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Abstract. Detailed investigations of landslides are essential to understand 

fundamental landslide mechanisms. Seismic refraction method has been proven 

as a useful geophysical tool for investigating shallow landslides. The objective of 

this study is to introduce a new workflow using neural network in analyzing 

seismic refraction data and to compare the result with some methods; that are 

general reciprocal method (GRM) and refraction tomography. The GRM is 

effective when the velocity structure is relatively simple and refractors are gently 

dipping. Refraction tomography is capable of modeling the complex velocity 

structures of landslides. Neural network is found to be more potential in 

application especially in time consuming and complicated numerical methods. 

Neural network seem to have the ability to establish a relationship between an 

input and output space for mapping seismic velocity. Therefore, we made a 

preliminary attempt to evaluate the applicability of neural network to determine 

velocity and elevation of subsurface synthetic models corresponding to arrival 

times. The training and testing process of the neural network is successfully 

accomplished using the synthetic data. Furthermore, we evaluated the neural 

network using observed data. The result of the evaluation indicates that the 

neural network can compute velocity and elevation corresponding to arrival 

times. The similarity of those models shows the success of neural network as a 

new alternative in seismic refraction data interpretation. 
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1 Introduction 

Landslide is one of the most costly and damaging natural hazards in Indonesia. 

As the case of shallow landslide at Kertasari Bandung that has slope with high 

permeable soil on top of low permeable bottom soil [1]. The low permeable 

bottom soil traps the water in the shallower, high permeable soil creating high 

water pressure in the top soil. As the top soil is filled with water and becomes 

heavy, slope becomes very unstable and slides over the low permeable bottom 

soil. Detailed investigations of landslides are essential to understand 

fundamental landslide mechanisms. Seismic refraction is a technique that has 
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been used to investigate landslides since the early 1960’s [2]. The velocity 

structure of a landslide mass, the depth to the sliding surface, and the lateral 

extent of a landslide are variables that may be estimated using seismic 

refraction. The basis of the interpretations is the difference in the physical 

properties of the sliding materials and the underlying undisturbed sediments that 

result in different seismic velocities [2]. 

Conventional seismic refraction data have been processed and presented 

utilizing a number of methods for a very long time. Palmer’s approach using the 

generalized reciprocal method (GRM) has been the industry standard for 

assessing a layered earth using first arrival times of body wave energy to 

produce images of the subsurface. GRM is a technique for delineating 

undulating refractors at any depth from in-line seismic refraction data consisting 

of forward and reverse travel times [3]. GRM can be used to model velocity 

structures of some landslides. These methods are most applicable to sites where 

subsurface layers dip less than approximately 20o and have nearly uniform 

velocities, for these methods assume a layered model and continuity of refractor 

surfaces across a profile. However, the velocity structures of landslides can be 

complex, making them difficult to accurately model using GRM. Refraction 

tomography, another method of interpreting seismic refraction data, is capable 

of modeling these complex velocity structures. These methods, more complex 

mathematical approaches, all termed tomography, vary to some degree in their 

analysis, but the image results are generally comparable [4]. Inversion modeling 

often requires a lot of time and using complicated methods. In contrast to time 

consuming and complicated numerical methods, neural network is found to be 

of potential applicability [5, 6]. The trained neural network indicates that the 

neural network can satisfactorily compute seismic reflection velocity and dips 

corresponding to travel-times [6]. In this study, neural network ability to 

establish a relationship between an input and output space is considered to be 

appropriate for mapping seismic refraction velocity and elevation corresponding 

to arrival times. The purpose of this paper is to introduce a new workflow in 

analyzing seismic refraction data. 

2 Research Method 

The methodology of the seismic refraction analysis consists two parts; there are 

field measurement part and data processing part. The seismic refraction survey 

was able to carry out using the seismograph with acquisition unit of the high-

speed interface system. In this study, the seismic refraction testing was located 

in landslide area at the Kertasari Bandung. The Kertasari landslide was selected 

because of its shallow sliding surface at a depth of about 5 m. The spread line 

employed was 69 m based on 3 m geophone spacing due to the constraint of the 

site. The layout of the seismic refraction set up is schematically shown in Figure 
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1. The 24 geophones are placed on the linear imaginary line and the 

seismograph box is set to connect the 12th and 13th geophone. The several shot 

points of the 10 kg wood hammer in order to generate the P waves are located at 

the 1st to 7th point in the spread line. 

 

Figure 1 The seismic refraction set up. The spread line employed was 69 m 

based on 3m geophone spacing due to the constraint of Kertasari site. The 24 

geophones are placed on the line (two lines with two different directions) and the 

seismograph box is set to connect the 12th and 13th geophone. Several shot 

points are located at the 1st to 7th point in the spread line. 

The data processing technique of the seismic refraction method is explained 

schematically in Figure 2. The analogue data of the seismic wave propagation is 

directly resulted from the field measurement equipment. The analogue data is 

then transferred into the digital format data. The important information of the 

digital data for the seismic refraction method is the first arrival time information 

of P-waves which propagates to the geophones. To invert the data, three 

methods were used; GRM, refraction tomography and neural network (as a new 

alternative). 

The GRM is a seismic inversion method that uses the refracted arrival 

Traveltime data for both forward and reverse shots, and the reciprocal time [3, 

7,8]. The GRM is able to provide good estimates of the seismic velocities 

within the refractor, and the structure or shape of the refracting interface [7]. 

The major difference between the GRM and other seismic refraction inversion 

methods is that the former applies a variable refraction migration which can be 

often be useful in resolving undetected layers, variable velocity media and 

anisotropy under favorable conditions [9]. With the GRM, a range of offset 

distances is computed, usually from zero to a value in excess of the estimated 

true value. The optimum value, for which the refractor velocity analysis 

function displays a minimum of artifacts caused by the irregular refractor 

interface, is selected by inspection of the graphs. The GRM consists of two 

algorithms: the velocity analysis function from which the refractor velocity is 

derived, and the time-depth function which is a measure of the depth to the 
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refractor in units of time. The two functions are calculated for different values 

of the horizontal separation between forward and reverse receivers (XY values), 

with the optimum value being determined from inspection of the resulting 

functions. The GRM originated as a manual method but nowadays can be 

implemented with commercial software (e.g., WinSism by W-GeoSoft [10]). 

 

Figure 2 Research Schema. For the first, Neural Network was created and then 

we trained it with the synthetic data. The input is time of subsurface synthetic 

created using Matlab and then we run within FWM2DPSV. The Target Outputs 

are velocity and depth of the initial model of the travel time synthetic created 

using Rayfract
TM

. After the training, we simulated the Neural Network with the 

field data. All of the systems used the same field measurement data. The outputs 

of the simulation are velocity and depth at shot point. It seems similar to the shot 

point depth computation or Intercept Time Method. After that, the data was 

filtered using Microsoft Excel, and then Grid using Surfer was created, and we 

plot them within Surfer to be a Subsurface Map that we compared it with the 

Subsurface Map of GRM, Rayfract
TM

 Software and SeisOpt@2D Software. 
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Two commercially-available refraction tomography software systems were used 

to produce P wave velocity tomograms. The two systems are Rayfract
TM

 by 

Intelligent Resources, Inc [11] and SeisOpt@2D by Optim LLC [12]. Each of 

the systems contains three important components: a forward model for 

calculating source to receiver first arrival times based upon the current velocity 

model, an inversion routine for adjusting the velocity model until an acceptable 

match between calculated and measured first-arrival travel times is obtained, 

and a means for generating an initial velocity model [13]. 

Rayfract implements Wavepath Eikonal Traveltime tomography (WET) [14] 

with the Fresnel volume approach to inversion [15]. The WET inversion 

method is founded upon a backprojection formula for inverting velocities from 

travel times computed by a finite-difference solution to the Eikonal equation 

[16]. Rayfract provides two options for generating an initial model to start WET 

inversion: uses the Delta-t-V method included in Rayfract, or uses the “smooth 

inversion” algorithm that automatically creates a one dimensional model based 

on Delta-t-V a result that is then extended to cover the two-dimensional area 

[4]. The “smooth inversion” algorithm is intended to eliminate artifacts that can 

sometimes be produced by the Delta-t-V solutions. 

SeisOpt@2D is based upon a Monte Carlo-based optimization scheme 

described by Pullammanappallil and Louie [17]. For forward model, a finite-

difference solution of the Eikonal equation [18] computes first-arrival travel 

times through the velocity model. Inversion is accomplished via a generalized 

simulated annealing global optimization algorithm. Pullammanappallil and 

Louie [17] demonstrate that the simulated annealing inversion algorithm is 

independent of the initial model. The SeisOpt@2D user must specify the 

vertical and horizontal spatial resolution (cell size) of the model. By default, a 

constant velocity is assigned to the model by SeisOpt@2D to begin the 

optimization. Alternatively, the user can input results from a previous run as an 

initial model, or fully specify an initial velocity model. 

The neural network has the ability to map seismic velocity. This study is based 

on application of feed-forward neural network. The neural network contains 

three layers that are an input layer, a hidden layer and an output layer (Figure 

3). There is no connection between neurons in the same layer. Connections are 

only between adjacent layers [19]. A neuron, a simple processing node, is used 

to calculate the output a according to an input n. The weighted (W) sum of all 

outputs of neurons in previous layers is the value of input n for neuron i outside 

of input layer. Neurons in previous layers are indicated by index j. 

 𝑛𝑖 = 𝑏 +  𝑊𝑖𝑗𝑎𝑗𝑗   (1) 
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Based on a tan-sigmoid function, the value of output is calculated as follows, 

 𝑎𝑖 =
2

1+𝑒−𝑛𝑖
− 1 (2) 

 

Figure 3 Neural Network Structure. The feed-forward back propagation neural 

network consists of three layers. The input has 24 neurons (6 traces for each 

layer), the output has 8 neurons (velocity and elevation for each 4 layers) and the 

hidden layer consists of 12 neurons. The number of weights are (24 x 12) + (12 x 

8) = 384. The information flows from input to hidden layer and then through 

output. Picked travel times were considered as inputs and the corresponding 

velocity and elevation as outputs. The generalization phase calculates the model 

characteristics (i.e., velocity and depth) corresponding to unknown input travel 

times. The performance goal for all neural network applications was set to 1e-

005. In other words, the generalization performance is considered accurate for 

different models, when this goal is achieved. 

A training process is initiated in which the structure and output function remain 

unchanged. The process of initializing the weights W comprises by training in 

order to minimize the error between the computed output and the desired output 

for all samples. In this study, picked travel times were considered as inputs and 

the corresponding velocity and depth as outputs. The overall procedure is 

shown in Figure 2. Corresponding travel times were calculated by a forward 
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modeling scheme using FWM2DPSV program [20] (by the help Matlab 

software). The output of the forward modeling is a synthetic trace. Synthetic 

data are picked as input. First break data were also modeled with inversion 

method, where the velocity and depth of the initial model used as the target 

data. The corresponding data sets (i.e., arrival times as input and velocity and 

depth as output) were fed to neural network in order to train the networks. 

Afterwards the neural network was tested using parts excluded from the training 

set. This procedure or, generalization phase calculates the model characteristics 

(i.e., velocity and depth) corresponding to unknown input travel times. 

The performance goal for all neural network applications was set to 1e-005. In 

other words, the generalization performance is considered accurate for different 

models, when this goal is achieved. 

3 Results and Discussions 

The interpretation of the seismic refraction profile provides a four layer model: 

The first layer shows a velocity of 343-449 m/s and corresponds to top soil. Its 

thickness varies from 1 m to 5 m. The second layer shows velocity in the range 

of 449 to 837 m/s (Depth 5-10m). It might be associated to smooth grain above 

the tuff layer. The third layer shows velocity in the range of 837 to 1100 m/s. It 

might be associated to tuff above the clay basement. The fourth layer shows 

clay stone. Basement with a velocity of 1100-1500 m/s is located at a depth of 

about 23 m (Figure 5 and 6). 

The analysis of neural network model provides a similar model. The principal 

approach in this method was considered to be the subsurface with the different 

velocity. For this geological model we calculated 700 data sets with different 

velocities, depths and dips. The profiles have been provided for these 700 

examples with 3 m receiver separation for 24 geophone positions according to 

source location. The depths were determined based on input arrival time. The 

feed-forward backpropagation neural network consists of three layers. The input 

has 24 neurons (6 traces for each layer), the output has 8 neurons (velocity and 

elevation for each 4 layers) and the hidden layer consists of 12 neurons. In this 

experiment the number of weights or connections between neurons are (24 x 12) 

+ (12 x 8) = 384. 

The main problem in neural network training, which is done to produce a 

network that is capable to map the seismic velocity data based on input arrival 

time, is the determination of appropriate training targets. In other words it is 

very difficult or even impossible in that an equation consisting of three 

parameters that are closely interconnected is done an attempt to produce two 

unknown parameters based on the known parameter without external parameter 
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assistance. Referring to the intercept-time method, the depth at every shot point 

can be calculated after discovery of the velocity and intercept time at every shot 

point. Both parameters are obtained through linear regression of travel time 

equation with the help of two known parameters of offset and arrival time. In 

other words, intercept time and velocity can be determined if the arrival time 

and offset are known. If the velocity and intercept time have known, the depth 

can be obtained. If applied in neural network training the arrival time and 

velocity are used to obtain intercept time with the help of the offset for 

determining the depth, so instead arrival time, offset and depth are used to 

determine the intercept time and velocity. Of understanding can be seen that the 

offset is very decisive role, but in this study did not use offset as an input so it 

will be very difficult for the neural network to determine the velocity and depth 

simultaneously. If one considered the same output for each layer, it will be very 

easy in training. The solution is to make an example. The depth is considered 

known, so the velocity can be determined easily based on arrival time. In this 

case, the arrival time was associated directly with the depth and neural network 

was trained to calculate the appropriate velocity. In this study, 24 input arrival 

times are divided into 4 layers, where 6 trace represent a layer. Each layer was 

represented by an arrival time. It is the average arrival time of six trace. -1/2 

average arrival time in each layer is treated as a point of depth. The point of 

depth was later occupied by the velocity based on arrival time. 

 

Figure 4 Screen captures of the neural network performance. The performance 

function of 0.0000175017 was achieved after 4,000 iterations that it wasn’t close 

enough to the goal (1e-005) but it was enough for the evaluation. 
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Set of arrival time in second and elevation in km. The velocities were 

normalized to 10 km/s. After 4,000 iterations a performance function of 

0.0000175017 was achieved that it wasn’t close enough to the goal (1e-

005) as it can be seen in Figure 4. 

The results of simulating the outputs for observed data are presented in Figure 5 

and 6. The velocity calculation showed relatively high accuracy. All models 

show the depth of the sliding surface (The Kertasari landslide) of about 5 m. 

 

Figure 5 Comparing Models; Line 1. The results show that the velocities are 

similar. The profile provides a four layer model: The first layer shows the top 

soil with velocity of 343-449 m/s. The second layer shows the smooth grain 

above the tuff layer with velocity in the range of 449 to 837 m/s (depth 5-10 m). 

The third layer shows velocity in the range of 837 to 1100 m/s. It might be 

associated to tuff above the clay basement. The fourth layer shows basement 

with a velocity of 1100-1500 m/s that is located at a depth of about 23 m. 
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Figure 6 Comparing Models; Line 2. The velocities are similar with model line 

1. However the results indicated that the velocity errors increase with increasing 

the depth of the layers. 

4 Conclusions 

All models show the depth of the sliding surface (The Kertasari landslide) of 

about 5 m. The similarity of those models shows the success of neural network 

as a new alternative in seismic data interpretation. However the results of this 

study indicate that the velocity errors increase with the depth of the layers. 

Therefore, the approach for reducing the velocity error intervals requires further 

research. 
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