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Abstract 

The caloric curve of hot nuclei in equilibrium states have been calculated with a new prescription namely a new 
fugacity calculation. In this technique, the fugacity is directly proportional to the nucleon density; hence, the 
fugacity is obtained through thermal wavelength. In contrast with the constant fugacity, the choosing of thermal 
wavelength approximation gives a simpler way to calculate the density profile and the entropy of finite nuclear 
matter. Variation of thermal wavelength value does not affect to the density and entropy. The phase transition 
temperature is dependent concerning both of the thermal wavelength value and the potential deep. 
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1. Introduction 

The phase transition of the hot nuclear system 
is the one of interesting problems. The phase transition 
converts a nuclear liquid Fermi system into 
fragmentation. The converting process assists to reveal 
the problems of breaking up unstable nuclei into many 
fragments that is the connection between fission and 
phase transition. Peaks of heat capacity at constant 
volume usually show this phase transition. 

The peaks of heat capacity have been pointed 
out not only by micro canonical description1-3) but also 
by caloric curve for finite nuclei4,5). The evidence of 
the peaks of heat capacity has also proved 
experimentally6,7). Theoretically, the refined Thomas-
Fermi calculation8) has showed the peaks of heat 
capacity. In this calculation, a nucleonic density is 
obtained via self-consistency density profile8,9) in 
which the fugacity calculation is an iteration element 
of self-consistency. The refined Thomas-Fermi 
method has solved successfully many problems of hot 
nuclei9), such as level density parameters and caloric 
curve of the hot nuclear system. 

Our works is fueled by idea of the fugacity 
calculation at zero temperature that is the finite value 
of fugacity. In this calculation, occupation probability 
has the old one fashion10). There are two advantages of 
the technique; the calculation is rather simpler than 
self-consistency of the refined Thomas-Fermi method 
and the fugacity has finite value at zero temperature.  
Actually, the new technique is determined by thermal 
wavelength, which the thermal wavelength is not 
longer inversely proportional to square root of 
temperature. The thermal wavelength is chosen as 
constant value. In this work, variations of thermal 
wavelengths do not give significantly of discrepancies 
results. The excitation energies per nucleon of  208Pb 
and 91Zr are about the experimental range results. 
Effective interaction potential use the simple one that 
is the wood-saxon potential form, which it substitute 
the seyler-blanchrad type11,12). 

The paper is organized as follows. In section 2, 
it briefly reviews modeling of hot nucleus and present 
equations relevance for calculating the caloric curve, 
in which the calculation are based on the new 
technique of fugacity calculation. The results are 
presented in section 3 and the conclusions are given in 
section 4. 

2. Theoretical Framework 

Occupation probability is obtained by 
minimizing thermodynamic potential, 

Ω−−− = PATSEG µ  (1) 

 
one then led the occupation probability 
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In this equation, τz , τH  and τµ  are fugacity, 
Hamiltonian and chemical potential of nuclear system, 
in which they have expression 
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where τ  stand as isospin and T is temperature. 
In our works13,14), thermal wave length τλ   is 

chosen as a constant value. Both of proton density and 
neutron density ),( Trτρ  have been calculating by 
using relation 
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Effective single particle potential ),,( pTrVτ  
experienced by nucleons has form 
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Here P and ρ are constant external pressure and 
nuclear density. In this work, the nucleon effective 
mass is gotten close by nucleon rest mass15); with the 
result of that, potential )1(

τV  is negligible and )0(
τV  is 

nuclear potential which it is written as16). 
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Coulomb energy density per proton at 
temperature T, which it is suitable numerically for the 
calculation, is given by 
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where  ),( TrVC  is obtained by adding exchange and 
direct coulomb potential, and nuclear matter energy 
density per nucleon at temperature T is expressed by 
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The total energy density per nucleon at temperature T 
is then written as17), 
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The heat capacity14) is then obtained by 
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3. Numerical Results 

The proton density and the neutron density of 
208Pb and 91Zr that calculated by the new technique, 
which it use thermal wavelength arbitrarily, are 
showed by figure 1. 

 

 

 
Figure 1. The neutron (left) and the proton (right) 
density profiles of 208Pb and 91Zr at T = 0 MeV and λ  
= 1 fm 
 

As the early works both of theoretically and 
experimentally, the proton density that calculated at r 
= 0 has not curve peak. The peak is shifted 
approximately up to 2.9 fm for 91Zr and 4.5 fm for 
208Pb. higher nuclear mass gives longer peak shift. 

As refined Thomas Fermi calculated18), Figure 
1 shows that nuclear density is independent from the 
thermal wavelength. The curve of nuclear density of a 
nucleus is shaped by temperature only. Nuclear 
density is obtained statistically; hence, the thermal 
wavelength does not influence both of nucleonic 
densities. Base on this condition, the fugacity 
approximation that is determined by thermal 
wavelength is suitable in order to calculate nucleonic 
densities. 

At low temperature, entropy of  91Zr has been 
calculated by using fugacity approximation with λ  = 
1 fm. As early works9,19) the calculating of entropy at 
zero temperature limits has form S = bT. Figure 2 
refers the calculation, which is indicated by circle, has 
a linear curve fitting. 
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Figure 2. Entropy of 91Zr at λ  = 1 fm 
 

Choosing of thermal wavelength does not give 
entropy differences significantly. Ten times of thermal 
wavelength value gives only ten scales of differences 
of entropy. Based on figure 3, variation of thermal of 
wavelength values do not contribute valuable on the 
entropy. 

 

 
Figure 3. Entropy of 91Zr at Vo = 15.699 MeV 
 

A variation of potential deep also gives no 
contribution on entropy values. It is showed clearly by 
figure 4. The entropy is independent from not only 
potential deep but also the thermal wavelength values. 

 
Figure 4. Entropy of 91Zr at λ = 1 fm 
 

The entropy is affected very significant by 
nuclear mass number. As shown by figure 5, the 
entropy of 208Pb increases rapidly as increasing 
temperature. Higher nuclear mass tends to increase 
entropy, which it is a way to reach the equilibrium 
states. Even though the differences value is large, 
entropy shapes are similar. The entropy likes linear 
curve at temperature great than 5 MeV and less than 
0.6 MeV other wise the curve has parabolic shape. 

 

 
Figure 5. Entropy 208Pb and 91Zr at λ  =  10 fm and 
Vo = 15.699 MeV 
 

Although the differences of mass number 
between nuclei are significantly such as 208Pb and 
91Zr, excitation energies per nucleon do not have 
varying values sharply. There are discrepancies at low 
energies excitation between the present work and the 
Pochodzalla experiment. 
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Figure 6. Caloric curve of 208Pb, 150Sm and 91Zr at  
λ  = 1 fm with Vo = 15.69 MeV 
 

Figure 6 shows that mostly excitation energies 
per nucleon of 208Pb, 150Sm and 91Zr  are in the range 
of experimental results. 

The thermal wavelength that it is used in 
calculation has value 1 fm; hence, the fugacity and 
nucleonic densities are exactly same. The fugacity 
value at beyond nuclear radii is smaller than in the 
nucleus, consequently an outer nucleon escapes easily 
than the inner one. By means of the potential deep that 
is chosen about 15.69 MeV ground state energy has 
values about 28 MeV, which is the value of Fermi 
energy. 

 
Figure 7. Caloric curve of 150Sm at λ = 1 fm and  
λ = 10 fm with Vo = 12.0 MeV 
 

The influence both of varying thermal 
wavelength and potential deep values are showed 
clearly by figure 7 and figure 8. Phase transition of the 
hot nuclear system with smaller thermal wavelength 
needs lower excitation energies to changes phase. 
According to these results, the heat capacity is smaller 
than the system that has longer thermal wavelength. 
Shorter thermal wavelength drives higher energy 
kinetically; hence, the liquid nucleon system tends to 

evaporate at lower excitation energies. Although the 
thermal wavelength extends influence on curve 
shapes, variation of curve shapes do not definitely 
different. 

 

 
Figure 8. Caloric curve of  208Pb at Vo =  12.0 MeV 
and Vo = 15.69 MeV with λ   = 1 fm. 
 

The deeper potential gives higher temperature 
of the heat capacity; on the contrary the changing 
phase is occurred at lower excitation energies, which it 
likes the varying thermal wavelength cases. It is usual 
that the deeper potential gives more room for nucleon 
to escape from nucleus. The liquid nucleon that is 
trapped in the deeper potential needs more energy to 
evaporate from the hot nuclear system. 

4. Conclusions 

A prescription method to calculate the self-
consistently of the density profile by using the new 
technique calculation of fugacity has been proposed. 
The technique leads to the thermal wavelength to have 
influence on shifting of the phase transition 
temperature. Beside for the density profile and the 
entropy calculations, this method is applicable to 
determine the caloric curve of the hot nuclear system. 
The phase transition temperature is dependent 
concerning both of the thermal wavelength value and 
the potential deep. 
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