisting of four Sn 

atoms and four Se atoms. The initial lattice 

parameters were taken from the experimental results, 

that is, a = 4.135 Å, b = 4.440 Å, and c = 11.490 Å, 

and the distance between the adjacent layers d12 = 

2.712 Å [18]. For the bilayer SnSe system, the AA-

type stacking configuration was chosen because it 

has better structural stability than other types [19]. 

The initial lattice parameters and the distance 

between the adjacent layers of the bilayer SnSe 

system were adopted from the optimized geometric 

structure of the bulk SnSe system. Subsequently, a 

vacuum of 20 Å was applied to the system to avoid 

interactions between nearby layers so that the system 

consisted of only four Sn atoms and four Se atoms. 

When modeling the monolayer SnSe system, the 

same treatment as for the bilayer SnSe system was 

also applied, so that the system consisted of two Sn 

atoms and two Se atoms. 

All DFT calculations were performed using 

Quantum ESPRESSO codes [20,21]. 

Pseudopotential with PAW type was chosen to 

regulate the interaction of ion and valence electrons 

[22]. This type considers only 4d, 5s, and 5p electron 

configurations for Sn atoms and 3d, 4s, and 4p for Se 

atoms. Furthermore, the exchange-correlation 

interaction between valence electrons was 

approximated by a GGA based on the Perdew–

Burke–Ernzerhof (PBE) functional [23]. This 

function successfully predicted the electronic and 

magnetic properties of the low-dimensional system in 

our previous study [3,4]. 

A cut-off energy of ~1224 eV, a threshold 

energy of ~13.6 meV, and a threshold force of ~25 

meVÅ-1 were used in self-consistent field (SCF) 

calculations for bulk, bilayer, and monolayer SnSe 

systems. However, because the dimensions of the 

three systems are different, k-points of 7×7×3 and 

7×7×1 were used for the bulk SnSe and the low-

dimensional SnSe (bilayer and monolayer), 

respectively. Calculation of the electronic structure 

was carried out through the Γ–X–S–Y–Γ path in the 

irreducible Brillouin zone. Before calculating the 

electronic properties, the lattice parameters and 

atomic positions in each system were optimized 

using the Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) method [24–27]. The DFT-D3 

semiempirical correction by Grimme was included to 

represent weak van der Waals interactions between 

adjacent layers in bulk and bilayer systems during 

geometry optimization [28]. 

 

RESULTS AND DISCUSSION 
 

Figure 1 shows the geometry structure of bulk, 

bilayer, and monolayer SnSe, while the optimized 

structural parameters are summarized in Table 1. The 

calculated lattice parameters for the bulk system are 

slightly larger than the previous experimental results 

[18]. This condition can occur because we use the 

GGA-PBE functional, which tends to overestimate 

the lattice parameters. However, our results are 

consistent with previous computational studies [29]. 

 

Table 1. Lattice parameters, bond lengths, and bond 

angles of bulk, bilayer, and monolayer SnSe. 

Parameter

s 

Bulk 
Bilaye

r 

Monolaye

r 
Ref. 

[18] 

This 

study 

a (Å) 4.14 4.17 4.26 4.28 

b (Å) 4.44 4.56 4.47 4.43 

c (Å) 
11.4

9 
11.59 28.88 23.08 

l1 (Å)  2.79 2.76 2.73 

l2 (Å)  2.81 2.88 2.90 
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θ1 (o)  
102.5

2 
98.20 94.38 

θ2 (o)  89.28 92.76 92.93 

 
 

Figure 1. (a-c) side views of the geometric structures of the systems, (d) top view of the geometric structure of 

the SnSe monolayer system, (e) first order Brillouin zone with paths for electronic structure calculations. 

 

The formation of nanostructures significantly 

changes the structural parameters of the SnSe system. 

From bulk to monolayer system, bond length l1 and 

bond angle θ1 decreases while l2 and θ2 increases. 

This condition causes an increase in lattice parameter 

a and a decrease in lattice parameter b from bulk to 

monolayer SnSe system. Changes in lattice 

parameters due to reduction in system dimensions are 

closely related to the elimination of van der Waals 

interactions, especially for monolayer systems. 

Furthermore, bilayer SnSe has a greater interlayer 

distance, d12, than bulk SnSe. This condition can 

occur because, in bilayer SnSe, the coordination 

number of the atoms in the first and second layers is 

reduced, so that these layers become freer to relax in 

the opposite direction.  Changes in the geometric 

structure parameters are predicted to induce 

significant changes in the electronic structure. 

 Figure 2 shows the band structure of the bulk, 

bilayer, and monolayer SnSe system. The band 

structure is calculated along the Γ–X–S–Y–Γ path in 

the first order Brillouin zone, as illustrated by Figure 

1(e). Furthermore, Table 2 summarizes the direct and 

indirect bandgaps of all systems. As a result, bulk, 

bilayer, and monolayer SnSe systems have almost the 

same band dispersion in both the valence and 

conduction bands, especially for the bilayer and 

monolayer systems. 

 

Table 2. The bandgaps of bulk, bilayer, and 

monolayer SnSe. 

System 
Bandgap (eV) 

Indirect Direct 

Bulk 
0.56(0.3∆→0.7Σ

) 

0.85(0.6Σ→0.6Σ

) 

Bilayer 
0.84(0.2∆→0.9Σ

) 

0.95(0.2∆→0.2∆

) 

Monolaye

r 

0.94(0.2∆→0.8Σ

) 

0.99(0.2∆→0.2∆

) 

 

In Figure 2(a), bulk SnSe shows an indirect bandgap 

of 0.56 eV. The maximum valence band lies at 0.3∆, 

and the minimum conduction band lies at 0.7Σ, where 

∆ and Σ are paths connecting Y–Γ and Γ–X points, 
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respectively. Our calculated bandgap is smaller than 

the experimental measurement of optical gap energy 

of 0.86 eV [18]. This is due to the GGA-PBE 

functional, which has a limitation in calculating the 

bandgap. However, our calculation results are in the 

range of the previous computational  result  of  0.44–

0.89 eV [29–33], which uses the LDA and GW 

functional types. We observe the presence of the 

multi-valley band, which is one of the exciting 

characteristics of the band structure of bulk SnSe 

because it can be exploited to increase the 

thermopower properties. 

 

 
Figure 2. Band structures of (a) bulk, (b) bilayer, and 

(c) monolayer SnSe. Cyan-colored areas denote 

bandgap, red and blue arrows indicate indirect and 

direct bandgaps, respectively, and numbers I–IV 

indicate the extreme band in the valence and 

conduction bands. 

 

In Figure 2(b), the bilayer SnSe shows an indirect 

bandgap with a magnitude of 0.84 eV (0.2∆→0.9Σ). 

This value was obtained using the functional  GGA-

PBE. Our  results   are   consistent with the previously 

computed result of 0.88 eV [19]. The electronic 

structure of bilayer SnSe has interesting 

characteristics in the valence and conduction bands, 

that is, the "pudding mold" band. This band consists 

of a flat band on the X–S–Y path, with some part of 

the corrugation band ending with a highly dispersive 

curved band on the Γ–X and Y–Γ paths [34,35]. 

However, the flat band part undergoes bending in the 

conduction band. Four highly dispersed bands, as 

marked in Figure 2(b), potentially increase the 

magnitude of the Seebeck coefficient through the 

band convergence scheme [36–38]. In this system, 

the extrema I and II bands at the conduction band still 

have a significant difference, as shown in Table 3. 

Notably, this value is smaller than in the bulk system. 

 

Table 3. Energy difference between extreme bands I-

II ∆EI-II and extreme bands III-IV ∆EIII-IV 

System ∆EI-II (eV) ∆EIII-IV (eV) 

Bulk 0.36 0.21 

Bilayer 0.11 0.21 

Monolayer 0.05 0.21 

 

In monolayer SnSe, the bandgap increases to 

0.94 eV due to quantum confinement. The bandgap 

remains indirect; the position of the maximum 

conduction band shifts only slightly due to lattice 

distortion. Our result is greater than the previous 

experimental result of 0.86 eV [14]. However, our 

results are consistent with previous computational 

studies [16]. By incorporating a semiempirical van 

der Waals correction, the bandgap of the monolayer 

SnSe increases to 1.12 eV [15,17]. This condition 

indicates that the weak van der Waals bond does not 

exist in the monolayer SnSe system. Moreover, the 

accuracy reduces if allowance is made for a weak van 

der Waals bond in the calculation. An overestimation 

of the bandgap also resulted when using the modified 

Becke–Johnson (mBJ) method [17]. Thus, the 

functional GGA-PBE is more suitable for estimating 

the bandgap of the monolayer SnSe system. An 

essential aspect of the electronic structure of the SnSe 

monolayer is the appearance of a quasi-degenerate 

maximum conduction band. Consequently, the 

energy difference of the extreme I and II bands is 

reduced, as shown in Table 3. This condition is 

predicted to induce better thermoelectric properties 

for the monolayer system than the bulk and bilayer 
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systems, especially from the Seebeck coefficient 

aspect [38,39]. However, it is necessary to evaluate 

the thermoelectric properties of bulk, bilayer, and 

monolayer SnSe systems to prove our predictions. 

Therefore, it will be our future study and will be 

published elsewhere. 

 

CONCLUSION 
 

We revealed the transformation of the 

structural and electronic properties of bulk, bilayer, 

and monolayer SnSe. The formation of 

nanostructures (monolayer and bilayer) makes the 

lattice parameter, a, increase and the lattice 

parameter, b, decrease. The reduced van der Waal 

interaction is the main factor that causes changes in 

lattice parameters. All systems exhibit semiconductor 

properties with indirect bandgap. The bandgaps of 

bulk, bilayer, and monolayer SnSe are 0.56 eV, 0.84 

eV, and 0.94 eV, respectively. Furthermore, the band 

structure of all systems shows a multi-valley band 

that can improve the thermoelectric properties. By 

reducing the dimensions from bulk to monolayer, the 

energy difference of the extrema I and II bands 

decreases until, in the monolayer system, we get ∆E12 

of 0.05 eV. Under these conditions, we predict the 

monolayer SnSe will have the best thermoelectric 

properties compared to all systems. Our study 

demonstrates the novel electronic properties of the 

SnSe monolayer for flexible thermoelectric device 

applications. 
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