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Abstract 

Volcano is a geological environment including magma, eruption, volcanic edifice and its basements. For continuous 

monitoring after eruption, a mobile robot could be proposed as an alternative to prevent hazardous effect to volcanologist 

who perform up close monitoring. In this paper, the robots were divided into 3 types according to their different structures: 

legged, track-legged and wheeled mobile robots. Meanwhile, the navigation system were implemented in 4 steps suitable 

for volcano condition: environment mapping, trajectory design, motion control and obstacle avoidance. These navigation 

system also tested in different locations: indoor, outdoor and real volcano with different testing method for these robots. 

The testing result was discussed in robot kinematics parameter such as trajectory, velocity, slope angle, rollover and sideslip 

angels.     
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INTRODUCTION 
 

Volcano is a highly complex geological 

dynamic environtment (not only an igneous system 

from the deepest root up to the surface), where all 

kinds of geologic process act on the rising magma, 

the eruptions, the volcanic edifice and its basement 

[1], [2]. There are more than 500 active volcanoes of 

about 1000 of volcanoes all over the world which fit 

with that definition [3]. It is needed a volcano 

monitoring sytem at each one of these volcanoes (at 

least for eaethquake, release of magnetic gases and 

surface deformation [4]) to reduce this natural 

disaster’s risk [5]. Some unconventional system have 

been developed to overcome problems occure during 

the monitoring process [6], [7], [8], [9], [10], [11], 

[12]. However, during or after the eruption, the 

system may be broken and the hazard environment 

could be dangerous for volcanologist to fix the 

system while a continuous observation still be needed 

at the same time [13], [14]. 

Mobile robot technology could be the 

alternative solution in this situation (Fig. 1). Dante II, 

 
 

a legged robot for volcano exploration has been 

developed by NASA and Carnegie Melon University  

 

in 1999 [15]. Few years later, European Commission 

introduced their giant mobile robot called Robovolc 

for volcano observation [14]. Nagatani also reported 

his work about a novel multi-D.O.F. tracked vehicle, 

called ELF, which can conduct observation in a 

restricted volcanic area [16], [17]. Furthermore, there 

are some other robot for different exploration such as 

Artemis [18] and Merlin [19] for heterogenus surface 

and uneven terrain applications with suitable 

navigation system. Hence, the navigation and control 

system of the mobile robot should be able to detect 

and aboid hazard zone as well as generate path 

planning to specific target (s) [16], [17], [20], [21]. 
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Fig. 1. Mobile robot for volcano monitoring 

This review will discuss about navigation 

system integrated with its control system for volcano 

monitoring application, the test, the test result and 

discussion and final remark for the system explained. 

The robot will be divided into 3 types according to 

their different structurus: legged, track-legged and 

wheeled mobile robots. Therefore, students who 

needs information about navigation system of mobile 

robots for volcano monitoring application could 

utilize the information.  

 

 

NAVIGATION SYSTEM 

 

Mobile robot navigation is the ability of a 

mobile robot to get from one place to another 

(destination) in an orderly manner required by the 

job, volcano monitoring for this case. This system 

can be divided into four steps: environment mapping, 

trajectory design, motion control and obstacle 

avoidance [22], [23]. To construct environment map, 

a mobile robot should be equipped with a proper 

vision system. Whereas for trajectory design, it is 

needed an inertial navigation to track the position and 

orientation of the object [24], to control the robot 

motion while avoiding obstacle(s) [25]. 

 

(1) Legged mobile robot.  

Environtment mapping process is crucial for 

a legged mobile robot (such Dante II) to avoid 

obstacle or slip off precarious footholds by adapting 

to actual condition through continuously relating 

sensation to action this behavior-based architectures 

walking robot. Dante II – an eight-legged mobile 

robot - uses UI3D (a three-dimensional visualization 

and its surrounding terrain) and [15] VEVI (Virtual 

Environtment Vehicle Interface, a modular operator 

interface for robotic vehicles) to generate local 

elevation map and to utilize real-time, interactive, 3-

D graphic and feedback from onboard sensors [15], 

[26] (Fig. 2). 

 

 

 
Fig. 2. Environment 3D mapping of Dante II [15] 

Determining the most effective 

parameterization of the gait behaviors by collection 

of individual planners is suitable trajectory planning 

for Dante II [15], [27], [28], [29]. This gait behavior 

(in Dante II has 24 asynchronous process: eight 

contact-foot behaviors to stand, eight freefoot 

behaviors to step, one each of raise-legs, move-

frame, turn-frame, lower-legs, and sit-still behaviors 

to walk, and roll, pitch, and clearance behaviors to 

posture) together with control process, allows the 

foot to move, halt or reflex to some environment 

condition (vertical or horizontal terrain) e.g if it loses 

contact with the ground [15], [30], [31]. 

The gait-control process run in onboard 

processor. Furthermore, this real-time control motion 

(in one or more processor(s)) collects sensor 

information, write the state into shared memory, 

drive the eg PD servo loops, service for translation, 

turn and tether actuators [15], [30], [31]. 

This motion control also responsible for 

obstacle-crossing capability by the free-foot behavior 

[15], [30], [31]. Shortly after the robot detect 

obstacle, the legs raise up in coordination with a 

momentary pause in body motion [15], [32], [33], 

[34]. 

 

(2) Track-legged mobile robot.  

Generlly, there is no environment mapping 

for a track-legged mobile robot such ELF (specially 

made for weak and uneven terrain of volcano). It is 

because its robust locomotion performance to explore 

different terrain and texture as well as “climbing” the 

obstacles [16], [17], [35]. However, trajectory 

planning is designed as simple as possible, hence the 

robot should only move in a straight desired path to 

the destination [16], [17], [35]. 

To reduce downhill slide slip in volcano area, 

the robot poster should be controlled verticaly to 

gravity [16], [36], [37]. Moreover,  an orientation 

controller is added for the transversal motion by 

creating a gap in the locomotion velocities of both 

main tracks [16], [36], [37]. This main tracks and 4-

subtracks coordinate for entire robot motion 

commanded by a control unit via wireless LAN [16], 

[36], [37] (Fig. 3). 
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Fig. 3. Configuration of ELF’s controller (adapted from [16]) 

 

(3) Wheeled mobile robot.  

The navigation system for wheeled mobile 

robot usually implemented into four layers: long 

range planning, short range planning, instant path 

planning and control motion as we can find in 

Robovolc, Artemis and Merlin [14], [18], [19], [38]. 

Long range planning is the layer for generating an 

environment map base on waypoints built by sensor 

input from fixed cameras (5 cameras including IR 

camera in Robovolc), ultrasonic sensors etc. [14], 

[38]. Short range [14], [18], [19], [39], [40] and 

instant path plannings [14], [18], [19], [41] are 

responsible for trajectory planning process to manage 

the navigation between the waypoints and decide the 

direction of the robot. Furthermore, the motion 

control layer transforms this plans into control 

commands for motion control boards [14], [18], [19], 

[42], [43], [44], [45]. 

In Robovolc, a localization system to 

determine the exact location of the robot has been 

performed in two ways: Self Kalibrating Extended 

Kalman Filter (EKFSC) and orientation estimator 

[14]. Moreover, the obstacle avoidance is 

teleoperated by volcanologist through the vision of 

its cameras [14]. 

On the other side, ARTEMIS a 4 wheeled 

mobile robot as Merlin, concludes the four steps of 

navigation system in one algorithm.  

A high-level control layer generated some 

waypoints as the mobile robot optimal trajectory 

[46]. On the other side, the low- level layer navigated 

robot through this trajectory via potential field [46] –

an elegant hybrid method both for reactive and 

deliberative behavior of its environment [19] which 

can deal with complex obstacles [19] as well as 

controlled to the desired point.  To control optimal 

trajectory, it was performed a look-a-head model for 

navigating the mobile robot without failures [46] 

through checking the collision with its environment 

[19]. 

 

 

The algorithm for this method is as followed: 

 

1. The value of the net potential field at the robot’s 

current position in trajectory space (TS) is calculated 

from Eq. (1). Position in TS is a curvature-velocity 

(κ,v)  pair [46].

 =
++++=

n

i

i

vgsr vPFvPFPFvPFvPFvPF
1 0 ),()()(),(),(),(    (1) 

 

Where, ),( vPFr
is potential field for rollover 

constraint, ),( vPFs
is potential field for side slip 

constraint, )(gPF  is potential field for corresponding 

to the current desired waypoint location, )(vPFv
 is 

potential field for desired velocity, and  =

n

i

i vPF
1 0 ),(   

is potential field for hazard locations (including other 

obstacles) [46]. 

 

2. The gradient of the net potential field is computed, 

and a desired maneuver (i.e. a (v,κ) pair) is chosen in 

the direction of maximum descent [46]. 

 

3. The predicted trajectory of the robot is computed 

via forward simulation of a rigid body model (Fig. 4) 

subject to the desired maneuver over time dt, where 

F is the sum of all the horizontal tire forces, R the sum 

of all normal tire forces, and the weight is mg [46]. 

 

 

 

Fig. 4 Rigid body model for mobile robot simulation (adapted 
from [46]) 

 

4. Steps 1-3 are repeated while t (virtual time in a 

forward simulation loop) is no more than T [46].  

 

 

5. A maximum safe velocity profile is computed over 

the predicted path. Maximum safe velocity profile 

was defined from the cost function =
2

1

s

s
ms

ds
J


  , 

where J is cost function (time), ds path arc length, ms  

maximum safe speed [46]. 
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6. The predicted robot velocity profile is compared to 

the maximum safe velocity profile [46]. Robot 

velocity profile s is the solution from Eq (2), (3), and 

(4) 

smmgkf tt
+=    (2) 

2snmmgkf qqq
+=                (3) 

             
2snmmgkR rr
+=               (4) 

where ft  and fq are components of the friction force 

tangent and normal to the path,  the path curvature, 

k is a unit vector pointing opposite of the gravity 

force, n is a unit vector pointing in the direction of 

the path center of curvature, and the subscripts denote 

projections along the path coordinate frame, t, q, r. 

If the predicted velocity profile exceeds the 

maximum safe velocity profile at any point, the 

robot’s desired velocity is reduced to the maximum 

safe velocity along the trajectory. 

The navigation system for these mobile robot 

could be conclude in Table 1. 

 

 
Table 1. Camparison of mobile robot navigation system 

 -Mobile Robot 

 Legged- Track-

legged- 

Wheeled- 

Environment 

Mapping 

UI3D-VEVI - Long range 

planning, 
waypoints-

potential 

field 

Trajectory 

Design 

Gait 

behaviours 

Move in 

straight 

path 

Short range 

planning, 

look-a-head 
model 

Motion 

Control 

Gait-control Robot 
poster 

controlled 

vertically, 

orientation 
controller 

for 

transversal 

motion 

Motion 
control 

layer 

Obstacle 

avoidance 

Free-foot 

behaviour 

- Camera 

vision, look-
a-head 

model 

 

 

 

 

 

 

 

 

 

TESTING METHOD 

 

The navigation system of a mobile robot 

should be tested to meet the design requirement 

before it is used frequently and repeteadly [47]. The 

different testing method for 3 different kind of robots 

will be explain here. 

 

(1) Legged mobile robot.  

Flat-floor walking was the first test for a 

legged mobile robot, Dante II including body 

translation, turning [48], maximum body lifts [49], 

[50], and coordinated winch operation [15], [51]. The 

next test is walk on a 30o, 7-m-long ramp while 

maintaining a gravity-balancing tension on the tether 

cable including walking, turning, and obstacle-

crossing capabilities [15], [52], [53]. 

 For outdor testing, the robot was tested on a 

hillside [15], [54], [55], [56]. The path included a 10-

m steep slope (50o) followed by a 5-m flat area, which 

transitioned into a 30-m variable-slope region (20–

50o) to the top. The path also included some minor 

(about 10◦) cross-slopes [15], [57], [58], [59]. The 

terrain was hard soil covered with light vegetation 

[15]. Furthermore, the mixed-terrain testing was held 

on a 5-m flat section of the path covered with large 

boulders (0.5–1-m tall) in an effort to emulate the 

worst-case conditions expected [15], [60].  

Dante II was also tested on full-scale 

volcanolike terrain [15], [61], [62]. Some test were 

conducted along a 170-m path. The upper portion of 

the path is level for 40 m, and then slopes into a 

smooth escarpment of 30–40o for 70 m and 40–50o 

for 5 m, and then follows a moderate but trenched 

uphill grade for 60 m [15].  

The final destination for robot teting was a 

real volcano. Dante II was tested on Mout Spurr, 

Alaska which consisted of three segments: descent to 

the crater floor, floor exploration, and ascent [15]. 

 

(2) Track-legged mobile robot.  

One of the greatest challenges is downhill 

sideslip often found in volcano. To reduce this slip, 

ELF was controlled to remain vertical with respect to 

gravity by a mechanical model based on 

terramechanics theory for the robot which has the 

capability of swinging its subtracks while 

maintaining its attitude [16], [63], [64], [65], [66].  
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An indoor testing in a simulated volcanic 

field [67] with 3 m and 1 m of length and width 

respectively with pumice stones whose bulk density 

was less than that found in actual volcanic fields, has 

been performed to confirm the effectiveness of the 

controller in navigation system [16]. The test was 

held in 30o of 5o interval of slope angle where for 

each angle two configurations of the robot-normal 

contact and horizontal contact were examined, and 

three trials were conducted using the same 

configuration at 8 cm/s of velocity [16]. The slip 

angle (β) on the slope [68], [69] was evaluated using 

Eq. 5 [16]. 

𝛽 = tan−1
𝑣𝑦

𝑣𝑥
               (5) 

where vx denotes the locomotion velocity of the robot 

and vy denotes the sideslip velocity. 

The test also conducted on a real volano of 

Mount Kushigata where the slope (about 30o) was 

covered by scoria (weak soil) with 12 cm/s of 

velocity and 10 m navigation distance in two 

configurations as well [16]. The robot’s trajectory 

was recorded by the surveying equipment [16]. 

 

(3) Wheeled mobile robot.  

The robot parameter for odometry [70], [71], 

[72], [73], [74] of Robovolc was as follow: wheels 

radius: R1 = 0.21m, R2 = 0.21m, wheelbase: L = 

0.82m, while for EKF algorithm [75], [76], [77], [78], 

[79] was used DGPS [14], [80]. Meanwhile, 

ARTEMIS 0.89 x 0.61 x 0.38 m of dimension, which 

has 700 MHz Pentium III PC -104 onboard computer, 

Crossbow AHRS-400 INS, a tachometer to measure 

wheel angular velocity, 20 cm resolution DGPS, and 

Futaba steering and throttle control servos, was tested 

on a flat, bumpy terrain covered with grass [46]. To 

study an obstacle avoidance [81], [82], an obstacle of 

1 m radius was set at (x,y) = (15.0, 0.0) and a 

waypoint was set at (x,y) = (30.0, 0.0). The desired 

velocity was set at 4.0 m/s. Note that for a vehicle of 

this size, rollover [63], [83] can easily occur at 4.0 

m/s [46]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The three different testing method are 

concluded in Table 2. 

 
Table 2. Testing method for navigation system of mobile robots 

 -Mobile Robot 

 Legged- Track-legged- Wheeled 

Indoor Flat-floor 
walking 

(body 

translation, 

turning, 
maximum 

body lifts, 

and 

coordinated 
winch 

operation), 

walking on a 

ramp 
(walking, 

turning, and 

obstacle-

crossing 
capabilities) 

In a simulated 
volcanic field 

with pumice 

stones in a hill 

surface 
(mechanical 

model based 

on 

terramechanics 
theory): slip 

angle 

on a flat, 
bumpy 

terrain 

covered 

with grass: 
waypoints 

and 

obstacle 

avoidance. 

Outdoor On a hillside 
with different 

slopes on 

hard soil 

covered with 

light 

vegetarian, 

on a 

volcanolike 
terrain 

- - 

Real 

Volcano 

At Mount 
Spurr: the 

crater floor, 

floor 

exploration, 
and ascent   

At Mount 
Kushigata: 

slopes covered 

by scoria: 

robot 
trajectory 

At Mount 
Etnaa: 

odometry 

and DGPS 
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RESULTS AND DISCUSSION 
 

Some parameters usually discuss in mobile 

robot navigation system are: trajectory [23], [84], 

[85], [86], velocity and angles [87] (rollover, sideslip, 

slope). In this section the testing result will be discuss 

regarding these parameters. 

 

(1) Legged mobile robot.  

Flat-floor walking testing efficiently 

conducted without major problem as well as on a 

ramp testing and a hillside beside a building [15]. 

The robot was set to far away from the user as well 

as communication bandwidth limitation in 

extremely hot weather and rain as actual mission 

later [15], [88]. The robot could provide terrain 

information through its cameras and scanning-laser 

range finder [15]. In a hillside location, the robot run 

for 182 steps over 111 m in 219 min for an average 

speed of 0.51 m/min, where the roll and pitch were 

maintained to within ±2o [15]. The free-foot reflex 

was effectively implemented where the feet could 

skim the ground, providing protection against 

tipping, and raise up if they bumped [15]. The 

mission was conducted in over 30 hour period where 

the vision system could work properly [15]. 

However, the behavior required only 179 min (2:59) 

with the gait controller averaged 0.51 m/min, and in 

some areas averaged 0.67 m/min [15]. 

Mount Spurr is the final desination for Dante 

II where has a crater that could no be entered by 

volcanologist [89] which has cross slope up to 30o 

with 23.3 min (0.42 m/min) of autonomous walking 

for 9.8 m [15]. After the robot facing a dead end, 

Dante II turned around and made two autonomous 

descents down in 35.2 min (0.24 m/min) for 8.3 m 

and 12.3 min (0.49 m/min) for 6 m [15]. The laser-

built 3-D elevation maps have been successfully 

generated and used during the exploration [15]. 

However, the laser scanner had become obscured by 

airborne volcanic ash [15]. Therefore, the vision only 

obtained by the cameras [15]. The communication 

and power have lost during the escent exploration 

because of a moisture-related short circuit in the 

power cabling at the rim [15]. Moreover, it also fell 

(on the side) due to a combination of factors 

including steep slope and cross-slope conditions, soft 

unstable slope material, a destabilizing tether-exit 

angle, and a control algorithm that had never been 

tested in such perilous stability conditions [15]. 

 

(2) Track-legged mobile robot.  

From the test result, it could be explained that 

the contact plane should be set horizontally when 

traversing a weak slope, which caused the tracks 

should be configure to adapt to the target slope angle 

for up to 25o [16]. Therefore, an orientation control 

has been applied by creating a gap in locomotion 

velocities vl and vr by Eq. 6 and 7 [16]. 

𝑣𝑙 = 𝑣 + 𝑐𝜑               (6) 

𝑣𝑟 = 𝑣 − 𝑐𝜑               (7) 

where v is velocity, c is coefficient vaue and φ is 

yaw angle obtained by the IMU [16], [70], [90], 

[91]. 

Moreover, according to its 3D-trajectory it is 

shown that the robot generated a higher degree of 

sideslip than it did with the horizontal contact 

configuration, with 2.7 m deviation from desired path 

at point 7 m, then be reduced in horizontal 

configuration by 58% which could make the robot 

survive in a weak slope where the controller 

contributes to the suppression of its trajectory [16]. 

However, the slideslip stoped when the orientation of 

robot became -15o. It could change in a downhill at 

any time where slidesip occure contonously in angle 

of 30o of normal contact configuration where the 

robot could not change the orientation because it dug 

into the ground [16]. The slip angle in the horizontal 

contact configuration was less than half of the angle 

in the normal configuration where a small degree of 

slideslip occurred in 10o slope angle [16]. 

 

(3) Wheeled mobile robot.  

The odometry parameters could be estimated 

when the robot (Robovolc) moving along the 

trajectory: R1 (t=90) = 0.209 m, R2 (t=90) = 0.208 m 

of wheel radiuses and L(t=90) = 0.816 m of wheel 

base in a real volcano of Mount Etna [14], [92]. 

EKFSC method showed satisfy result which 

reconstruct the trajectory which very close to the real 

one, and better than others method (EKFClasic and 

EKF calibrated via UMBmark) with average speed 

of 0.81 m/s [14].  

Furthermore, a car-like mobile robot such as 

Merlin and ARTEMIS have shown significant results 

for the navigation system from the testing inside 

laboratory. An obstacle has been successfully 

avoided and the waypoints have also been reached. 

GPS offset result in an nitial heading error. The 

velocity was controlled to decreas at a large curvature 

to avoid the obstacle (i.e. around x = 15.0 m) near 4 

m/s in save region (i.e. after x = 25.0 m) without 

rollover and slideslip. Moreover, the testing with 3 

waypoints has also succecessful result where the 

robot navigated to and reached the waypoints where 

velocity was controlled near 4 m/s in save region and 

also decrease at large curvature. 
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These results are concluded in Table 3. 

 
Table 3. Result testing of mobile robots 

 -Mobile Robot 

 Legged- Track-

legged- 

Wheeled 

Trajectory Following 

the path of 

3D 
elevation 

map 

Generated 

higher degree 

of sideslip 

Following 

the 

waypoints 
generated 

by high 

level 

planner, 
odometry 

Velocity Varied 
(under 0.6 

m/min) 

according 

to the slope 

8 cm/s 0.81 m/s 
(average 

speed for 

Robovolc), 

controlled 
near 4 m/s 

or uder in a 

large 

curvature 
(ARTEMIS) 

Slope Up to 30o Up to 30o Up to 30o 

Rollover/Fell Fell on the 

side 

- - 

Sideslip - Occure 

continuously 
at 30o of 

normal 

contact 

configuration, 
stoped when 

the 

orientation of 

robot became 
-15o, in 

horizontal 

contact 

configuration: 
10o 

- 

 

CONCLUSION 
 

To prevent the hazard for volcanologist 

during volcano monitoring, there have been 

developed mobile robots for monitoring of 

volcanoes. Volcano is a challenging environment to 

be explored. Therefore, the robot should be equipped 

with a proper navigation system. Thede robot were 

divided into 3 types: legged, track-legged and 

wheeled mobile robots which have 4 steps of 

navigation system: environment mapping, trajectory 

design, motion control and obstacle avoidance. 

Legged mobile robot concerned in its gait behavior, 

while tracked-mobile robot on its motion control with 

no step of obstacle avoidance, and wheel mobile 

robot more concerned about rollover and slide lip 

angles. The navigations sytems have been tested in 

indoor, aoutdoor and real volcano and discussed in 

some parameters: trajectory, velocity and angles. 

These robots have been autonomously move along 

trajectory generated by high level planner through 3D 

map generation, slideslips data, waypoints and 

odometry parameters while moving in controlled 

velocity under 4 m/s (the fastest) on a slope up to 30o. 

There was no rollover experienced by the robots, 

except for the legged robot which fell on its side 

during walking on the slope. Sideslips only occured 

continuously in track-legged mobile robot at 30o of 

normal contact configuration and 10o in horizontal 

contact configuration. 
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