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Abstract. This paper proposes a controller reduction of linear parameter 
dependent systems. A measure of the degradation is derived for the parameter 
dependent closed-loop performance caused by applying the reduced-order 
parameter dependent controller. This measure can be obtained by extending the 
degradation of the closed-loop performance of the balanced truncation of the 
corresponding time invariant systems. To verify the performance of the reduced-
order controller, an application of the proposed controller reduction method to 
vertical acceleration of a missile is presented. 
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1 Introduction 
Almost all physical systems have parameter dependent representations, but 
many the current modelling and control of physical systems use Linear Time 
Invariant (LTI) systems. As operating conditions change, the behavior of the 
physical systems and the linear time invariant model vary so that the closed 
loop performance designed by LTI controller may degrade. To cope with this 
problem, it is required that the parameter dependent is designed using parameter 
dependent controller. Moreover, modern controller design theories such as  
and  synthesis usually produce controllers that have the same order as that 
of the model. Thus, the application of these design techniques to high order 
models will produce high order controllers.  The design and analysis of high-
order controllers demand high computational cost and may results in numerical 
difficulties while its implementation is very complex. Hence, it is important to 
find the low (reduced)-order controllers for parameter dependent systems. 

2H

∞H

A reduced-order controller can be obtained through the direct method and the 
indirect method [1]. In the direct method, the reduced-order controller is 
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obtained directly from the high-order plant. In the indirect method, the reduced-
order controller is obtained by using a controller reduction or a model reduction, 
i.e. a high-order controller is first found and then the order of the controller is 
reduced or a reduced-order plant is first found and then a reduced-order 
controller is designed. 

Balanced Truncation (BT) method have been proposed to reduce both the order 
of the model and of the controller for LTI systems [7, 13]. The LTI model 
approximation techniques of BT method have been extended to reduce a Linear 
Time Varying (LTV) systems [10, 11]. Wood et.al [12] and Zobaidi et.al [6] 
generalized this method to reduce parameter dependent systems with 
unbounded rate parameter model and controller. They [10, 11, 12] extend the 
twice the sum of the tail formula well known in the LTI case. In this paper we 
will find a reduced-order parameter dependent controller via a controller 
reduction. In comparison with Zobaidi et.al [6] method, it is different in the 
controller design technique. Zobaidi [6] et.al use solutions of the control and 
filtering riccati inequalities to construct a full-order parameter dependent 
controller, whereas in this paper it is constructed from the solutions of the linear 
matrix inequalities developed by Apkarian [2]. We also investigate the 
degradation of the parameter dependent closed-loop performance in  norm 
due to the reduced-controller. Furthermore, simulation results are given to 
examine the performance of the reduced-order parameter dependent controller 
for a missile.  

2L

2 Preliminaries and Problem Formulation 
In this paper, we consider linear parameter dependent systems. For a compact 
subset s⊂P R , the parameter variation set ρF  denotes the set of all piecewise 
continuous mapping (time) into  with a finite number of discontinuity in 
any interval.

R P

{ }
min max

: ( ) : , ,  1,2,..., .s
i i itρ ρ ρ ρ ρ= → ≤ ≤ =F R R i s A compact set 

s⊂P R , along with continuous functions : s n nA ×→R R , , 
, 

: un nsB ×→R R
: yn nsC ×→R R : y un nsB ×→R R  represent an nth-order parameter dependent 

plant, ( )G ρ , whose dynamics evolve as 

( ) ( )( ) ( ) ( ) ( ) ( )x t A t x t B t u tρ ρ= +&  (1) 

( ) ( )( ) ( ) ( ) ( ) ( )y t C t x t D t u tρ ρ= + , ( )t ρρ∀ ∈F . 

A state space realization of the parameter dependent plant, ( )G ρ , is written as 
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( ) ( )
( ) ( )

( )   
  

( )
( )

( ) ( )
A t B t

G
C t D t

ρ ρ
ρ

ρ ρ
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

, ( )t ρρ∀ ∈F . 

The parameter dependent systems Gρ  is quadratically stable [9,12] if there exits 

a real positive-definite matrix 0TP P= >  such that  

( ) ( )( ) ( ) 0TA t P PA tρ ρ+ < , ( )t ρρ∀ ∈F . (2) 

The induced  norm of a quadratically stable parameter dependent systems, 2L
( )G ρ , with zero initial conditions, is defined as [3]  

2

2
,2

( ) 0,
2

( ) sup sup
i

t u u

y
G

uρρ
ρ

∈ ≠ ∈
=

F L
. (3) 

This quantity is always finite. To formulate a performance oriented parameter 
dependent output feedback synthesis problem, the parameter dependent plant is 
written as follows 

( ) ( ) ( )1 2( ) ( ) ( ) ( ) ( ) ( ) ( )x t A t x t B t w t B t u tρ ρ ρ= + +& , 

( ) ( ) ( )1 11 12( ) ( ) ( ) ( ) ( ) ( ) ( )z t C t x t D t w t D t u tρ ρ ρ= + + , (4) 

( ) ( ) ( )2 21 22( ) ( ) ( ) ( ) ( ) ( ) ( )y t C t x t D t w t D t u tρ ρ ρ= + + , ( )t ρρ∀ ∈F . 

Readers are referred to references [9, 12] for the definition of the quadratic 
stabilizability and quadratic detectability. The following assumptions are made 
to parameter dependent plant  

1. ( )22 ( ) 0D tρ =  
2. ( ) ( ) ( ) ( )2 2 12 21( ) ,  ( ) ,  ( ) ,  and ( )B t C t D t D tρ ρ ρ ρ  are parameter-

independent 
3. The pairs ( )( )2( ) ,A t Cρ  and ( )( )2( ) ,A t Cρ  are quadratically 

stabilizable and quadratically detectable over  respectively. P

 A construction of full-order controller has been developed by Apkarian, et.al 
[2]. The design objectives are to satisfy ∞H  performance criterion, i.e., the 
parameter dependent closed-loop systems is quadratically stable over  and the 

 gain of the parameter dependent closed-loop systems is bounded by 
P

2L
,  0γ γ >  for all possible trajectories ρ . In this paper we assume that the full-

order controller has an mth-order. The parameter dependent full-order controller 
has state space realization as follows. For brevity, t is omitted. 
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( ) ( )
( ) ( )

  
  

A B
C D

( ) K K

K K

K
ρ ρ

ρ
ρ ρ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

, ρρ∀ ∈F . (5) 

The goal of this paper is to find a reduced-order controller ˆ ( )K ρ  by using 
balanced truncation with state space realization given by 

( ) ( )
( ) ( )

1 1

1 1

  ˆ ( )
  

k k

k k

A B
K

C D
ρ ρ

ρ
ρ ρ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

, ρρ∀ ∈F .  

such that the degradation of the parameter dependent closed-loop performance 

,2
ˆ( ) ( )zw zw i

T Tρ ρ−  is small, or at least bounded by an apriori bound, where 

( )zwT ρ  and ˆ ( )zwT ρ  are the parameter dependent closed-loop systems with the 
full-and reduced-order parameter dependent controllers, respectively.  

3 Order Reduction of the Parameter Dependent Controller 
Our aim in this section, is to extend some of the standard results on balanced 
truncation method of time invariant systems to controller reduction of the 
unbounded-rate parameter dependent systems. The realization of the parameter 
dependent closed-loop system with the full-order controller, ( )K ρ  in equation 
4, can be expressed by  

( ) ( )
( ) ( )

  
( )

  zw

A B
T

C D
ρ ρ

ρ
ρ ρ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

, ρρ∀ ∈F ,  (6) 

where 

( ) ( ) ( )
( ) ( )
2 2 2

2

+
( ) K K

K K

A B D C B C
A

B C A
ρ ρ ρ

ρ
ρ ρ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 
( ) ( )

( )
1 2

21

( ) K

K

21B B D D
B

B D
ρ ρ

ρ
ρ

⎡ ⎤+
= ⎢ ⎥
⎣ ⎦

,  

[ ]1 12 2 12( ) ( ) ( ) ( )K KC C D D C D Cρ ρ ρ ρ= + , 11 12 21( ) ( )KD D D D Dρ ρ= + . 
 
Assume that the full-order controller, ( )K ρ  in equation 4, is a stabilizing 
parameter dependent controller so that T ( )zw ρ  is quadratically stable over  
and that there exist 

P

( )1 2, 0iag U U= >U d  and ( )1 2, 0iag V VV d= >  such that 

ρρ∀ ∈F ,  

( ) ( ) ( ) ( ) 0T TA U UA B Bρ ρ ρ ρ+ + <  (7) 

( ) ( ) ( ) ( ) 0T TA V VA C Cρ ρ ρ ρ+ + <  (8) 
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Necessity and sufficient conditions for the solutions existence of above 
inequalities are a quadratic stability of plant ( )G ρ  [9]. Assume that there exist 
nonsingular matrices  and  such that,  1T 2T

( )1
1 1 1 1 1 1 1 2 1 2, , , ,   T T

g n nTU T T V T diag ξ ξ ξ ξ ξ− − ξ= = Σ = ≥ ≥ ≥L L  
and 

( )1
2 2 2 2 2 2 1 2,T T

k kT U T T V T diag− −= = Σ = Σ kΣ  

with ( )1 1, ,k rdiag σ σΣ = K , ( )2 1, ,k r mdiag σ σ+Σ = K 1r r, σ σ +>  and 1j jσ σ +≥ , 

 are Q -singular values of 1,2, ,j = K m ( )K ρ . The balanced realization ( )K ρ  
can be written as 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

1
2 2 2

1
2

,

         ,   ,   .

K K

K K

k k
K k

k k

T A T T B
K

C T D

A B
D D

C D

ρ ρ
ρ

ρ ρ

ρ ρ
ρ ρ ρ ρ

ρ ρ

−

−

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

= =⎢ ⎥
⎢ ⎥⎣ ⎦

F∀ ∈

 

Further, ( )K ρ  is partitioned conformably with ( )1 2, ,k kdiag kΣ = Σ ΣK  as 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11 12 1

21 22 2

1 2

k k k

k k k

k k k

A A B
K A A B

C C D

ρ ρ ρ
ρ ρ ρ ρ

ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (9) =

The truncated realization of ( )K ρ , denoted by ( )K̂ ρ , has rth-order as follows. 

( ) ( ) ( )
( ) ( ) ( )11 1

1

ˆ ,k k

k k

A B
K

C D
ρ ρ

ρ ρ ρ
ρ ρ

⎡ ⎤
= ∀⎢ ⎥
⎢ ⎥⎣ ⎦

F∈ . 

Moreover, the reduced-order parameter dependent controller is applied to the 
plant. We find the reduced parameter dependent closed-loop system 

( ) ( ) ( )
( ) ( )

( )
ˆ ˆ

ˆ ,  ˆ ˆwz

A B
T

C D
ρ ρ

ρ ρ ρ
ρ ρ

⎡ ⎤
= ∀ ∈⎥
⎢ ⎥⎣ ⎦

F , ⎢

where 
( ) ( ) ( )

( ) ( )
2 2 2 1

1 2 1

ˆ k k

k k

A B D C B C
A

B C A
ρ ρ ρ

ρ ρ
⎡ ⎤+

= ⎢ ⎥
⎣ ⎦

, ( ) ( )
( )

1 2 21

1 21

ˆ k

k

B B D D
B

B D
ρ ρ

ρ
⎡ ⎤+

= ⎢ ⎥
⎦

, 
⎣

( ) ( ) ( )1 12 2 12 1
ˆ

k kC C D D C D Cρ ρ ρ⎡ ⎤= +⎣ ⎦ , ( ) ( )11 12 21
ˆ

kD D D Dρ ρ= + D . 
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4 Parameter Dependent Closed-Loop Performance 
In this section, a measure of the degradation of the closed-loop performance 
caused by applying the reduced-order controller to the high-order parameter 
dependent plant is derived. We generalize the degradation of the resulted 
closed-loop system from BT method of LTI systems to parameter dependent 
system with unbounded-rate parameter. For LTI system the corresponding 
results can be seen in Zhou, et.al [13]. The next lemma is required to derive an 
upper bounds for the parameter dependent closed-loop performance 
degradation. 

Lemma 4.1 [12] Assume ( )G ρ  is an nth-order, quadratically stable, balanced 
parameter dependent system partitioned conformably with 

 as follows. ( )1 2, , 0diagΣ = Σ Σ ≥L

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11 12 1

21 22 2

1 2

A A B
G A A B

C C D

ρ ρ ρ
ρ ρ ρ ρ

ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= , 

where 1
r r×Σ ∈R , . 2

n r n r− × −Σ ∈R
Then 

( ) ( )
( ) ( )

11 1

1

A B
C D

( )Ĝ
ρ ρ

ρ
ρ ρ

⎡ ⎤
⎢ ⎥
⎣ ⎦

, =

is an rth-order, quadratically stable, balanced approximation to ( )G ρ , and 

( ) ( ) ( )2
,2

ˆ 2
i

G G trρ ρ− ≤ Σ . 

The next theorem is the main result of this section. It is the parameter dependent 
generalization of the result on time invariant systems. 

Theorem 4.1 Suppose ( )K ρ  is a stabilizing parameter dependent controller 
such that ( )zwT ρ  is quadratically stable and there exist Lyapunov inequality 

solutions U and V, such that (7) and (8) are satisfied. Let ( )K̂ ρ  be a reduced-
order controller obtained by using BT method. Then the closed-loop system 
with the reduced-order controller ( )K̂ ρ  is a quadratically stable and 

( ) ( ) 1,2
ˆ 2 m

zw zw i ri
T T iρ ρ = +− ≤ ∑ σ , where m is the order of the original controller, 

r is the  order of the reduced controller. 
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Proof: 
Define ( )1 2,tT diag T T=  and ( )1 2,t tdiagΣ = Σ Σt   
with ( )1 1 2 1 2, , , , , , ,t n r ( )diag 2 2 1, ,t k r mdiagξ ξ ξ σ σ σΣ = L L  and σ σ+Σ = Σ = L . 
The parameter dependent closed-loop system with the full-order parameter 
dependent controller 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

1

    
  C D     

t t t t t
zw

t tt

T A T T B A B
T

C T D
ρ ρ ρ ρ

ρ
ρ ρρ ρ

−

−

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
 (10) 

is balanced, such that ρρ∀ ∈ , F

( ) ( ) ( ) ( ) 0,T T
t t t t t tA A B Bρ ρ ρ ρΣ + Σ + <  (11) 

( ) ( ) ( ) ( ) 0.T T
t t t t t tA A C Cρ ρ ρ ρΣ + Σ + <  (12) 

The parameter dependent closed-loop system, ( )zwT ρ , is partitioned 
conformably with  as ( )1 2,t tdiag Σ Σ

( ) ( ) ( )
( ) ( )
( ) ( )( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 2

3 4

1
1 2 2 1 1 2 1 1 2 2

1
1 2 1 11 12

1
2 2 1 21 22

,

t t
t

t t

K k k

k k k

k k k

A A
A

A A

T A B D C T T B C T B C

B C T A A
B C T A A

ρ ρ
ρ

ρ ρ

ρ ρ ρ ρ

ρ ρ
ρ ρ

−

−

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤+
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ρ

  

( )
( )

( ) ( )( )
( )
( )

1 1 2 21

1
1 21

2
2 21

K

t
t k

t
k

T B B D D
B

B B D
B

B D

ρ ρ
ρ

ρ
ρ

ρ

⎡ ⎤+
⎢ ⎥⎡ ⎤

= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

 

( ) ( )
( ) ( )( ) ( )

1 2

1
1 12 2 12 1 12     =

t t t

K k

C C C

C D D C T D C D C

ρ ρ

ρ ρ ρ−

⎡ ⎤= ⎣ ⎦
⎡ ⎤+⎣ ⎦2k

 

( ) ( )11 12 21.t KD D D D Dρ ρ= +  

Then the realization ( ) ( ) ( ) ( )( ), , ,t t t tA B C Dρ ρ ρ  can be truncated as  ρ
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( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

1
1 2 2 1 1 2 1 1 1 2

1
1 2 1 11 1 21

1
1 12 2 1 12 1 11 12 21

21K

K

ρˆ
K k

zw k k k

K k

T A B D C T T B C T B B D D

T B C T A B D

C D D C T D C D D D D

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ

−

−

−

⎡ ⎤+ +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥

+ +⎢ ⎥⎣ ⎦
 (13) 

and ( )ẑwT ρ  is a balanced truncation of ( )zwT ρ  where truncated states 

correspond to the . Based on the Lemma (4.1), 2 singular valueskΣ − −Q ( )ẑwT ρ  

is a quadratically stable over P  and ( ) ( ) 2 1,2
ˆ 2 2 m

zw zw i ri
T T tr iρ ρ σ= +− ≤ Σ = Σ .    

  
 
Solutions U and V are only required to satisfy inequalities (7) and (8), and are 
known to be not unique. Non-uniqueness of U, V can be exploited to produce 
more desirable reduced-order controllers. Considering the degradation of the 
closed-loop performance ( ) ( ) 1,2

ˆ 2 m
zw zw i ri

T T iρ ρ = +− ≤ Σ σ  given in Theorem 4.1, 

it is reasonable to choose U and V such that 1 2
1 1 2(m m

i r i i r i U Vσ λ= + = +Σ = Σ 2 )  is 
minimized. However, such solutions are hard to compute since the 
corresponding optimization is not convex. In this paper we use suboptimal 
solutions (convex feasibility problems). 

Note from (5)-(7) that ( ) ( )2 2KA B Dρ ρ+ C  and ( )KA ρ  are quadratically stable 
over . In particular, when P ( ) 0KD ρ =  these indicate the parameter dependent 
plant and controller are quadratically stable. Hence the previous results are not 
applicable to unstable parameter dependent plant and/or unstable parameter 
dependent controller. If G ( )ρ  and/or ( )K ρ  are not quadratically stable then 
we use coprime factorization of the parameter dependent controller which is 
constructed by using feasible solutions of  linear matrix inequality  to reduce 
( )K ρ  with a procedure as follows. 

Define right coprime factorization (RCF) of the ( ) ( ) ( ) 1K ρ ρ ρ −
= U V , 

( ) ( ) ( )
( ) ( ) ( )

( )

( )
( )

    
     

    

K K K K

K K K K

K

A B F B
C D F D

F I

ρ ρ ρ ρ
 ( )

( )
ρ

ρ ρ ρ ρ
ρ

⎡ ⎤+
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

ρ
⎡ ⎤
⎢ ⎥
⎣ ⎦

U
V

 

where ( )ρU  and ( )ρV  are quadratically stable, ( ) ( )T
K KF B Xρ ρ= − , 

 is a feasible solution of the following inequality: 0TX X= >
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( ) ( ) ( ) ( ) 0T T
<K K K KXA A X XB B Xρ ρ ρ ρ+ − , ρ∀ ρ∈F . Let Q and P are 

observability and controllability Gramians of RCF, where 0TP P= >  and 
 solve Lyapunov inequalities: 0TQ Q= >

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) 0,   
T T

K K K K K K K KA B F P P A B F B B ρρ ρ ρ ρ ρ ρ ρ ρ ρ+ + + + < F

( ) ( ) ( )( ) ( ) ( ) ( )
∀ ∈

( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) 0,    and 0,  0.

T T

K K K K K K K K K

T
K K K K K

A B F Q Q A B F C D F

P I
C D F F F

I Qρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ

λ
ρ ρ ρ ρ ρ ρ λ

λ

+ + + + +

−⎡ ⎤
+ + < ∀ ∈ >⎢ ⎥−⎣ ⎦

F >
 

Furthermore, construct balanced ( )K ρ  by using a state transformation matrix 
such that the transformed Gramians ( )1, , mP Q diag σ σ= = Σ = L  and then 

apply balanced truncation method to obtain ( ) ( ) ( ) 1ˆ
r r

K
r

ρ ρ ρ −
= U V  which has 

rth-order, r < m. 

5 Simulation Results 
In this section we examine the reduced-order controller by applying it to control 
vertical acceleration of a missile [3]. The missile dynamics under consideration 
vary greatly as a function of speed (v), angle of attack ( )α , and altitude (H). 
The parameter dependent system Gρ  is described as follows. 

1 0
,

0 1 m

Z
Mq q

α

α

α α
δ

−⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

&

&
 

1 0
 ,

0 1
zva
q q

α−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

where Zα  and Mα  are parameter depending on v, α , and H. We assume that  
Zα , Mα  are measured in real time. The states are angle of attack ( )α  and pitch 
rate (q). The input to the model is fin deflection ( )mδ . The output are 
normalized vertical acceleration ( )zva  and pitch rate (q). Let v, α , and H vary 
in , 0.5 4(mach)v≤ ≤ 0 40(degrees), 0 18(km)Hα≤ ≤ ≤ ≤  during operation, 
the coefficients Zα  and Mα  range in [ ]0.5,  4Zα ∈  and [ ]0,  106Mα ∈ . Note 
that  Zα  and Mα  enter the states space matrices in an affine way and it can be 
considered as representing a convex polytope with four vertices. The aim of the 
controller design is to achieve the step response of the vertical acceleration 
( )zva  having settling time < 0.5 seconds for all variations of Zα  and Mα  and 



Widowati, et al. 52 

overshoot limitation is 15%. The selection of weights is based on a frozen-time 
analysis of the parameter dependent systems, and follows the same lines as . 
The weights must enforce adequate settling time 0.5 seconds and high-
frequency gain attenuation [3, 4]. We choose the sensitivity weight  and the 
robustness weight . The performance and robustness requirements 
correspond to controller design which satisfy 

∞H

1W

2W

1
1

1
2

( )
1,

( )
W I G K

W K I G K
ρ ρ

ρ ρ ρ

−

−

∞

+
<

+
 

where 

1

3 2

2 3 5 2 8

2.01 ,
0.201

96.78 0.29 0.0003 0.0039 .
1.12 10 1.05 10 1.07 10

W
s

s s sW
s s s

=
+

+ + −
=

+ × + × + × 11

 

The high-order plant having 6th-order consists of the missile dynamic and all 
weighting functions. The full-order parameter dependent controller is designed 
by using procedure developed by Apkarian[2]. The resulting parameter 
dependent controller has the same order as that of the high-order plant. The 
feasibility problems (7) and (8) are convex problems. Using LMI Control 
toolbox for MATLAB[8] in pentium(R) 4, 2400 MHz, 18x, 512 MB of RAM 
we obtain feasible solutions U and V  after 78 iterations (corresponds to CPU 
time of 2.157 seconds). Furthermore, the order of the balanced parameter 
dependent controller is reduced by using the BT method suggested in the 
preceding section. The upper bound of the parameter dependent closed-loop 
performance for all variations of parameters is 0.2669. At 18 frozen parameter 
values, the ∞H -norm of the parameter dependent closed loop systems with 
some reduced-order controllers are shown in Table 1. 

0.5 2 3.5 0.5 2 3.5 0.5 2 3.5 0.5 2 3.5

0 0.119 0.117 0.116 0.119 0.117 0.181 0.229 0.521 0.732 0.299 1.152 1.932

20 0.118 0.116 0.116 0.118 0.116 0.117 0.443 0.640 0.827 1.284 2.022 2.700

40 0.117 0.116 0.116 0.117 0.116 0.117 0.354 0.718 0.899 2.105 2.756 3.347

60 0.116 0.116 0.117 0.116 0.116 0.117 0.599 0.782 0.962 2.793 3.369 3.898

80 0.116 0.116 0.117 0.116 0.116 0.118 0.659 0.842 1.018 3.395 3.912 4.378

100 0.115 0.116 0.118 0.116 0.116 0.118 0.716 0.896 1.074 3.910 4.368 4.797

6th-order 5th-order 4th-order 3rd-order

M
α

Z
α

Z
α

Z
α

Z
α

 

Table 1   The frozen parameter dependent closed loop performance. 
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When the full-order controller is reduced to 3rd order, ∞H -norm of the closed 
loop systems turns out be much greater than ∞H -norm of the closed loop with 
full-order controller. 

 
Figure 1   CPU time versus controller order. 

 
Figure 2   Parameter trajectory. 
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Figure 3   Time responses of the parameter dependent closed-loop systems. 

To provide an indication of the average time required for the proposed 
controller reduction method and the increase in complexity with the controller 
order, the CPU time required for finding reduced-order controllers is shown in 
Figure 1. To analyze the stability and performance robustness of the closed-loop 
systems, we use the particular spiral parameter trajectory [12] as follows. 

( ) ( )
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t
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M t e t
α

α

−

−

= +

= +

t
 

This trajectory is given in Figure 2. To conform the quadratic stability of the 
full-and reduced-closed loop system, the solution P satisfying inequality (2) is 
found after 47, 37, 30, 30 iterations for 6th-, 5th-, 4th-, 3rd-order controllers 
respectively. The step responses of the closed-loop system with the 6th-, 5th-, 
4th-, and 3rd-order parameter dependent controllers for all parameter 
trajectories are described in Figure 3. 

From these figures, it can be seen that the settling time of the 6th- and 5th-order 
controller are lower than 0.5 seconds and the closed-loop step responses achieve 
stability within 0.4 seconds for all parameter trajectories. When the parameter 
dependent controller is reduced to as low as 4th- and 3rd-order, the parameter 
dependent closed-loop systems are quadratically stable, although the settling 
time of its step responses are much greater than 0.5 seconds. 

6 Conclusion 
In this paper, the extension of the balanced truncation to reduce the order of the 
parameter dependent controller is proposed. When the parameter dependent 
plant and controller are quadratically stable, the degradation of the closed-loop 
performance caused by applying the reduced-order controller is bounded by 
twice the sum of the truncated Q -singular values. The proposed method has 



 Controller Reduction of Parameter Dependent Systems 55 
 

 

been applied to a missile model. From the simulation results, the step response 
of the parameter dependent closed-loop performance with 5th-order controller 
maintains the stability and performance of the full-order controller for all 
parameter trajectories. 
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