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Abstract. Automobile insurance benefits are protecting the vehicle and minimizing customer losses. Insurance 

companies must provide funds to pay customer claims if a claim occurs. Insurance claims can be modeled by Poisson 

regression. Poisson regression is used to analyze the count data with Poisson distributed data responses. In this 

paper, the data model of the sample is automobile insurance claims from the companies in one year (in 2021) of 

observation, which contains three types of insurance products, i.e., Total Loss Only (TLO), All Risk, and 

Comprehensive. The results of data analysis show that the highest number of claims comes from Comprehensive 

insurance products, especially if the premium value gets more extensive. In contrast, the least comes from TLO 

insurance products. 
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1. INTRODUCTION 

Insurance is a form of risk management to reduce financial losses by transferring risk from one party 

to another, in this case, the insurance company. Insurance is an agreement between two parties, the insurance 

company and the customer, which is the basis for receiving premiums by the insurance company in return for 

providing reimbursement to the customer. The compensation is due to losses, damages, costs incurred, lost 

profits, or legal liability to third parties that may be suffered by the insured or the customer due to an uncertain 

event [1]. 

Human needs develop along with the times. Vehicles that used to be tertiary can now become 

secondary or even primary needs. The number of unwanted uncertainties that can occur in everyday life, such 

as accidents, crime, riots, natural disasters, and so on, raises concerns for some people to choose to buy motor 

vehicle insurance to minimize losses and protect their vehicles. 

Each customer is required to pay a certain amount of money, called a premium, to the insurance 

company so that the risk of customer loss in the future is now the responsibility of the insurance company 

based on the applicable policy. Therefore, insurance companies must provide funds ready to pay claims 

submitted by customers. So that these funds can always handle claims from customers, insurance companies 

need to know the prediction of the number of shares offered. One way to model insurance claims is by Poisson 

regression [2]. 

The phenomenon in Indonesia, a paper that discusses modeling the number of automobile insurance 

claims based on premiums using Poisson regression, has yet to be found. Modeling using Poisson regression 

is easy to apply. Many studies have been found on automobile insurance modeling with a reasonably 

complicated method, so companies are reluctant to use it, see [3], [4].  

The advantage of this research is the implementation of data modeling on the number of claims in a 

simple form using Poisson regression practically with the types of insurance products used in insurance 

companies in Indonesia. This research aims to model the association between the amount of premium and the 

number of claims per year based on the types of insurance products. 

 

 

 

2. RESEARCH METHODS 

Poisson regression is often used to analyze count data; in this case, the response of the data is the 

Poisson distribution with parameters [5]. This parameter highly depends on some particular unit or period, 

distance, area, volume, etc. This distribution is then used to model an event with relatively rare or rare to 

occur in specific units. For example, an event occurs randomly and uniformly in a particular time or area. 

The event occurs with a known average; for example, suppose a random variable represents the number of 

events in a certain period (region). For the record, the time interval or area here has specific units. Examples 

of time intervals in hours/days/months/years or regions in the form of a particular line/area/volume or maybe 

pieces of material [6]. 

Winkelmann [7] said that Poisson regression is a simple and robust regression model for count data. 

In general, the model is expressed by Equation (1) below. 

ln 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑘𝑋𝑘 + 𝜀 (1) 

where 𝑌 is a discrete-valued response variable with 𝑦𝑖 a discrete value (𝑦𝑖 = 0,1,2,⋯). Meanwhile, the 

explanatory variable is a random vector 𝐗 = (𝑋1, 𝑋2, ⋯ , 𝑋𝑘)
𝑡, which is continuous, dichotomous, or ordinal. 

The first stage of the Poisson regression analysis is to determine the assumptions. The assumptions of the 

Poisson regression analysis include 𝑌~𝑃𝑜𝑖(𝜆): the response variable 𝑌 has a Poisson distribution with mean 

𝜇 = 𝜆, the model estimate is 𝐸[𝑦⃗] = 𝜆 = exp⁡(𝐗𝑖 𝜷⃗⃗⃗). It means that the relationship between 𝑌 and 𝑋1, 𝑋2 to 

𝑋𝑘 can be determined functionally through an ln-linear equation. Interestingly, this Poisson distribution's 

expected value is the same as the variance value, so 𝑉𝑎𝑟[𝑦𝑖] = 𝜆 = exp⁡(𝐗𝑖 𝜷⃗⃗⃗). 

Since the distribution of 𝑌 is known or assumed to have a Poisson distribution, we use the maximum 

likelihood estimation method to estimate the regression parameters [8]. The assessment is done by 
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maximizing the likelihood function. Note that 𝑌 has a Poisson distribution with the parameter                    𝜆 =

exp⁡(𝐗𝑖 𝜷⃗⃗⃗), so the conditional probability function of 𝑌 is as follows: 

𝑃(𝑌 = 𝑦𝑖|𝐗𝑖 , 𝜷⃗⃗⃗⃗⃗) =
𝑒
−exp⁡(X𝑖𝛽⃗⃗⃗) (exp⁡(𝐗𝑖 𝜷⃗⃗⃗))

𝑦𝑖

𝑦𝑖!
 (2) 

We have the likelihood function as the product of all the following conditional probability functions, 

𝐿(𝜷⃗⃗⃗; 𝑦⃗, 𝐗) =∏
𝑒−exp⁡(𝐗𝑖𝜷⃗⃗⃗) (exp⁡(𝐗𝑖 𝜷⃗⃗⃗))

𝑦𝑖

𝑦𝑖!

𝑛

𝑖=1

 (3) 

So we get the following ln-likelihood function,   

ℓ(𝜷⃗⃗⃗) = ∑𝑦𝑖𝐗𝑖 𝜷⃗⃗⃗

𝑛

𝑖=1

−∑exp(𝐗𝑖 𝜷⃗⃗⃗)

𝑛

𝑖=1

−∑ln𝑦𝑖!

𝑛

𝑖=1

 (4) 

The value 𝜷⃗⃗⃗ is obtained from the derivative of the ln-likelihood function, 

𝜕ℓ(𝜷⃗⃗⃗)

𝜕𝜷⃗⃗⃗
= ∑𝐗𝑖

𝑡[𝑦⃗ − exp⁡(𝐗𝑖 𝜷⃗⃗⃗)]

𝑛

𝑖=1

= 0 (5) 

and 

𝜕2ℓ(𝜷⃗⃗⃗)

𝜕𝜷⃗⃗⃗𝜕𝜷⃗⃗⃗′
= −∑exp(𝐗𝑖 𝜷⃗⃗⃗)𝐗𝑖

𝑡𝐗𝑖

𝑛

𝑖=1

= 𝐇(𝜷⃗⃗⃗) (6) 

The result of the derivative in Equation (6) is known as the Hessian matrix [9]. Since the entries of this 

Hessian matrix are exponential or non-linear, then to determine the estimated parameter 𝜷̂𝑡+1, we use the 

Newton-Rapson iteration method as follows, 

𝜷̂𝑡+1 = 𝜷̂𝑡 −𝐇(𝜷̂𝑡)
−1

(∑𝐗𝑖
𝑡[𝑦⃗ − exp(𝐗𝑖 𝜷⃗⃗⃗)]

𝑛

𝑖=1

) (7) 

where iteration 𝑡 = 0,1,2,⋯. 

 The next step is to perform a regression parameter test procedure. The following is the regression 

parameter test procedure for simultaneous testing with the null hypothesis H0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 and 

the alternative hypothesis H1: ∃𝛽𝑗 ≠ 0,  𝑗 = 1,2,⋯ , 𝑘. The H0 here states that 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 or not 

significant. So that is significant only 𝛽0. In other words, a model without explanatory variables fits our data 

and our model. Meanwhile, H1 states that there is at least one significant regression coefficient. It shows that 

the model we build fits the data compared to the model that only involves the intercept or 𝛽0. The test statistic 

uses the likelihood ratio of a simple model without involving explanatory variables with a complete model 

involving explanatory variables. The test criteria, reject H0 if 𝜆 < ⁡𝜆𝛼,𝜈1,𝜈2 , where 𝜈1 = 𝑘 and 𝜈2 = 𝑛 −

(𝑘 + 1). Alternatively, we can use the following 𝐺-test likelihood ratio statistic; this test is carried out with 

the chi-square approximation, 

𝐺 = −2 ln [
𝐿(𝜔̂)

𝐿(𝛺̂)
] (8) 

with reject criteria H0 if 𝐺 > 𝜒𝜈,𝛼
2 , where 𝜈 = 𝑘 − 1. 

The next step is to perform a partial regression parameter test. When the simultaneous test H0 is 

rejected, this indicates that at least one explanatory variable is significant in predicting the response variable. 

Further analysis is needed, and we may be interested in determining each explanatory variable's effect on the 

response variable. Therefore, a partial test was conducted with the null hypothesis H0: 𝛽𝑗 = 0  and H1: 𝛽𝑗 ≠
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0 for 𝑗 = 1,2⋯ , 𝑘. The H0 states that 𝛽𝑗 = 0 for 𝑗 = 1,2⋯𝑘 , which means that 𝛽𝑗 is not significant. 

Meanwhile, H1 says 𝛽𝑗 ≠ 0, which means the effect is significant. For the test statistics using    𝑡-test as 

follows, 

𝑡 =
𝛽̂𝑗

𝑆𝐸 (𝛽̂𝑗)
 (9) 

Where 

𝑆𝐸 (𝛽̂𝑗) = √(∑𝜆𝑖𝐱𝑖𝐱𝑖
𝑡

𝑛

𝑖=1

)

−1

 (10) 

with reject criteria H0 if |𝑡| > 𝑡(𝛼 2⁄ ,𝜈) where 𝜈 = 𝑛 − (𝑘 + 1). 

The last stage is to perform a regression model evaluation procedure. After getting the model we are 

looking for, we evaluate whether the model represents the relationship between the response variable and the 

explanatory variable. The goodness of fit test uses the chi-square test when assessing the model. In this test, 

we evaluate whether the sample comes from a population with a Poisson distribution. 

Previously we knew that in this Poisson distribution, the mean value of 𝑌 is equal to the variance or 

equidispersion. Therefore, we need to check whether this assumption is met. It can be seen from the phi 

dispersion parameter. This dispersion parameter is the ratio between the dispersion value and the degree of 

freedom. The dispersion value is obtained through the following 𝐺2 statistic, 

𝐺2 = 2∑𝑦𝑖  ln (
𝑦𝑖
𝜆𝑖
)

𝑛

𝑖=1

 (11) 

It’s taking into account the value of 𝜙 as 

𝜙 =
𝐺2

𝑛 − 𝑘
 (12) 

with criteria if 𝜙 > 0 indicates overdispersion, while if 𝜙 < 0 indicates underdispersion occurs. 

 Alternatively, the test uses the chi-square test as follows. 

𝜒2 = ∑
(𝑦𝑖 − 𝜆̂𝑖)

2

𝜆̂𝑖
,

𝑛

𝑖=1

 (13) 

where 

𝜙𝑎𝑙𝑡 =
𝜒2

𝑛 − 𝑘
. (14) 

The criteria, if 𝜙𝑎𝑙𝑡 > 1 indicates overdispersion, while if 𝜙𝑎𝑙𝑡 < 1 indicates underdispersion occurs. 

Another criterion is to determine the coefficient of determination, R-square with the following equation, 

𝑅𝑑𝑒𝑣
2 =

∑ 𝑦𝑖 ln (
𝜆̂𝑖
𝑦̅ )

− (𝑦𝑖 − 𝜆̂𝑖)
𝑛
𝑖=1

∑ 𝑦𝑖 ln (
𝑦̂𝑖
𝑦̅ )

𝑛
𝑖=1

. (15) 

The R-square represents the proportion of variability in 𝑌 that explanatory variables can explain by the given 

model. So, the more significant the R-square value, the better the model. We also look at the AIC (Akaike 

Information Criterion) value, 
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AIC = −2 ln 𝐿(𝛺̂) + 2𝑘. (16) 

The AIC deals with the trade-off between fit and model simplicity. If we are faced with several choices of 

models, choose the best model with the smallest AIC value. Next, we also have to pay attention to the value 

of VIF (Variance Inflation Factor), 

VIF =
1

1 − 𝑅𝑘
2. (17) 

The VIF value is used to detect the presence or absence of multicollinearity between the explanatory 

variables. Multicollinearity itself states a condition where two or more explanatory variables have a high or 

linear solid relationship. The consequence if a model contains multicollinearity is that the variance will 

continue to increase so that the standard error of the parameters also increases. Multicollinearity can be 

detected from the VIF. The value is more than 10 indicates the presence of multicollinearity. In the other, 

limit the VIF value to more than 5. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Data Description 

The software used to process the data using R. The program script using R is available in the 

attachment, see also Indratno [10]. The data used in this study are sample data on automobile insurance claims 

in the companies for one year (in 2021) of observation in Indonesia, see [11]. The information has four 

variables: identity (id), many claims, types of insurance products, and the value of insurance premiums. The 

id column contains the unique number of each policyholder. The premium value contained in this data is 

denominated in USD and observed every month. This data product consists of three types: Total Loss Only 

(TLO), Comprehensive, and All Risk. TLO is an insurance product that guarantees losses due to loss or 

damage that causes the vehicle to not function or the value of vehicle repairs reaches 75% due to accidents. 

Comprehensive is an insurance product caused by vehicle accidents such as abrasions dents, up to significant 

damage. All Risk is an insurance product that is a complete package of comprehensive automobile insurance, 

which is added with protections such as driver accidents, floods, earthquakes, terrorism, and liability to third 

parties. 

The variables of 𝑌, 𝑋1, and 𝑋2 is variable of customer that has insurance product. Then, 𝑋3 is a variable 

that states the customer's premium amount. The response variable 𝑌 was chosen from these data, namely the 

number of automobile insurance claims in the company for one year in 2021. There are two explanatory 

variables in the model, namely 𝑋1 and 𝑋2, which states the type of insurance product (nominal data), and 𝑋3, 

which displays the premium amount. The data summary o is shown in Figure 1. 

 
Figure 1. Data Summary 

 

Figure 1 provides information that there are 200 observations or customers. The data in the claims 

column has a minimum value 0, the first quartile is 1, and the median is 0. Furthermore, the mean is 0.63, the 

third quartile is 1, and the maximum value is 6. So, in a year, customers can make a maximum of 6 claims. 

For the insurance product column, 45 customers have TLO products, 105 have Comprehensive products, and 

the rest have All Risk products. So, most customers choose Comprehensive products. For the premium large 

column, the minimum value is $33. Then, the value of the first quartile is $45, the median is $52, the mean 

is $52.65, the third quartile is $59, and the maximum value is $75. 

In Figure 2, it can be seen that the mean number of claims by product varies for each product. Thus, 

the product is a good candidate explanatory variable for predicting multiple claims. Meanwhile, the mean 
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and variance in each product have almost the same value, so it can be assumed that the data has a Poisson 

distribution to be modeled using Poisson regression. 

 

 
Figure 2. Output Mean and Variance of Each Product 

 

The data histogram of the number of claims for each insurance product is shown in Figure 3. 

 

 
Figure 3. Hostogram Data 

 

 

3.2. The Best Model 

From the histogram in Figure 3, it can be seen that it has a shape like a Poisson distribution. In addition, 

customers with Comprehensive insurance products make the most claims for every many claims. Customers 

with TLO insurance products only submit at most one claim in 1 year of observation, while customers with 

All Risk insurance products submit two claims. Customers with Comprehensive insurance products submit 

six claims in one year of observation. 

Furthermore, based on Figure 4, we have estimated coefficients of the Poisson regression model. The 

Poisson regression model is represented at Equation (18), 

ln(𝑦) = ⁡−5.24712 + 1.08386𝑥1 + 0.36981𝑥2 + 0.07015𝑥3.            (18) 

Based on Equation (18), 𝑥1 is variable of customer that has comprehensive insurance product (value 1 if the 

customer has comprehensive insurance product, value 0 if the customer has other insurance product). Next, 

𝑥2 is variable of customer with All Risk insurance product (value 1 if the customer has All Risk insurance 

product, value 0 if the customer has other insurance product). Then, 𝑥3 is variable that states the customer's 

premium amount. The TLO insurance product is used as a reference category contained in the intercept. 
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Figure 4. The Output of Poisson Regression Model Using GLM (Generalized Linier Model) 

 

Figure 4 can also be seen in the column Pr⁡(> |𝑧|), which displays the value of the test statistic and 

the sign *, which indicates that the estimated value of the coefficient is significant with a particular 

significance level. The more signs *, the better the estimated coefficient. Furthermore, a description of the 

residual deviation is also presented. It can be seen that the minimum value is -2.2043, and the maximum is 

2.6796, while the median is -0.5106. Therefore, it can be assumed that the distribution is not symmetrical or 

the residual deviation does not approach the normal distribution. In a case like this, Cameron and Trivedi [2] 

suggest using a robust model; in this case, it can be seen in Figure 5. 

 

 
 

Figure 5. The Output of Poisson Regression Model Using Robust Model 

 

The regression coefficient for TLO insurance products is used as a reference category whose effects 

are combined with the intercept. Reference categories in R are selected alphabetically (earliest or last). Based 

on Figure 5, the coefficient of the regression model is five decimal places behind the comma. In part marked 

in orange, which is the standard error value of the coefficient estimate using the robust model, it can be seen 

that the standard error value is smaller than the previous modeling with GLM. It can happen because the 

robust model estimates parameters by minimizing errors, so it is relatively robust than the classical model. 

After obtaining the candidate model, it is sometimes necessary to consider other models to get the best 

model to predict the response variable, such as considering a model without an intercept which can be seen 

in Figure 6. In this case, we will model/predict the number of claims only based on the product and the number 

of insurance premiums without considering other factors. Therefore, the same analysis is carried out by 

assuming the model is 𝑦0. Furthermore, compared with the previous results, the parameter estimation result 

automatically shows that parameter estimation appears for the type of TLO insurance product but without 

intercept. The following is a model with an intercept (𝑦0) shown in Figure 6. 
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Figure 6. The Output of Poisson Regression Model without Intercept (𝒚𝟎) 

 

Based on Figure 4 and Figure 6, the parameter estimates the coefficients of the types of Comprehensive 

and All Risk insurance products, the value changes between the model without intercept and the model with 

intercept. From these two models, it can be seen that the intercept is the estimated effect for the reference 

category and the coefficient of the other category is the deviation for that effect. Then when compared to the 

standard error value, for the model without an intercept, the value is greater than the model with an intercept. 

Therefore, it is necessary to consider other models. 

Another alternative model is without a variable type of insurance product, so the number of claims is 

predicted only based on the size of the premium. For that, define 𝑦2 as the response variable of the model 

without the insurance product type variable (in Figure 7). Model 2 is the model involving products and 

premiums previously defined as 𝑦1 (in Figure 4). 

 

 
Figure 7. The Alternative Model without Insurance Product Type (𝒚𝟐). 

 

Based on Figure 6 and Figure 7, if we look at the AIC value, the AIC value of Model 𝑦2 is greater than 

the AIC value of Model 𝑦1. Thus, the model with a better intercept. Therefore, there are three candidate 

models to predict the number of claims. It is 𝑦0, which is a model without an intercept. Then, 𝑦1 is a model 

that involves an intercept and explanatory variables consist of the type of insurance product and the amount 

of premium. The last is 𝑦2, which is a model that involves intercept and premium. From the three models, 

when viewed from the standard error and AIC value, it is concluded that the 𝑦1 is the best model. 

 

3.3. Model Evaluation 

Previously, the best model choice obtained was 𝑦1. The model is then evaluated. The first step is to 

test the model's fit using the chi-square test, as shown in Figure 8. The chi-square test is carried out with the 

null hypothesis being the model fits, and the counter hypothesis is that the selected model does not match the 

data held based on a particular significance level. 
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Figure 8. Output of Goodness of Fit Test 

 

Figure 8 shows that the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.6182274, which if the 5% significance level is used, then the 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 𝛼. Therefore, 𝐻0 is not rejected. So, based on the chi-square test with a significance level of 

5%, the model chosen is suitable to describe the data held. The overdispersion test was carried out, with the 

null hypothesis being that there was no overdispersion in the model. The counter hypothesis was 

overdispersion in the model, as shown in Figure 9. 

 

 
Figure 9. Output of Overdispersion Test 

 

From Figure 9, it can be seen that the⁡𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.2973, which if the 5% significance level is used, 

the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 𝛼, so 𝐻0 is not rejected. It means that the mean is the same as the variance, or there is no 

overdispersion. Next, it will be checked for multicollinearity. Based on Figure 10, the GVIF value of the 

model is less than 10, so it can be concluded that the multicollinearity is low. 

 

 
Figure 10. GVIF Value for Multicollinearity 

 

Then the coefficient of determination is also determined from this model—furthermore, the results are 

obtained in Figure 11. 

 

 
Figure 11. Coefficient of Determination 

 

There is no standard rule regarding what percentage of variability can be explained in the model, but 

the more significant the percentage, the better the model. Based on Figure 11, information is obtained that 

31.54% of the variability in the number of claims (𝑌) can be explained by using the product (𝑋1⁡and⁡𝑋2⁡) and 

claim size (𝑋3). In comparison, the remaining 68.46% of the variability in 𝑌 can be explained by other factors 

that are not observed or included in the model. 

 

3.4. Prediction 

After obtaining the best model, it will predict the expected value of y for a specific explanatory variable 

if the other variables have a fixed value. In this case, we want to know the average number of claims for a 

specific insurance product if the premium value is the average of the premiums. Previously, it was known 

that the average premium was $52.645. The syntax shown in Figure 12 is used to solve this problem. 

Then, the predictive function of the mean 𝑦 value and standard error for each product is determined if 

the average premium is 52.645. Next, the predict function is used, whose results are described in Figure 12. 
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Figure 12. Output of Predict Function 

 

From these results, it can be seen that based on predictions, the average number of claims for All Risk 

products is ⁡e0.3060086 = 1.358, for Comprehensive products is ⁡e0.6249446 = 1.868, and for TLO products 

is ⁡e0.2114109 = 1.235, if the premium amount is $52.645. 

 

3.5. The Interpretation 

Next, the regression plot is described. The data are sorted by product type and premium. The plot is 

presented in Figure 13. The 𝑥-axis represents the premium amount; the 𝑦-axis represents the value of 𝑦̂ 

obtained from the 𝑦1 model, which is the expected number of claims.  

 

 
Figure 13. Plot of Expected Number of Claims 

 

From Figure 13, it can be seen that the expectation of the most significant number of claims comes 

from the type of Comprehensive insurance product, especially if the premium value is getting bigger. 

Meanwhile, most of the claims came from TLO insurance products, at least. 

 
 
 

4. CONCLUSIONS 

Based on the data analysis, it can be concluded that the best model to describe and to predict the data 

is Equation (18). Based on Equation (18), 𝑥1 is variable of customer that has Comprehensive insurance 

product. Next, 𝑥2 is variable of customer with All Risk insurance product. Then, 𝑥3 is variable that states the 

customer's premium amount. The predicted mean number of claims for each type of insurance product in the 

next one year of observation is one claim for TLO and All Risk insurance products and two claims for 

Comprehensive insurance products.  
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We will use the clustering method to get the best prediction model in future research [12]–[15]. It also 

compares the prediction results between the Poisson regression and the predictive distribution methods [16] 

and statistical inference for online decision [17]. 
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