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Young Children’s Intuitive
Understanding of Rectangular Area
Measurement

Lynne N. Outhred and Michael C. Mitchelmore
Macquarie University, Sydney, Australia

The focus of this article is the strategies young children use to solve rectangular covering tasks
before they have been taught area measurement. One hundred fifteen children from Grades 1
to 4 were observed while they solved various array-based tasks, and their drawings were
collected and analyzed. Children’s solution strategies were classified into 5 developmental levels;
we suggest that children sequentially learn 4 principles underlying rectangular covering. In the
analysis we emphasize the importance of understanding the relation between the size of the unit
and the dimensions of the rectangle in learning about rectangular covering, clarify the role of
multiplication, and identify the significance of a relational understanding of length measure-
ment. Implications for the learning of area measurement are addressed.

Key Words: Children’s strategies; Cognitive development; Early childhood, K—4; Manipulatives;
Measurement; Multiplication; Representations; Visualization/spatial reasoning

Area is a particularly important topic in school mathematics. It is one of the most
commonly used domains of measurement in everyday life, and it is the basis for
many models used by teachers and textbooks to explain multiplication of whole
numbers (Hirstein, Lamb, & Osborne, 1978). When area measurement is general-
ized from discrete to continuous applications, area models become a natural means
of teaching fractions and their multiplication (Freudenthal, 1983). Area models can
also be useful in teaching enlargement and algebraic multiplication (Schultz,
1991).

All measurement requires the integration of spatial and numerical concepts into
the central, unifying idea of an iterated unit (Hiebert, 1981). How the units fit
together spatially and how they may be counted systematically are unique to each
domain of application. Area measurement is particularly interesting because it
involves the coordination of two dimensions. It also provides many examples of
the connections that are so important to mathematics (National Council of Teachers
of Mathematics [NCTM], 1989; Reynolds & Wheatley, 1996). In this article, we
investigate area-related connections young children make before they receive any
specific teaching about area.

This article is based on dissertation research (Outhred, 1993) carried out by the first
author under the supervision of the second author. It is an expanded version of a paper
presented at a conference of the International Group for the Psychology of Mathematics

Education (Outhred & Mitchelmore, 1996).
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What Do Students Understand About Area?

There is extensive evidence that both elementary and secondary school students
have inadequate understanding of area and area measurement (Bell, Costello, &
Kiichemann, 1983; Bell, Hughes, & Rogers, 1975; Clements & Ellerton, 1995;
Dickson, 1989; Foxman et al., 1983; Hart, 1987, 1993; Hart & Sinkinson, 1988;
Hirstein et al., 1978). For example, errors commonly reported include confusing
area and perimeter and applying the formula for finding the area of a rectangle to
plane figures other than rectangles. Prospective elementary school teachers’ knowl-
edge of area may also be inadequate. Many student teachers are reported to use
linear instead of square units for area measurements and to believe that doubling
the lengths of the sides of a square doubles its area (Simon & Blume, 1994;
Tierney, Boyd, & Davis, 1990).

Several authors (e.g., Simon & Blume, 1994; Tierney et al., 1990) have attrib-
uted students’ poor performance to a tendency to learn the area formula! by rote.
When students do not understand the conceptual basis for the formula, they have
difficulty in generalizing the procedures they have learned. For example, the
results of large-scale testing in the United States showed that almost half the
Grade 7 students could calculate the area of a rectangle when given both dimen-
sions; however, when asked to find the area of a square, given the length of one
side, only 13% of these students applied their knowledge of the area formula—
although most of them knew that the sides of a square are equal (Carpenter et al.,
1988). Student difficulties in volume measurement have also been attributed to an
early emphasis on formulas (Battista & Clements, 1996).

The experiential origin of the area formula is the action of physically covering
a rectangle with unit squares. But whereas this action is one-dimensional and
suggests an additive process, the formula is two-dimensional and multiplicative.
Children must therefore switch from an intuitive approach that emphasizes the
covering of the surface to a more formal approach that relies on relating the area
to the linear dimensions of the figure—the link being the structure of the rectan-
gular array formed by the covering unit squares. There are two problems here. First,
students often do not fully understand the relation of multiplication to addition
(Mulligan & Mitchelmore, 1997). Second, there is evidence that the structure of
the rectangular array is not intuitively obvious to children (Battista, Clements,
Arnoff, Battista, & Borrow, 1998; Mitchelmore, 1983). Students’ tendency to
learn the area formula by rote may be the result of teachers’ not allowing children
enough time to develop an understanding of the multiplicative structure of rectan-
gular arrays (Carpenter, Coburn, Reys, & Wilson, 1975). A similar situation has
been reported in research on children’s understanding of the volume formula
(Battista & Clements, 1996; Hart, 1989): Children need time to learn how to
decompose a three-dimensional array into layers and to progress from repeated addi-
tion to multiplication as a method of enumerating the unit cubes.

IFor brevity, we shall refer to the formula for the area of a rectangle as “the area formula.”
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Activities in which students cover rectangular figures with concrete materials
have often been suggested for building up an understanding of the area formula
(see,e.g., NCTM, 1989, p. 51). However, research suggests that such activities may
not be very effective (Dickson, 1989; Hart & Sinkinson, 1988). We can suggest
two reasons for this ineffectiveness. First, concrete materials may conceal the very
relations they are intended to illustrate. For example, Doig, Cheeseman, and
Lindsay (1995) found that 8-year-old children who used wooden tiles to cover a
surface were twice as successful as those who used paper tiles. One might expect
that those who used the wooden tiles would build up a better model of a rectan-
gular array and therefore have a better chance of understanding its structure.
However, wooden tiles also make the task too easy. The task can be completed
without the children’s attention being drawn to the structure of the array at all: The
problem of overlap is avoided; the tiles fit neatly along the edges without any need
for measurement, and they can be counted one by one as they are put down. The
wooden tiles prestructure the task, as it were; the array structure is inherent in the
materials and does not need to be apprehended by the learner. Second, children may
not relate the concrete materials to the mathematical concepts they are supposed
to represent. The dissociation is well illustrated in a study by Bell et al. (1983) in
which many children could find the number of unit squares that covered a shape
but were then unable to state the area of the shape. Although some of the problems
children experience may be attributable to poor teaching, apparently the relation
between covering with concrete materials and the area formula is so obscure that
manipulative activities may not assist learning (Hart, 1987, 1993; Hart & Sinkinson,
1988)—a common finding in research on manipulative materials (Hiebert &
Carpenter, 1992).

A few researchers have investigated children’s drawings of rectangular arrays
on the grounds that drawings are a useful, even essential tool for investigating most
area situations. Mitchelmore (1983) found that, although most students in his
Jamaican Grades 6 and 7 sample gave the correct values for the areas of various
rectangles, none could draw the unit squares in the figures. Their difficulties
persisted after extensive covering and tiling activities (another illustration of the
limited effectiveness of manipulative materials). Similarly, Outhred (1993) found
that all her Australian Grade 1 students could copy a 4 X 3 rectangular array using
cardboard tiles, but none could draw it. Drawings may be compared to the use of
tiles in the same way as Doig et al. (1995) compared paper and wooden tiles:
Graphic materials provide very little prestructuring, and success depends on an oper-
ational understanding of the structure of the rectangular array. The step from
solving a problem using concrete materials to representing it pictorially may there-
fore be a very large one.

Drawings may be seen as reflecting, or at least as being guided by, students’
mental images of the array structure. Reynolds and Wheatley (1996) identified five
levels of imagery that they believed were important in explaining children’s actions
in drawing coverings of regions on isometric paper. The levels were (a) constructing
an image of the given shape, (b) building a production procedure for drawing the
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shape on dot paper, (c) creating a covering, (d) constructing a repeating pattern,
and (e) coordinating patterning and covering. Simon and Blume (1994) suggested
that learners need to visualize rectangular area as measurable by an array of units.
The student teachers in their study had a sense of the structure of a rectangular array
and perceived the units as a combination of rows. However, the student teachers
did not seem to perceive how the shape and size of the array were determined by
both the linear dimensions and the particular area unit selected.

The above discussion identifies the central role of the rectangular array in the
understanding of area measurement. We suspect that many teachers perceive the
structure of this array as self-evident, without realizing the difficulties that chil-
dren face. However, “as long as we continue to assume that our interpretations of
external representations are self-evident, we do not consider the possibility that they
might be but one of a variety of alternatives or that students may not see what we
see” (Cobb, Yackel, & Wood, 1992, p. 9). It is therefore important to investigate
children’s understanding of rectangular covering and to study how this under-
standing changes over time. Such an investigation is essential if the teaching of area
measurement is to be meaningfully developed from children’s existing under-
standings.

This article reports part of a larger investigation (Outhred, 1993) into children’s
understanding of rectangular covering before they have been taught the area
formula. We seek answers to the following questions:

1. What strategies do young children use to find the number of unit squares that
cover a rectangle?

2. Can children’s strategies be classified into a sequence of developmental levels?
3. What operational principles underpin this developmental sequence?

We focus here on the relationship between the size of the array and the linear dimen-
sions of the rectangle in which it is enclosed. Extensive use is made of children’s
drawings of rectangular coverings.

In studying rectangular covering, we make no assumptions about children’s area
concepts. However, we do assume that children will at some stage be able to inter-
pret covering as a means of measuring area and that their understanding of rectan-
gular covering will then play a vital role in their understanding of area measure-
ment. We present our results without reference to area and, in the final section,
return to their implications for the learning of area measurement.

METHOD

A sample of 115 children was randomly selected from 40 Grades 1 to 4 classes
in four schools serving a range of cultural groups in a medium socioeconomic area
of Sydney. The numbers of children in Grades 1 to 4 were 30, 31, 26, and 28, respec-
tively, with approximately equal numbers of boys and girls at each grade level; the
average ages were about 6,7, 8, and 9 years, respectively. Information concerning
the strategies that children used to solve a variety of array-based tasks was collected
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in individual interviews conducted early in the school year. The interviewer (the
first author) inferred children’s strategies from a combination of observation and
careful questioning as the children worked through tasks involving drawing,
counting, and measurement. According to the curriculum guide used in these
schools (New South Wales Department of Education, 1989), which all teachers said
they followed closely, area measurement is not taught until late in Grade 4 or in
Grade 5.

In this article, only the three measurement tasks (M1, M2, and M3) will be
discussed. The tasks were presented in the same order to each child but were inter-
spersed among drawing and counting tasks. An introductory task was used to estab-
lish the meaning of the drawing and measurement tasks in the interview. In this
task, children were shown a 3 x 4 array of square tiles and were asked to copy it
using identical tiles; they were then asked to make a drawing of the array. (All chil-
dren copied the array without error; for a discussion of their drawing errors, see
Outhred, 1993.) Throughout the interview, paper, pencils, and rulers were avail-
able for the children to use as they wished. There was no requirement to use
drawing to solve the tasks, but most children did so.

Response sheet Response sheet

L

Figure 1. The measurement tasks M1 and M2.

The first two tasks, M1 and M2, are shown in Figure 1. Task M1 was designed
to investigate the strategies children use for covering a drawn rectangle with a move-
able unit. The unit (a 2-cm cardboard square) was provided, and the children were
asked to work out how many of these would be needed to cover the 8-cm square
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shown on a sheet of paper. Because the children were given only one copy of the
unit, they had to replicate it in some way to determine the number of units needed
to cover the figure. In this task, the array could be constructed without formal
measurement—ifor example, by repeatedly tracing the unit.

The purpose of Task M2 was to identify the strategies children use when they
are unable to move the unit directly. The children were asked to work out how many
1-cm squares would be needed to cover a drawn 6-cm X 5-cm rectangle. A 1-cm
square was shown next to the rectangle to represent the unit square. The task forced
students to use estimation or measurement to determine the number of units that
would cover the rectangle. Success on Task M2 depended both on the children’s
knowledge of the relation between the linear dimensions and the unit array and on
their linear-measurement skills. To assess their linear-measurement skills inde-
pendently, we asked children to measure the length of a 10-cm line before they
began the area task.

The third task (M3) was included to investigate how children would construct
more complex units. The children were asked to work out how many 2-cm squares
would be needed to cover an 8-cm X 10-cm rectangle when neither the rectangle
nor the unit was shown. The task was printed on a card that was also read to the
child. Task M3 was given only to children who had attempted to measure at least
one dimension on Task M?2.

RESULTS
Children’s Covering Strategies

As the first step in the data analysis, we identified and classified the strategies
children used to solve the measurement tasks. Commonalities among the various
strategies and variations across grade levels will be examined later.

Task M1 Strategies

The most common strategies used for Task M1 seemed to be analogous to the
physical action of covering the square by systematically moving the unit over it.
Four distinct strategies were identified: incomplete covering, covering using visual
estimation, covering using the concrete unit, and finding the number of units that

Table 1

Percentages of Children Using the Various Strategies Observed for Task M1 (n = 115)
Strategy Correct count Incorrect count

1.1 Incomplete covering 0 27

1.2 Visual covering 1 6

1.3 Concrete covering 32 14

1.4 Measurement 18 2

Total 51 49




image9.png
150 Rectangular Area Measurement

would fit along at least one dimension (i.e., measurement). These strategies are
described more fully in the following sections. The percentages of the children who
used each strategy are given in Table 1, and some examples of children’s draw-

ings are shown in Figure 2.

Strategy 1.1: Incomplete covering. An incomplete-covering strategy was one in
which children failed to cover the square without gaps or overlapping. None of the
children who used this strategy found the correct number of units.

1.3 Concrete covering

1.4 Measurement

Figure 2. Examples of strategies observed for Task M1.
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Most children in this category (17% of the sample) moved the unit around the
figure unsystematically without recording these moves in any way. We found no
evidence that any of them were visualizing the array structure: They did not
proceed in rows or columns, and they often moved the unit either too little (over-
lapping the units) or too much (leaving gaps). One child counted 63 units.

The remaining children attempted to draw units in the given figure. Some did
not refer to the cardboard unit at all. These children simply drew “squares,” usually
unconnected and much smaller than the cardboard unit, until the shape was more
or less covered (Figure 2a). Several children drew squares along the perimeter of
the shape and left the center blank; if prompted, they tended to add a few uncoor-
dinated units. A few children visually compared their drawn shapes to the card-
board unit; for example, James (Grade 2) put the unit in the middle of the square
and drew a few units around it (Figure 2b). (All names used in this article are ficti-
tious.) Ken (Grade 1) traced the cardboard square in the top left corner, said, “I can’t
do it with this [the square],” and sketched the remaining units, leaving large gaps
(Figure 2c). He then counted the squares and said, “I done 12”—although he had
drawn 16. When asked if any more would fit, Ken pointed to the gaps and said,
“Yes, that much.”

Several children traced the unit square systematically (see Strategy 1.3), but,
because of their errors in representing the initial square, their drawings left some
space uncovered. For example, Connie (Grade 1) began tracing part of the way
down one side of the figure, leaving gaps that she could not fill. Stmone (Grade 2)
oriented the square at a 45° angle to the side, saying, “I’ve got diamonds on my
front door.” When asked about the triangular gaps that remained, Simone replied,
“It won’t fit there.”

Strategy 1.2: Visual covering. A visual-covering strategy was one in which the
whole figure was covered with units, but their sizes varied and were estimated visu-
ally. This strategy was not commonly used in this task because the cardboard unit
was available to estimate size. Children who used this strategy had no means of
maintaining a constant-sized unit, and their visual estimates were often quite inac-
curate (Figures 2d and 2e). Figure 2f—drawn using a ruler—shows the only case
of a visual covering that led to the correct number of unit squares.

Strategy 1.3: Concrete covering. A concrete-covering strategy involved system-
atically moving the cardboard unit around the figure and recording each position
either fully or partially.

Twenty-eight percent of the participants repeatedly traced around the cardboard
unit (Figure 2g). Three quarters of these children correctly found the total number
of units. The success of this method seemed to be due to the material’s prestruc-
turing the task. If they fitted the first unit into a corner, the children simply had to
align the cardboard unit next to the outline of the unit that had just been traced. Some
children were concerned when units in a row or column (usually the last to be
drawn) were smaller than the others because of inaccuracies in the tracing proce-
dure. Such “squares” were usually counted as whole units.
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Seventeen percent of the participants marked each unit-move either with their
fingers (12%) or by drawing a line or a dot on one side or corner of the unit (5%).
About two thirds of these children found the correct number of units. For the method
of marking with a dot to be effective, one vertex of the unit had to be marked to
fix both vertical and horizontal distances. When the unit was next moved, a
different vertex of the unit had to be aligned with the dot. Few children who used
Strategy 1.3 followed this procedure precisely, so they often maintained the unit
size in one dimension only (see Figure 2h). Marking one side of the unit (as in Figure
21) led to greater success in maintaining the unit size in both dimensions.

Strategy 1.4: Measurement. Using the cardboard square to draw the units that
fitted along one or both sides of the rectangle was the most successful strategy for
Task M1. Some children still needed to draw unit squares to work out how many
would cover the rectangle (Figure 2j), but most could calculate the number of units
from the side marks without drawing any unit squares (Figures 2k and 21).

Most children used the cardboard square to step off units along adjacent dimen-
sions, but several children measured the unit with a ruler and then used the ruler
to mark off 2-cm lengths along the sides. Children who measured units along the
sides and did not draw the array used a multiplication or repeated-addition strategy
to determine the number of units. Only one child (in Grade 3) realized that because
the shape was a square, it was necessary to measure only one side. He explained,
“It’s a square, so both sides are the same. So I just measured that one.”

Task M2 Strategies

In Task M2, the unit was shown pictorially but was not supplied as a concrete
unit. The most commonly used Task M1 strategy, tracing, was therefore not applic-
able. Because the effectiveness of tracing was due largely to prestructuring, Task
M2 should be more effective than Task M1 in showing children’s understanding.

About half of the participants (53%) correctly measured the line, and nearly all
of these stated the correct number of units. Many students (22%) aligned one end
of the line with either the 1-cm mark on the scale or with the end of the ruler, which
did not correspond to zero, and several children (7%) counted marks or began
measuring from a value other than O or 1. About a fifth of the students (18%) did
not even attempt to measure the length of the 10-cm line.

Table 2
Percentages of Children Using the Various Strategies Observed for Task M2 (n = 94)
Strategy Correct count Incorrect count

2.1 Incomplete covering 0 11

2.2 Inadequate array 0 9

2.3 Array estimation 2 29

2.4 Measurement of one dimension 1 17

2.5 Measurement of both dimensions 27 4

Total 30 70
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We reasoned that the 21 children who did not attempt to measure the line would
not be able to complete the covering task correctly; their interviews were there-
fore discontinued at this point. Among the remaining 94 students, five strategies
were identified: incomplete covering, inadequate array, array estimation, measure-
ment of one dimension, and measurement of both dimensions. The percentages of
these children using each strategy are shown in Table 2, and examples of their draw-
ings are given in Figure 3.

Strategy 2.1: Incomplete covering. Several children had measured the line
correctly but could not draw or visualize a complete array without gaps or over-
lapping. Most of these children drew individual squares with little regard to the size
of the unit shown or to covering the region (see Figures 3a and 3b). Some of the
younger children commented on the difficulty of knowing how many squares to

e

2.2 Inadequate array

2.5 Measurement of both dimensions

Figure 3. Examples of strategies observed for Task M2.
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draw, referring to previous tasks in which the squares along the sides had been indi-
cated by tick marks. For example, Amanda (Grade 1) said, “I wish there were little
lines to help me.” Half of the children in this group pointed to and counted imag-
1nary units, but they did not seem to count an equal number of squares in each row
(or column).?

Strategy 2.2: Inadequate array. Several children completely covered the rectangle
with units but did not correctly represent the array structure with equal numbers
of units in each row (see Figures 3c and 3d). A few similar drawings were made
for Task M1 (see Figure 2d). In some cases (see, €.g., Figure 3¢) children drew units

almost correctly around the sides but could not continue the structure into the
middle.

Strategy 2.3: Array estimation. The main characteristic of this strategy is that
although children constructed an array, they used no reliable method for determining
unit size. Twenty-four percent of the participants used such a strategy, but they were
rarely accurate.

Three main estimation methods were observed:

1. Individual units were drawn along one side of the rectangle and then the pattern
was continued (see Figure 3e). In general, the ruler was not used.

2. The ruler was aligned with the lower edge of the unit square shown to the left
of the rectangle; a horizontal line and the units in the first row were drawn.
Subsequent rows were then drawn by repeating the top row, with the ruler being
repeatedly moved down the page by approximately equal distances (see Figure 3f).

3. An array (similar to that shown in Figure 2f) was drawn as two perpendicular
sets of parallel lines, usually with a ruler; the first row was usually aligned with
the given unit square.

One Grade 2 child estimated that the 1-cm square was about the same size as her
thumb and then drew the array using her thumb to keep the units approximately
the same size. In effect, she had invented a tracing strategy that overcame the lack
of a moveable unit.

Although in Methods 2 and 3 children used a ruler to align rows, these methods
were usually inaccurate because children slid the ruler down without any measure-
ment technique for maintaining the spacing of the rows. Moreover, it was not
evident that even children who used Method 3 related the number of squares in a
row to the lengths of the sides; their attention seemed to be focused on covering
the internal space instead of on fitting in the appropriate number of units along each
side. If children had estimated the number of units along adjacent sides and then
had drawn the array, they would essentially be relating area to length in the same
way as children who measured the sides (Strategy 2.5). However, only one child
who used an estimation strategy appeared to use this method.

2For brevity, the term rows will be used inclusively and can be read as “rows (or columns, or both).”
In fact, children almost always constructed and counted their arrays by rows and not by columns.
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Strategy 2.4: Measurement of one dimension. In this strategy, children measured
one side of the rectangle and estimated the other. Note that such a strategy was not
apparent for Task M1 because (a) few children used a ruler and (b) it was not clear
whether those children who stepped-out the unit along one side were (informally)
measuring the length of that side or simply filling up one row with units.

Nearly all the children placed the ruler along the top of the rectangle, marked or
counted units along the ruler, then slid the ruler down (estimating the vertical
distance) and repeated the procedure. For example, Jessica (Grade 1) said that she
had “counted all the little squares along the ruler because they’re the same as here”
(indicating the 1-cm square). Eliza (Grade 1) put the ruler horizontally across the
rectangle with the left-hand side aligned with 2 on the scale and the right-hand side
with 7 and said, “The line is on 7, so then I do it on 6 and 3, like that” (drawing
vertical lines for the top row of squares). Both children then moved the ruler down
the rectangle, repeatedly marking the individual units in each row (see Figures 3g
and 3h). The children who did not use this method measured and marked 1-cm units
along one side of the rectangle, made a visual estimate for the lengths on the adja-
cent side, and then counted the number of units in the implied array. A few chil-
dren who measured from the 1-cm mark on the ruler repeatedly shifted their rulers
to mark off 1 cm at a time along one side (reminiscent of Strategy 1.3).

Strategy 2.5: Measurement of both dimensions. Most of the children who
measured both dimensions of the rectangle obtained the correct solution. There were
several methods for finding the total number of units: (a) marking 1-cm intervals
along two adjacent sides and then drawing all the units using a ruler (Figure 31);
(b) marking 1-cm intervals along two adjacent sides, drawing the units along these
two sides, and then calculating the total number of units using repeated addition
or multiplication (Figure 3j); (c) marking 1-cm intervals along two adjacent sides,
finding the number of units along these sides, and then using repeated addition or
multiplication (Figure 3k); or (d) measuring each side without marking and then
multiplying the two measurements. Method (b) was used most frequently in one
Grade 4 class that had been taught a procedure for array multiplication not included
in the state curriculum guide; in this procedure, the number of elements “across
and down” were counted and multiplied.

Only one drawing (Figure 31) did not result from use of any of the above
methods. The child who produced this drawing measured both sides of each unit
separately, not seeming to relate the array structure to the lengths of the sides of
the rectangle. When asked by the interviewer if the gap down the right-hand side
of his drawing was a problem, he put the end of the ruler against it and saw that
the gap was approximately equal to the distance between the end of the ruler and
the zero mark. He then explained that there is nothing between the end of the ruler
and the zero mark—therefore the gap was not really there.

Apart from this one anomalous case, all the students who used Strategy 2.5
seemed to have been consciously iterating the first row of the array. If they drew
the full array, the units were aligned vertically. If they indicated only a few units
on adjacent sides or did not make any drawing, they were clearly assuming that all
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the rows were identical. Vertical alignment and row iteration were also used in
Strategies 2.3 and 2.4. However, students using both strategies seemed to be
constructing each row separately. In Strategy 2.3, the units in each row were esti-
mated separately and were usually not congruent—even though vertical alignment
was maintained. In using Strategy 2.4, most students measured each row separately,
and the vertical alignment seemed to be an unexpected result of their accurate
measurement. It was only students using Strategy 2.5 who seemed to be aware that
all the rows were identical and that the number of rows could be found by the same
method they used to step off the units in each row.

Task M3 Strategies

In Task M3 children were asked to find how many of a given unit square (2 cm
X 2 cm) would cover a given rectangle (8 cm X 10 cm), but neither the rectangle
nor the unit was shown. Moreover, the side of the unit square was not the unit length.
Task M3 was given only to the 51 children (6 in Grade 2, 19 in Grade 3, and 26 in
Grade 4) who had attempted to measure at least one dimension on Task M2.
Correct answers were obtained by 8 third graders and 18 fourth graders. No second
grader obtained the correct answer, but one correctly found the number of 2-cm?
units that would cover the rectangle.

Almost all the 51 children began by drawing the rectangle. However, 7 children
could do no more. In the solutions of the remaining 44 children, four strategies were
observed. The percentages of these children using each strategy are shown in

Table 3.

Table 3
Percentages of Children Using the Various Strategies Observed for Task M3 (n = 44)
Strategy Correct count Incorrect count

3.1 Array estimation 0 2

3.2 Measurement of one dimension 0 9

3.3 Array drawn or implied 23 23

3.4 Array calculated 36 7

Total 59 41

Strategy 3.1: Array estimated. One child used a strategy similar to Strategy 2.3.

Strategy 3.2: Measurement of one dimension. A few children used a strategy
similar to Strategy 2.4.

Strategy 3.3: Array drawn or implied. Nearly half the children marked off
lengths on adjacent sides of the rectangle; many of these drew the complete array.
Errors were of two types: Some children intentionally drew 1-cm squares instead
of the given 2-cm squares. Others measured either the rectangle or the units incor-
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rectly. For example, four children measured consistently from the 1-cm mark on
their rulers. They clearly intended to draw an 8-cm X 10-cm rectangle and an array
of 2-cm squares, but their measurement method resulted in a 7-cm X 9-cm rectangle
and 1-cm squares.

Strategy 3.4: Array calculated. Nearly half the children calculated the number
of unit squares without marking the sides of their rectangles. For example, Kelly
(Grade 4) explained, “You could halve each length, so it’s 4 times 5,” and Tarun
(Grade 4) said, “Every 2cmis 1,s0 101s S and 8 is 4, soit’s 5 times 4.” Most incor-
rect solutions were the result of children’s taking the unit to be 2 cm?, reckoning,
“Half of 80, that’s 40.” Zuhal (Grade 3) seemed to be reckoning with a 1-cm? unit:
“I think 20 because one side’s 10, and 10 and 10 is 20.”

We note that Strategies 1.4 and 2.5 also yielded some responses in which chil-
dren used calculation without drawing. However, it was not until Task M3 that a
significant proportion of the children used this method.

Classification of Strategies Into Developmental Levels

The strategies observed for the three measurement tasks show many differences
in detail but also many similarities in their development. In the most primitive
responses, the unit squares are scattered around with gaps or overlaps. Then the
units cover the given rectangle, but they are not laid out in a regular array pattern.
Next, students appear able to represent the array structure correctly but unable to
reliably relate the number of units in each direction to the size of the unit and the
lengths of the sides of the rectangle. Finally, students learn to use measurement to
find the size of the array—eventually being able to calculate the number of units
in the array without constructing it. These considerations suggest that children’s
rectangular covering strategies could be classified into five developmental levels,
as follows.

Level O: Incomplete covering. At this level, the units do not completely cover
the rectangle without gaps or overlapping (Strategies 1.1 and 2.1). Some drawings
(e.g., Figure 2b) suggest a tendency on the part of the child to focus on the edges
of the rectangle rather than on the internal structure. Others (e.g., Figures 2¢ and
3a) show an indication of the array structure, but there are still gaps left. Some
students simply indicate imagined units, without drawing, but their counting proce-
dures show that these units overlap or leave gaps.

Level 1: Primitive covering. For strategies at this level, the units completely cover
the rectangle without overlap, but their organization is unsystematic (as in some
Strategy 1.2 responses and all Strategy 2.2 responses). Units may vary consider-
ably 1n size and shape (Figure 2d) or be incorrectly aligned (Figures 3c and 3d). A
focus on the edges of the rectangle may still be evident (Figure 3c). Coverings at
this level cannot show the correct number of units, except by accident.

Level 2: Array covering, constructed from unit. Drawings at this level show the
correct array structure, with equal numbers of approximately rectangular units in




image17.png
158 Rectangular Area Measurement

each row and in each column. However, the size of each unit is determined from
the given unit without being related to the dimensions of the rectangle. Thus, the
size of each unit may simply be estimated by eye (as in most Strategy 1.2 responses
and all Strategies 2.3 and 3.1 responses), copied from a concrete unit (all Strategy
1.3 responses), or even measured on one or both sides (all Strategy 2.4 responses,
the anomalous Strategy 2.5 response, and all Strategy 3.2 responses). Responses
at this level are usually accurate only when concrete materials are available to
prestructure the task.

At this level, although the size of the unit may be accurately related to the length
of one side of the rectangle (as in Strategies 1.3, 2.4, and 3.4 responses), the array
is not constructed by iterating rows. Although the rows may be perceived as having
the same number of units, the significance of row congruence is not fully grasped.

Level 3: Array covering, constructed by measurement. At this level, the number
of units in each direction is found by measurement and drawing (as in most
Strategies 1.4 and 2.5 responses and all Strategy 3.3 responses). One dimension 1s
used to find the number of units in each row, and the other is used to find the number
of rows. Row iteration is therefore fully exploited. The array may be only partially
drawn, but children’s counting procedures show clearly that the full array has been
visualized. Younger children who make drawings at this level tend to find the
number of units by counting individual units, whereas older children tend to use
repeated addition or multiplication.

Level 4: Array implied, solution by calculation. At this level, the number of units
is calculated from the size of the unit and the dimensions of the rectangle without
the child’s making any drawing (as in some Strategies 1.4 and 2.5 responses and
all Strategy 3.4 responses). The calculation procedure, usually multiplication but
occasionally repeated addition, indicates that the child has either visualized the array
or overlearned a procedure that is based on the array structure. Level 4 responses
indicate an operational sophistication equivalent to knowledge of the area formula.

The above sequence is developmental in the sense that each level is more sophis-
ticated than the previous levels. (We do not mean to say that children necessarily
progress through each level in turn.) At Level 0, no discernible strategy is used to
cover the rectangle. The strategies used to construct coverings at Levels 1 and 2
might be termed local rather than global (Battista & Clements, 1996). The children
focus on parts of the structure—for example, iterating rows—but they have no
global scheme for coordinating an array. At Level 3 a generalizable, coordinated,
but still pictorial scheme emerges; at Level 4, the scheme becomes symbolic.

The empirical data tend to support the developmental nature of the sequence.
Figure 4 shows the distribution of levels at different grades for all the children who
completed Tasks M1 and M2. (Data for Task M3 are not shown because they were
restricted mainly to Grades 3 and 4 and Levels 3 and 4.) For both tasks, the propor-
tion of primitive responses (Levels 0 and 1) decreased steadily between Grades 1
and 4, whereas the proportion of advanced responses (Levels 3 and 4) increased
steadily. The proportion of intermediate responses (Level 2) was relatively high
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in Grades 1 to 3 compared to the proportion in Grade 4. Note that the Task M2 data
may tend to overestimate the proportion of advanced responses because the 21 chil-
dren who did not complete this task were at Levels O to 2 on Task M1.
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Figure 4. Distribution of measurement levels on Task M1 and Task M2, by grade.

Figure 4 also shows the effect of task demands. Drawing an inadequate array
(Level 1) was much less common in Task M1—for which children were given a
movable, cardboard area unit—than in Task M2. The salience of the ruler in Task
M2, in turn, seemed to prompt more children to use a Level 3 strategy.

Clearly, children were not consistent in their strategy use. For example, of the
children who used a Level 2 strategy on Task M1, many in Grade 1 could not even
attempt Task M2, but a large number (35% of Grade 3 and 72% of Grade 4) solved
Task M3 using a Level 3 or 4 strategy. Apparently, at any given time, a child can
operate up to a certain level. The maximum level develops over time, but the actual
level employed to solve a particular task still depends on the specific demands of
that task. A similar conclusion was recently reached in relation to the development
of multiplication and division strategies (Mulligan & Mitchelmore, 1997).

As is already clear from Tables 1 to 3, the higher level strategies tended to be
more successful. To investigate this result further, we estimated overall success rates
at the various levels on the assumption that the children who were not given or did
not complete Tasks M2 and M3 (a) would have been unsuccessful on these tasks
and (b) were on Levels O or 1. The first assumption is based on the finding that all
those who failed to measure at least one side of the rectangle in Task M2 were
unsuccessful on that task (see Table 2). The students who were not given Task M2
had not even attempted to measure the length of a line; they were therefore unlikely
to have used measurement on Task M2 and so would most likely have been unsuc-
cessful. The students who were not given Task M3 had failed to use measurement
on Task M2; they had failed Task M2 and were therefore unlikely to have been
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successful on the more difficult Task M3. The second assumption is based on the
fact that Levels 3 and 4 require a knowledge of measurement, and Level 2 would
be achieved only if the children could estimate accurately by eye—a skill that they
are unlikely to possess. Table 4 shows the resulting estimates of overall success
rates and confirms the superiority of higher level strategies. The patterns of
successful strategy use for Tasks M2 and M3 are almost identical, suggesting that
those children who used a Level 3 or 4 strategy for Task M2 were able to gener-
alize their strategies to encompass the more unusual unit in Task M3,

Table 4

Estimated Percentage Success Rates and Numbers of Students Completing Each Task,
by Developmental Level

Task Level 0 Level 1 Level 2 Level 3 Level 4
Estimated percentage success rates?
M1 0 0 63 75 94
M2 0 0 7 83 88
M3 0 0 0 91 84
Numbers of students completing each taskP

M1 31 2 60 4 18
M2 12 11 45 10 16
M3 0 0 5 20 19

AThese data give estimates of the success rate in the entire sample (n = 115), assuming that the students
not given or not completing Task M2 or Task M3 were at Level 0 or Level 1 and would not have been
successful on these tasks. 21 students did not complete Task M2 and 71 students were not given or
did not complete Task M3.

Table 5 shows the relation between estimated success rate and grade level. The
increase in success with grade level is largely the result of children’s use of more
efficient strategies. For example, all but one of the successful Grade 4 children used
a Level 3 or 4 strategy. Although these children had not been taught the area
formula, some of them had been taught the array model of multiplication and—
perhaps prompted by the preceding array-counting and drawing tasks—were able
to use multiplication to find the number of units.

Table 5

Estimated Percentage Success Rates and Numbers of Students Completing Each Task,
by Grade Level

Task Grade 1 Grade 2 Grade 3 Grade 4
Estimated percentage success rates?
M1 30 45 54 75
M2 0 6 23 71
M3 0 0 31 64
Numbers of students completing each taskP®

M1 30 31 26 28
M2 14 26 26 28
M3 0 4 16 24

aThese data give estimates of the success rate in the entire sample (n = 115), assuming that the students
not given or not completing Task M2 or Task M3 would not have been successful on these tasks.

b21 students did not complete Task M2 and 71 students were not given or did not complete Task M3.
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DISCUSSION

Operational Principles Underlying the
Development of Rectangular-Covering Strategies

The five-level classification of the strategies observed on Tasks M1, M2, and
M3 indicates a gradual development in children’s abilities to represent a rectan-
gular covering either in a drawing or in an inferred mental image. There seem to
be four operational principles that are central to this development and that are
learned sequentially. We shall call them P1-P4:

P1: The rectangle must be completely covered by the units, without overlaps or gaps.
P2: The units must be aligned in an array with the same number of units in each row.

P3: Both the number of units in each row and the number of rows can be determined from
the lengths of the sides of the rectangle.

P4: The number of units in a rectangular array can be calculated from the number of units
in each row and in each column.

In Level O strategies, none of these principles is evident. Level 1 responses suggest
attempts to apply P1 without the aid of the structuring provided by the other three
principles. At Level 2, children appear to be applying P1 and P2 but not using P3
to determine the size of the array. Level 3 drawings indicate application of P3, and
at Level 4, drawings become superfluous when children use P4. We note that,
although P4 reflects the multiplicative structure of the array, children who apply
this principle do not necessarily use a multiplicative operation for the calculation
(Mulligan & Mitchelmore, 1997).

Let us consider how children might learn these four principles. Even very young
students can readily fill a given rectangle if they have a plentiful supply of tiles,
but they often seem unaware of P1. One reason is, as we suggested earlier, that the
tiles prestructure the task and do not draw children’s attention to the completeness
of the covering. A second reason is, perhaps, the novelty of the task. For example,
Julia (Grade 1) produced a drawing similar to Figure 2c and asked, “Can I leave
white spaces?” A third reason is that children must learn the drawing convention
of representing the two contiguous edges of adjacent tiles by a single line. Even
in Level O drawings that are beginning to represent the array structure (e.g., Figures
2¢ and 3b), contiguous edges are represented separately. In contrast, all drawings
from Level 1 on show contiguous edges by a single line. Only after children
accept this convention can they make drawings that show the structure of the array
rather than individual squares.

We suggest that P2 emerges as students grapple with the task of representing their
actions of fitting successive squares into the rectangle. Apart from the squares along
the edges of the rectangle, each additional square must match two of its sides to
sides of squares already drawn. Level 1 drawings suggest that students initially
manage to match only one side (e.g., Figure 3c) but gradually learn to match both
sides (cf. Figure 3d). Consistent matching of both sides at Level 2, along with a
more uniform size of square, automatically creates horizontal and vertical align-
ment and therefore equal numbers of units in each row. A child who uses a ruler
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to draw lines across the rectangle has surely become aware of the alignment of the
squares but may still be unaware of the congruence of the rows. Further evidence
on how children learn to represent arrays in drawings is reported elsewhere
(Outhred, 1993; Outhred & Mitchelmore, 1992).

To learn P3, children who have learned P1 and P2 still have to solve the basic
problem of finding the number of unit squares that fit along each side of the
rectangle. Only if physical materials are available can this problem be solved
directly (as in Strategy 1.3). Otherwise, children must first realize that the length
of a side (in centimeters) specifies the number of 1-cm unit lengths that will fit along
that side and that this number therefore determines the number of 1-cm unit
squares that will fit along that side. In other words, the learning of P3 depends on
children’s understanding of /inear measurement. The connection is so important
that it is worth listing as a fifth principle, which we call P35, essential to an opera-
tional understanding of rectangular covering:

P5: The length of a line specifies the number of unit lengths that will fit along it.

Children’s errors in measuring both the single line and the sides of the rectangles
in Tasks M2 and M3 suggest that many children have a purely instrumental under-
standing of linear measurement. They seem to be following a mechanical proce-
dure of placing the ruler somewhere against the line and reading off the number
at the right end of the line. They do not appear to realize that, provided you put the
zero mark against one end of the line, the number you read off the other end gives
the number of 1-cm spaces that would fit along the line. P5 requires a relational
understanding of the procedure for using a ruler.

P4 implies an understanding of a rectangular array’s numerical structure, derived
from the spatial structure expressed in P2—independent of the size relations in P3.
Battista et al. (1998) have recently reported a fine-grained, longitudinal study of
how some Grade 2 children learned P4. They used a wide range of rectangular
covering tasks that were similar to ours but that avoided confrontation with P3, and
they were able to classify children’s counting methods into levels of increasing
sophistication. At the lowest level, children counted in a disorganized manner—
even though they often produced what we have called Level 1 drawings. There was
then what Battista et al. called a paradigm shift to treating the array in terms of rows.
At what they called Level 3A, children were unsure of how to find the number of
rows. At Level 3B, the children were able to find the number of rows when the
number of squares in the orthogonal direction was given, but otherwise they only
estimated this number. At both Levels 3A and 3B, children were aware that the rows
were congruent and calculated the total number of units accordingly. At Level 3C,
by contrast, children immediately used the fact that the rows contained equal
numbers of units and found the total by multiplication or repeated addition.

Although Battista et al. (1998) had a different aim and used tasks and a method-
ology different from ours, the findings from the two studies show many parallels.
In particular, both studies underline the significance of the row as an iterated unit.
In both drawing and counting, whether or not measurement is involved, the first
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and crucial learning quantum occurs when children start thinking in terms of rows.
Initially, rows are recognized as geometrically equivalent; the fact that the number
of units in each row is constant emerges later. Finding the number of rows is the
next problem to be solved; when this problem is solved, a child is only a short step
from being able to calculate the total number of units.

Implications for the Learning of Area Measurement

Because the area formula depends on the structure of rectangular coverings,
the findings of this study have several implications for the learning of area
measurement. Our results suggest that a relational understanding of the area
formula develops as shown in Figure 5. In constructing this model, we assume
that the concepts of area and area measurement by covering are learned at some
point prior to the final stage in the sequence. Two teaching sequences are
suggested: (a) Introduce the concept of area early, treat area measurement as a
matter of covering a region with a fixed unit, and then investigate rectangular
covering in the context of area measurement; or (b) investigate rectangular
covering as a problem in itself, then introduce the area concept, then use what
has been learned about covering to measure the area of rectangular regions.
Parallel treatment of area and covering is also possible.

P5: Linear

measurement ]
P3: Size

relationship
(Level 3)

P1: Complete P2: Spatial Area

covering structure formula
(Level 1) (Level 2) (Level 4)

P4: Multiplicative
structure

Figure 5. Suggested development of relational understanding of the area formula.

Remarkably, more than a quarter of third graders and about two thirds of fourth
graders in this study successfully calculated the number of unit squares in a
rectangle—even in the most difficult Task M3. If these results are representative
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of Grades 3 and 4 children in general, they would suggest that many more elemen-
tary school children could learn the area formula than currently do. Figure 5
suggests some important considerations: First, an important intermediate aim is that
children should understand the spatial structure of an array; second, a relational
understanding of linear measurement is essential; third, children need to link area
measurement to both linear measurement and multiplicative concepts before the
area formula can be meaningfully learned.

An unintended result of this study is to illustrate the merits of drawing as a
teaching and learning tool. Two examples will show what we mean. David (Grade
2), when asked to copy the 3 X 4 array in the introductory task, drew 12 squares in
a line and commented, “I did it a bit big.” Encouraged to try again, he drew two
rows of 6 separate squares. David traced the cardboard tile correctly in Task M1.
In two subsequent drawing tasks (completing a partially drawn array and a grid indi-
cated by tick marks on two adjacent sides), he realized that a row could be repre-
sented by extending a line and drew horizontal lines across the rectangle, marking
off the squares in each row individually. At first he used this strategy for Task M2;
then he suddenly perceived that he could construct the array by ruling both vertical
and horizontal lines. Peta (Grade 2) used a Level O strategy for Task M1, moving
the cardboard tile in a spiral and vastly overestimating the number of tiles needed
to cover the shape. As she completed the arrays in the intervening drawing tasks,
Peta, like David, began to delineate rows using lines. For Task M2, she placed the
ruler along the edge of the rectangle and counted the spaces. She then said, “There’s
five on that side and so I just move down a bit,” and drew vertical marks but no
horizontal lines (Figure 3h)—a Level 2 strategy. Several other examples of such
incidental learning are recorded by Outhred (1993). The attempt to represent a
covering in a drawing can help children to examine their experience in new ways
and can lead to new insights. This examination does not take place when children
merely make a covering using concrete materials.

We believe that representation through drawing has general educational value,
but, curiously, we have found few references to this topic in the educational liter-
ature. An exception occurs in a teaching experiment recently reported by Lo and
Watanabe (1997). Bruce, a fifth grader, had learned to solve several proportion prob-
lems using concrete materials. The researchers then asked him to solve a similar
problem without such materials and encouraged him to draw his solution.
Significant learning occurred. Lo and Watanabe commented, “The fact that Bruce
could not move these pictorial circles freely had indeed created the need for him
to reflect on the purpose of his actions, that is, to find the equivalent relationship”
(p. 223). We observed a similar learning effect when children in a problem-solving
kindergarten classroom were asked to draw their manipulations of concrete objects
and explain their drawings (Outhred & Sardelich, 1997). Over an 8-month period,
the children’s drawings became increasingly abstract as they used drawing conven-
tions (e.g., aligning, circling, and marking) to show grouping structures.
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CONCLUSIONS

In this study, we have identified five developmental levels in the strategies
young children use to solve rectangular covering tasks and have argued that these
levels show the successive acquisition of four basic principles: complete covering,
spatial structure, size relations, and multiplicative structure. These principles
constitute children’s intuitive understanding of area measurement.

We have confirmed the significance of the formation of an iterable row as the
foundation of an understanding of array structure. We have also clearly identified
the significance of the relation between the size of the unit and the dimensions of
the rectangle. That the number of units in the array must depend on the measure-
ments of the sides may seem self-evident to adults, but this fact is clearly not obvious
to children.

Another major contribution of the present study is to highlight the importance
of a good understanding of linear measurement, without which children are unlikely
to learn the relation between unit size and rectangle dimensions. We have also
shown that an understanding of multiplication is not necessary to an understanding
of area measurement, although it is essential for the area formula.

Being based on a small sample of interviews carried out at one point in time,
the conclusions of this study might be viewed rather as researchable conjectures
concerning linear, area, and even volume measurement. Some of these conjectures
can be investigated by further cross-sectional interview studies, but the greater need
is for longitudinal studies following children’s development over time and for
classroom studies testing the feasibility and effectiveness of the suggested learning
activities.
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