PERENCANAAN SISTEM JARINGAN DISTRIBUSI AIR BERSIH DESA ULU KONAWEHA KECAMATAN SAMATURU KABUPATEN KOLAKA SULAWESI TENGGARA

Rahayu Hutami E.A.N, Eko Noerhayati

Progam Studi Teknik Sipil Fakultas Teknik Universitas Islam Malang
Jalan MT. Haryono 193 Malang
Email: rahavuhutami@vahoo.com

ABSTRAK

Desa Ulu Konaweha adalah desa yang memiliki sumber mata air yang memadai tetapi memiliki masalah mengenai penyediaan air bersih yang belum memiliki sistem jaringan air bersih yang baik dan memadai untuk bisa melayani masyarakat desa Ulu Konaweha, sehinggan dibutuhkan perencaana sistem jaringan distribusi air bersih yang baik dan dapat memenuhi kebutuhan masyarakat desa. Sumber air yang dimanfaatkan adalah sumber mata air Mekongga yang memiliki debit sebesar 6,20 liter/detik. Kebutuhan air bersih dihitung berdasarkan proyeksi jumlah penduduk dengan metode geometrik, dari hasil perhitungan proyeksi jumlah penduduk desa Ulu Konaweha untuk 10 tahun kedepan tahun 2027 adalah 1973 jiwa dengan kebutuhan air bersih 0,7917 liter/detik. Untuk perencanaan sistem jaringan distribusi air bersih yaitu air dari sumber mata air ditampung terlebih dahulu pada bangunan penangkap mata air (bronkaptering) dengan elevasi + 444 m kemudian di alirkan menuju reservoir dengan dimensi 3x3x3 m dengan elevasi + 400 m, selanjutnya air didistribusikan kepada penduduk desa Ulu Konaweha melalui hidran umum sebanyak 20 buah dengan kebutuhan air tiap hidran 0,0577 liter/detik. Diameter pipa transmisi adalah 4 inch dan pipa distribusi 3 inch, untuk sistem jaringang distribusi air bersih menggunakan software Epanet 2.0.

Kata Kunci: Sistem Jaringan Distribusi Air Bersih, Epanet, Reservoir, Desa Ulu Konaweha

PENDAHULUAN

Latar Belakang

Desa Ulu Konaweha Kecamatan Samaturu yang terletak di Kabupaten Kolaka Provinsi Sulawesi Tenggara mempunyai luas wilayah 8 km². Desa Ulu Konaweha salah satu desa yang masih kekurangan air dan belum memiliki jaringan pipa distribusi air bersih. Desa Ulu Konaweha terdapat sumber air bersih yaitu mata air Mekongga memiliki debit 6,20 liter/detik. Tetapi tidak semua warga mendapatkan air bersih dari sumber air tersebut, ini disebabkan karena pipa yang digunakan terbatas. Akibat keterbatasan kemampuan teknis dan ekonomi, masyarakat harus bersusah payah untuk dapat memenuhi kebutuhan air setiap harinya.

Dari masalah tersebut maka penulis melakukan penelitian tentang "Perencanaan Sistem Jaringan Distribusi Air Bersih Desa Ulu Konaweha Kecamatan Samaturu Kabupaten Kolaka Sulawesi Tenggara"

Rumusan Masalah

- 1. Berapa proyeksi jumlah penduduk dan kebutuhan air bersih Desa Ulu Konaweha tahun 2017-2027 ?
- 2. Berapa dimensi reservoir yang dibutuhkan Desa Ulu Konaweha ?
- 3. Bagaimana sistem jaringan distribusi air bersih di Desa Ulu Konaweha?

Tujuan Penelitian

- Untuk mengetahui debit yang ada dapat memenuhi kebutuhan air bersih Desa Ulu Konaweha
- 2. Untuk mengetahui berapa dimensi reservoir untuk menampung debit yang ada di Desa Ulu Konaweha
- 3. Untuk mengetahui sistem jaringan distribusi air bersih di Desa Ulu Konaweha

TINJAUAN PUSTAKA

Air Bersih

Air bersih adalah air yang digunakan sehari-hari dan akan menjadi air minum setelah dimasak terlebih dahulu. Sebagai batasannya, air bersih adalah air yang memenuhi persyaratan bagi Sistem penyediaan air minum, dengan persyaratan yang dimaksud adalah persyaratan dari segi kualitas air yang meliputi kualitas fisik, kimia, biologis dan radiologis sehingga apabila dikonsumsi tidak menimbulkan efek samping Permenkes (ketentuan umum No. 41/MENKES/PER/IX/1990).

Kebutuhan dan Ketersediaan Air Bersih

kebutuhan air adalah air yang dibutuhkan untuk menunjang segala kegiatan manusia meliputi air domestik dan non domestik.

- Standar Penyediaan Air Domestik, kebutuhan air domestik adalah kebutuhan yang diperlukan manusia untuk kehidupan sehari-hari.
- Standar Penyediaan Air Non Domestik, kebutuhan air non domestik adalah kebutuhan untuk fasilitas pelayanan umum. Kebutuhan air non domestik berdasarkan kriteria perencanaan IKK pedesaan adalah 15% dari kebutuhan air domestik.

Instalasi Pengolahan Air Bersih

Instalasi pengolahan air adalah suatu instalasi/bangunan yang mengolah air baku menjadi air besih yang kemudian akan menghasilakn air yang memenuhu standar air bersih yang telah ditentukan.

1. Pipa Transmisi
Sistem transmisi air bersih adalah sistem
perpipaan dari bangunan pengambilan air
baku ke bangunan pengolahan air bersih.

2. Reservoir

Dalam suatu sistem perencanaan penyediaan air bersih diperlukan adanya perhitungan reservoir suatu karena reservoir merupakan bangunan yang sangat penting dalam suatu sistem distribusi air bersih. Desain hidrolis reservoir yaitu kapasitas berguna reservoir diambil 20% dari total kebutuhan air harian maksimum.

3. Bangunan Penangkap Mata Air (bronkaptering)

Bronkaptering adalah bangunan yang dibangun untuk menangkap mata air yang keluar dari mata air. Ukuran bangunan selalu disesuaikan dengan kondisi penyebaran keluaran mata air.

 Pipa Distribusi
 Pipa adalah saluran tertutup sebagai sarana pengaliran atau transportasi

fluida, sarana pengaliran atau transportasi transportasi energi dalam aliran.

 Perhitungan Dimensi pipa distribusi didasarkan pada persamaan sebagai berikut :

 $Q = V \times A$

Dimana:

Q = Debit aliran dalam pipa $(m^3/dtk) V =$ Kecepatan dalam aliran pipa (m/dtk)

A = Luas penampang pipa $(1/4 \pi D^2)$

D = Diameter pipa (m)

- Perhitungan Kehilangan Tekanan Pada Pipa Distribusi

Dalam mendesain diameter rencana untuk pipa digunakan rumus Hazen William yaitu :

$$\mathsf{hf} = \big(\frac{10,67.Q^{1,85}}{C^{1,85}.D^{4,87}}\big) \times \mathsf{L}$$

Dimana:

Chw = koefisien Hazen William

S = gradient hidrolik (S = Hf/L)

Hf = kehilangan tenaga (m)

Q = debit $(m^3/detik)$

L = Panjang pipa (m)

D = diameter pipa

Jenis Pipa

1. Besi tuang (cast iron)

Pipa ini biasanya dicelupkan dalam senyawa bitumen untuk perlindungan terhadap karat. Panjang biasa dari suatu bagian pipa adalah 4 m dan 6 m. Tekanan maksimum pipa sebesar 2500 kN/cm² (350 psi) dan umur pipa jika pada keadaan normal dapat mencapai 100 tahun.

2. Besi galvanis (qalvanized iron)

Pipa jenis ini bahannya terbuat dari pipa baja yang dilapisi seng. Umur pipa pada keadaan normal bisa mencapai 40 tahun. Pipa berlapis seng digunakan secara luas untuk jaringan pelayanan yang kecil di dalam sistem distribusi.

3. Plastik (PVC)

Pipa ini lebih dikenal dengan sebutan pipa PVC (*Poly Vinyl Chloride*) dan di pasaran mudah didapat dengan berbagai ukuran. Panjang pipa 4 m atau 6 m dengan ukuran diameter pipa mulai 16 mm hingga 350 mm. Umur pipa dapat mencapai 75 tahun.

4. Pipa beton

Pipa ini tersedia dalam ukuran garis tengah 750-3600 mm, sedangkan panjang standar 3,6-7,2 m. Pembuatan berdasarkan pada pesanan khusus. Pipa ini berumur 30-50 tahun.

Proyeksi Kebutuhan Air Bersih

a. Pertumbuhan Jumlah Penduduk

1. Metode Aritmatik

$$Pn = P0 + (\frac{p_0 - p_1}{t}) \times n$$

Dimana:

Pn = Jumlah penduduk pada akhir tahun periode

P0 = Jumlah penduduk pada awal proyeksi

P1 = Penduduk jumlah akhir tahun data

n = Tahun proyeksi

t = Tahun data

2. Metode Geometrik

 $Pn = P0 (1 + r)^n$

Dimana:

Pn = Jumlah penduduk pada akhir tahun periode

PO = Jumlah penduduk pada awal proyeksi

r = rata-rata presentase pertambahan penduduk tiap tahun

n = Kurun waktu proyeksi

3. Metode Eksponensial

$$y = a e^{bx}$$

$$y = a e^{-x}$$

$$b = Exp \frac{n \epsilon x (Ln y) - \epsilon(x) \epsilon(Ln y)}{(n \epsilon x^2) - (\epsilon x)^2}$$

$$a = Exp \frac{a}{n}$$

Dimana:

y = Jumlah Penduduk

x = Jumlah Tahun

a, b = Koefisien Regresi

n = Jumlah Data

b. Kebutuhan Air Total

Kebutuhan air total adalah total kebutuhan air baik domestik, non domestik ditambah kehilangan air.

$$Qr = Qd + Qn + Qa$$

Dimana:

Qr = Kebutuhan air rata-rata

(liter/hari)

Qd = Kebutuhan air domestik (liter/hari)

Qn = Kebutuhan air non domestik

(liter/hari)
Qa = Kehilangan air (liter/hari)

c. Kebutuhan Air Harian Maksimum Dan Jam Puncak

Kebutuhan air harian maksimum adalah kebutuhan air pada hari tertentu dalam setiap minggu, bulan, dan tahun dimana kebutuhan airnya sangat tinggi.

$$Qm = (1,5 - 1,25) \times Qt$$

Dimana:

Qm = Debit kebutuhan air harian maksimum (liter/hari)

Qt = Debit kebutuhan air total (liter/hari)

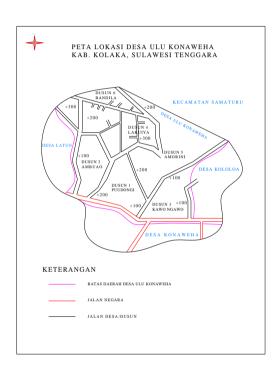
Kebutuhan air jam puncak adalah kebutuhan air pada jam-jam tertentu dalam satu hari dimana kebutuhan airnya akan memuncak.

$$Qp = (1,65 - 2,00) \times Qt$$

Dimana:

Qm = Debit kebutuhan air jam puncak (liter/hari)

Qt = Debit kebutuhan air total (liter/hari)


Epanet 2.0

Epanet didesain sebagai alat untuk mencapai dan mewujudkan pemahaman tentang pergerakan dan nasib kandungan air dalam jaringan distribusi. Juga dapat digunakan untuk analisa berbagai aplikasi jaringan distribusi.

METODOLOGI PENELITIAN

Lokasi Penelitian

Desa Ulu Konaweha Kecamatan Samaturu Kabupaten Kolaka Sulawesi Tenggara. Secara geografis Desa Ulu Konaweha berada pada posisi 2°00′LS - 5°00′LS serta 123°01′BT - 120°45′BT. Luas desa adalah 8 km²

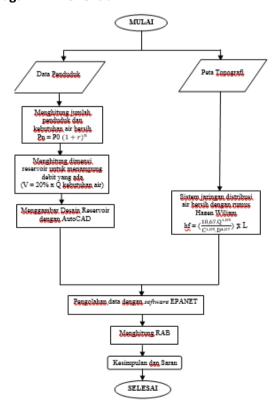
Gambar 1. Peta Lokasi penelitian

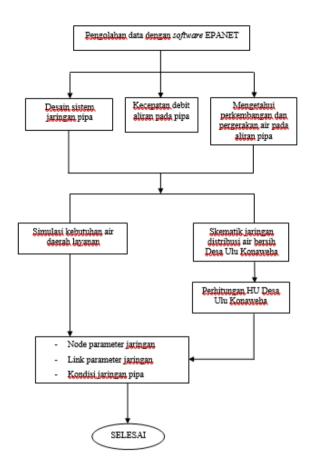
(Sumber : KAUR Pemerintahan Desa Ulu Konaweha)

Pengumpulan Data

- a. Data Primer
 - Jumlah penduduk dan KK Desa Ulu Konaweha, untuk memproyeksikan kebutuhan air bersih yang sesuai dengan jumlah penduduk.
 - Debit mata air Mekongga 6,31 It/detik, untuk merencanakan apakah debit yang ada sesuai kebutuhan penduduk desa Ulu Konaweha.

- 3. Peta topografi Desa Ulu Konaweha, digunakan untuk menentukan elevasi dan perencanaan sistem jaringan perpipaan.
- b. Data Sekunder


Metode ini digunakan untuk memperoleh data dan informasi tentang teori-teori yang berkaitan dengan sistem jaringan distribusi air bersih di Desa Ulu Konaweha kecamatan Samaturu Kabupaten Kolaka.


Analisis Data

Langkah-langkah yang dilakukan dalam menganalisis data tentang Perencanaan Sistem Jaringan Distribusi Air Bersih di Desa Ulu Konaweha sebagai berikut :

- Menghitung jumlah penduduk desa Ulu Konaweha
- 2. Menghitung ketersediaan dan kebutuhan air bersih
- 3. Analisis debit yang tersedia
- Memproyeksikan jumlah penduduk dan jumlah kebutuhan air bersih desa Ulu Konaweha sampai tahun 2027
- 5. Perencanaan dimensi reservoir
- 6. Merencanakan sistem jaringan distribusi air bersih di Desa Ulu Konaweha
- 7. Mengolah data dengan software EPANET
- 8. Perhitungan RAB

Bagan Alir Penelitian

ANALISA DAN PEMBAHASAN

Kebutuhan Dan Proyeksi Pertumbuhan Penduduk

Untuk mengetahui kebutuhan air di desa Ulu Konaweha, terlebih dahulu dilakukan proyeksi penduduk hingga 10 tahun (2027) dengan metode Geometrik. Dari proyeksi tersebut kemudian dihitung jumlah kebutuhan air di sektor domestik dan non domestik berdasarkan kriteria ditjen Cipta Karya 2002.

Metode Geometrik

Perhitungan proyeksi pertumbuhan penduduk menggunakan metode Geometrik dengan persamaan :

$$Pn = P0 (1 + r)^n$$

$$P2027 = P2017 (1 + 0,00138)^{10}$$

$$P2027 = 1721 (1 + 0.00138)^{10}$$

P2027 = 1973 Jiwa

Tabel 1. Proyeksi Penduduk Desa Ulu Konaweha

Tahun	Jumlah Penduduk (Jiwa)
2017	1721
2018	1745
2019	1769
2020	1793
2021	1818
2022	1843
2023	1868
2024	1894
2025	1920
2026	1946
2027	1973

(Sumber: Hasil Analisa)

Kebutuhan Air Domestik

Kebutuhan air domestik adalah kebutuhan yang diperlukan manusia untuk kehidupan seharihari seperti minum, masak, mck, bersih-bersih, dan lain-lain.

Berikut adalah kebutuhan air domestik Desa Ulu Konaweha untuk tahun 2017 :

Qpedesaan = Jumlah penduduk x 30

It/orang/hari

= 1721 x 30 lt/hari

= 51630 lt/hari = 2151 lt/jam

= 05976 lt/detik

 $= 0.0005976 \, m^3$

Tabel 2. Kebutuhan Air Domestik Desa Ulu Konaweha

Jumlah Penduduk (jiwa)	Kebutuhan air bersih (lt/hari)	Kebutuhan air bersih (lt/detik)	Kebutuhan air bersih (m3/detik)
1721	51630	0,5976	0,0005976
1745	52340	0,6058	0,0006058
1769	53060	0,6141	0,0006141
1793	53790	0,6226	0,0006226
1818	54529	0,6311	0,0006311
1843	55279	0,6398	0,0006398
1868	56039	0,6486	0,0006486
1894	56810	0,6575	0,0006575
1920	57591	0,6666	0,0006666
1946	58383	0,6757	0,0006757
1973	59186	0,6850	0,0006850
	Penduduk (jiwa) 1721 1745 1769 1793 1818 1843 1868 1894 1920	Penduduk (jiwa) bersih (lt/hari) 1721 51630 1745 52340 1769 53060 1793 53790 1818 54529 1843 55279 1868 56039 1894 56810 1920 37591 1946 58383	Penduduk (jiwa) bersih (lt/hari) bersih (lt/detik) 1721 51630 0,5976 1745 52340 0,6058 1769 53060 0,6141 1793 53790 0,6226 1818 54529 0,6311 1843 55279 0,6398 1868 56039 0,6486 1894 56810 0,6575 1920 57591 0,6666 1946 58383 0,6757

(Sumber: Hasil Analisa)

Kebutuhan Air Non Domestik

Kebutuhan air non domestik berdasarkan kriteria perencanaan IKK pedesaan adalah 15% dari kebutuhan air domestik.

Tabel 3. Kebutuhan Air Non Domestik Desa Ulu Konaweha

Tahun	Kebutuhan	Air <u>Domestik</u>	Kebutuhan Air Non Domestik			
тапип	(lt/hari)	(lt/detik)	(lt/hari)	(lt/detik)		
2017	51630	0,5976	258,15	0,00299		
2018	52340	0,6058	261,70	0,00303		
2019	53060	0,6141	265,30	0,00307		
2020	53790	0,6226	268,95	0,00311		
2021	54529	0,6311	272,65	0,00316		
2022	55279	0,6398	276,40	0,00320		
2023	56039	0,6486	280,20	0,00324		
2024	56810	0,6575	284,05	0,00329		
2025	57591	0,6666	287,96	0,00333		
2026	58383	0,6757	291,92	0,00338		
2027	59186	0,6850	295,93	0,00343		

(Sumber: Hasil Analisa)

Kehilangan Air

Berdasarkan kriteria perencanaan IKK pedesaan 1999 kebocoran atau kehilangan air yaitu 15% dari kebutuhan rata-rata, dimana kebutuhan rata-rata adalah hasil penjumlahan dari kebutuhan air domestik dan kebutuhan air non domestik.

Tabel 4. Kehilangan Air

Tahun	<u>Kebutuhan</u> Air Domestik		***************************************	an Air Non aestik	<u>Kehilangan</u> Air		
	(lt/hari)	(lt/detik)	(lt/hari)	(lt/detik)	(lt/hari)	(lt/detik)	
2017	51630	0,5976	258,15	0,00299	7783,22	0,0901	
2018	52340	0,6058	261,70	0,00303	7890,26	0,0913	
2019	53060	0,6141	265,30	0,00307	7998,77	0,0926	
2020	53790	0,6226	268,95	0,00311	8108,77	0,0939	
2021	54529	0,6311	272,65	0,00316	8220,29	0,0951	
2022	55279	0,6398	276,40	0,00320	8333,34	0,0965	
2023	56039	0,6486	280,20	0,00324	8447,94	0,0978	
2024	56810	0,6575	284,05	0,00329	8564,12	0,0991	
2025	57591	0,6666	287,96	0,00333	8681,90	0,1005	
2026	58383	0,6757	291,92	0,00338	8801,30	0,1019	
2027	59186	0,6850	295,93	0,00343	8922,34	0,1033	

(Sumber: Hasil Analisa)

Kebutuhan Air Total

Kebutuhan air total adalah total kebutuhan air domestik, kebutuhan air non domestik dan kehilangan air.

Tabel 5. Kebutuhan Air Total

	Kebutuhan Air			n Air Non			Kebutı	ihan Air		
Tahun	Don	<u>iestik</u>	Dom	estik	Kehila	Kehilangan Air		Total		
	(lt/hari)	(lt/detik)	(lt/hari)	(lt/detik)	(lt/hari)	(lt/detik)	(lt/hari)	(lt/detik)		
2017	51630	0,5976	258,15	0,00299	7783,22	0,0901	59671,4	0,6906		
2018	52340	0,6058	261,70	0,00303	7890,26	0,0913	60492,0	0,7001		
2019	53060	0,6141	265,30	0,00307	7998,77	0,0926	61323,9	0,7098		
2020	53790	0,6226	268,95	0,00311	8108,77	0,0939	62167,3	0,7195		
2021	54529	0,6311	272,65	0,00316	8220,29	0,0951	63022,2	0,7294		
2022	55279	0,6398	276,40	0,00320	8333,34	0,0965	63888,9	0,7395		
2023	56039	0,6486	280,20	0,00324	8447,94	0,0978	64767,6	0,7496		
2024	56810	0,6575	284,05	0,00329	8564,12	0,0991	65658,3	0,7599		
2025	57591	0,6666	287,96	0,00333	8681,90	0,1005	66561,2	0,7704		
2026	58383	0,6757	291,92	0,00338	8801,30	0,1019	67476,6	0,7810		
2027	59186	0,6850	295,93	0,00343	8922,34	0,1033	68404,6	0,7917		

(Sumber: Hasil Analisa)

Kebutuhan Air Harian Maksimum Dan Jam Puncak

Kebutuhan air harian maksimum dan jam puncak dihitung berdasarkan kriteria perencanaan Ditjen Cipta Karya Dinas PU, 1996 dengan faktor pengali yaitu:

- Kebutuhan air harian maksimum = 1,15 1,25 dikali dengan kebutuhan air total
- Kebutuhan air jam puncak = 1,65 2,00 dikali dengan kebutuhan air total

Tabel 6. Kebutuhan Air Harian Maksimum Dan Jam Puncak

Tahun	Kebutuha	n Maksimum	Kebutuhan A	Air Jam <u>Puncak</u>
Lanun	(lt/hari)	(lt/detik)	(lt/hari)	(lt/detik)
2017	68622,1	0,863	104424,9	1,209
2018	69565,8	0,875	105861,0	1,225
2019	70522,5	0,887	107316,8	1,242
2020	71492,4	0,899	108792,7	1,259
2021	72475,5	0,912	110288,9	1,276
2022	73472,3	0,924	111805,6	1,294
2023	74482,7	0,937	113343,2	1,312
2024	75507,0	0,950	114902,0	1,330
2025	76545,4	0,963	116482,1	1,348
2026	77598,1	0,976	118084,1	1,367
2027	78665,3	0,990	119708,0	1,386

(Sumber : Hasil Analisa)

Analisa Perencanaan Sistem Jaringan Dan Penyediaan Air Bersih

1. Desain Hidrolis Reservoir

 Kapasitas Reservoir
 Volume reservoir = (20-30%) x Q kebutuhan air 1 hari Kebutuhan air = 0,990 liter/detik

Lain-lain 20% = 20% x 0,990 lt/detik

= 0,198 lt/detik

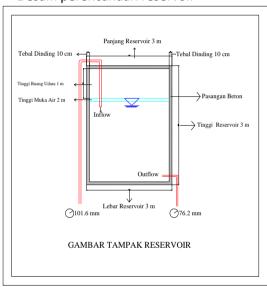
Total = 0,990 + 0,198

= 1,188 lt/detik

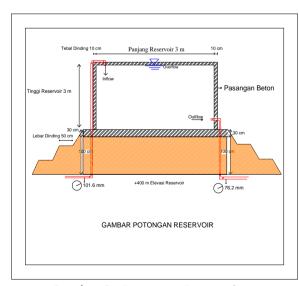
Kebutuhan air dalam 1 hari = 1,188 lt/detik x (24 x 3600) = 102,643 lt

Volume reservoir = 20% x 102,643

= 20,528 liter $= 23 m^3$


- Ukuran reservoir sebagai berikut :

Panjang = 3 mLebar = 3 m


Tinggi Air = 2 m

Tinggi = 3 m

- Desain perencanaan reservoir

Gambar 2. Tampak Reeservoir

Gambar 3. Potongan Reservoir

2. Desain Jaringan Perpipaan

Dalam mendesain diameter rencana untuk pipa digunakan rumus Hazen William yaitu :

Hf =
$$\left(\frac{10,67.Q^{1,85}}{C^{1,85},D^{4,87}}\right) \times L$$

Dimana:

Chw = koefisien Hazen William (120-150)

S = gradient hidrolik (S = Hf/L)

Hf = kehilangan tenaga (m)

 $Q = debit (m^3/detik)$

L = Panjang pipa (m)

D = diameter pipa (m)

1. Pipa Transmisi

Jenis pipa yang digunakan adalah jenis pipa PVC.

Perhitungan pipa transmisi:

$$L = 200 \text{ m}$$

$$Q = 6,20 \text{ lt/detik} = 0,00620 \text{ m}^3$$

Chw= 150

$$\Delta H = (+444 \text{ m}) - (+440) = 4 \text{ m}$$

$$D = 4 \text{ inch} = 0,1016 \text{ m}$$

Mengalami kehilangan head:

Hf =
$$\left(\frac{10,67.Q^{1,85}}{C^{1,85}.D^{4,87}}\right)$$
 x L
= $\left(\frac{10,67.0,00620^{1,85}}{150^{1,85}.0,1016^{4,87}}\right)$ x 200
= $\frac{0,175}{0.154}$ = 1,136 m

Kontrol:

2. Pipa Distribusi

Untuk pipa distribusi desa Ulu Konaweha berdiameter 3 inch = 76,2 mm dengan Panjang pipa keseluruhan 4.652,3 m.

3. Desain Hidrolis Hidran Umum

Berdasarkan ketentuan dari pedoman teknis penyediaan air bersih IKK pedesaan 1990, untuk perencanaan hidran umum yaitu 100 jiwa/unit.

= 20 HU

 Kebutuhan air tiap hidran = kebutuhan air jam puncak / 24

= 1,386 / 24 = 0,0577 liter/detik

Desain Sistem Jaringan Pipa Dengan Software Epanet 2.0

Tabel 7. Node Parameter Air Bersih Desa Ulu Konaweha

&					EPANE
File Edit Vi	ew Project F	Report Windo	w Help		
	B × M	∛ ?{] 💹 🖺	■ 😭 🗍 🏲 🗍	≥ 4 ⊃ <u></u>	
Node ID	Elevation m	Base Demand LPS	Demand LPS	Head m	Pressure m
June 1HU	100	0.0577	0.06	396.44	296.44
June 2HU	100	0.0577	0.06	396.35	296.35
June 3HU	200	0.0577	0.06	396.27	196.27
June 4HU	100	0.0577	0.06	396.27	296.27
June 5HU	300	0.0577	0.06	396.27	96.27
June 6HU	100	0.0577	0.06	396.27	296.27
June 7HU	100	0.0577	0.06	396.27	296.27
June 8HU	200	0.0577	0.06	396.24	196.24
June 9HU	200	0.0577	0.06	396.24	196.24
June 10HU	200	0.0577	0.06	396.24	196.24
June 11HU	100	0.0577	0.06	396.24	296.24
June 12HU	300	0.0577	0.06	396.22	96.22
June 13HU	200	0.0577	0.06	396.22	196.22
June 14HU	300	0.0577	0.06	396.22	96.22
June 15HU	300	0.0577	0.06	396.22	96.22
June 16HU	200	0.0577	0.06	396.22	196.22
June 17HU	200	0.0577	0.06	396.22	196.22
June 18HU	300	0.0577	0.06	396.22	96.22
June 19HU	200	0.0577	0.06	396.22	196.22
June 20HU	100	0.0577	0.06	396.22	296.22
Resvr 1	400	#N/A	-1.15	400.00	0.00

(Sumber: Hasil Analisa)

Tabel 8. Link Parameter Air Bersih Desa Ulu Konaweha

8					EPAN	IET 2 - jaring	an pipa epa
III File Edit V	iew Project R	eport Windo	w Help				
D 🚅 🖫 🖨	1 ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥	₮ ॑१ 🚟 🗉	1 🖆 📗 k 🔝	4 द⊕ €	⊴ # o t	코 🖁 🛏 🗷	T
Link ID	Length m	Diameter mm	Roughness	Flow LPS	Velocity m/s	Unit Headloss m/km	Friction Factor
Pipe 1HU	3530	76.2	150	1.15	0.25	1.01	0.024
Pipe 2HU	102	76.2	150	1.10	0.24	0.92	0.024
Pipe 3HU	98	76.2	150	1.04	0.23	0.83	0.024
Pipe 4HU	78.7	76.2	150	0.06	0.01	0.00	0.040
Pipe 5HU	80	76.2	150	0.17	0.04	0.03	0.031
Pipe 6HU	55.7	76.2	150	0.12	0.03	0.01	0.033
Pipe 7HU	54.7	76.2	150	0.06	0.01	0.00	0.038
Pipe 8HU	68.7	76.2	150	0.75	0.16	0.45	0.025
Pipe 9HU	45.5	76.2	150	0.12	0.03	0.01	0.032
Pipe 10HU	37.8	76.2	150	0.06	0.01	0.00	0.037
Pipe 11HU	38	76.2	150	0.06	0.01	0.00	0.037
Pipe 12HU	77.8	76.2	150	0.52	0.11	0.23	0.026
Pipe 13HU	42	76.2	150	0.17	0.04	0.03	0.031
Pipe 14HU	37.7	76.2	150	0.12	0.03	0.01	0.032
Pipe 15HU	35.7	76.2	150	0.06	0.01	0.00	0.039
Pipe 16HU	38.9	76.2	150	0.12	0.03	0.01	0.034
Pipe 17HU	39	76.2	150	0.06	0.01	0.00	0.038
Pipe 18HU	100	76.2	150	0.17	0.04	0.03	0.031
Pipe 19HU	48	76.2	150	-0.06	0.01	0.00	0.043
Pipe 20HU	45	76.2	150	0.06	0.01	0.00	0.039

(Sumber: Hasil Analisa)

Rencana Anggaran Biaya

Rencana Anggaran Biaya adalah perhitungan banyaknya biaya yang diperlukan untuk bahan dan upah, serta biaya-biaya lain yang berhubungan dengan pelaksanaan bangunan atau proyek.

Tabel 9. Rencana Anggaran Biaya Reservoir Desa Ulu Konaweha

No	Uraian Pekerjaan	Volume Pekerjaan	Satuan	Harga	Satuan (Rp)	Jum	lah Harga (Rp)
1	Pekerjaan Tanah (Galian)	36	m3	Rp	34.600,00	Rp	1.245.600,00
		Rp	1.245.600,00				
	Pekerjaan Plat B	eton (Dinding	Reservoi	r)			
2	a. Beton	36	m3	Rp	546.138,60	Rp	19.660.989,60
2	b. Besi	9,87	Kg	Rp	17.325,00	Rp	170.997,75
	c. Bekisting	96	m2	Rp	267.320,41	Rp	25.662.759,21
		Juml	ah:			Rp	45.494.746,56
	Pekerjaan Pipa transmisi 4 inch	50	m	Rp	162.970,50	Rp	8.148.525,00
3	Pekerjaan pipa distribusi 3 inch	20	m	Rp	150.702,30	Rp	3.014.046,00
	Perlengkapan	harga pipa	35%	Rp	47.533,06	Rp	16.636,57
		Jumla	ıh:			Rp	11.179.207,57

(Sumber : Hasil Perhitungan)

KESIMPULAN DAN SARAN

Kesimpulan

- Jumlah penduduk Desa Ulu Konaweha tahun 2017 adalah 1721 jiwa dengan kebutuhan air total 0,6906 liter/detik, sedangkan jumlah penduduk Desa Ulu Konaweha tahun 2027 adalah 1973 jiwa dengan proyeksi kebutuhan air bersih sebesar 0,7917 liter/detik. Sehingga kebutuhan air bersih Desa Ulu Konaweha sampai 10 tahun kedepan dengan debit 6,20 liter/detik memenuhi.
- Kapasitas reservoir sebesar 23 m³, dengan dimensi reservoir 3 x 3 x 3 m. Hidran umum berjumlah 20 buah, dan untuk kebutuhan tiap hidran sebesar 0,0577 liter/detik.
- Sistem jaringan distribusi air bersih Desa Ulu Konaweha untuk pipa transmisi menggunakan pipa PVC dengan diameter 4 inch atau 101,6 mm dengan panjang pipa 200 m, dan untuk pipa distribusi menggunakan pipa PVC dengan diameter 3 inch atau 76,2 mm dengan Panjang keseluruhan pipa distribusi 4.652,3 m. Analisis sistem jaringan pipa distribusi Desa Ulu Konaweha menggunakan software Epanet 2.0

Saran

- Kualitas dan kuantitas sumber air harus dipelihara dengan baik dengan cara melestarikan daerah sekitar mata air, agar sumber air yang ada tetap terjaga dan dapat terus di manfaatkan.
- 2. Jika sistem jaringan air bersih telah di operasikan, maka sebaiknya dibentuk organisasi pengelola yang berkompeten dalam pekerjaan ini agar pendistribusiannya berjalan dengan baik.

DAFTAR PUSTAKA

Anonim, 2007. *Buku Utama Panduan Pengembangan Air Minum*. Ditjen Cipta Karya, Direktorat Air Bersih.

Deddy Prasetyo, 2016. "Perhitungan Volume Reservoir"

Donya Swesty Ari, 2013. "Studi perencanaan SPAM di Desa Serang Kecamatan Panggungrejo Kabupaten Blitar"

DPU, 2002. Direktorat Jenderal Cipta Karya. "Kriteria Perencanaan"

- Epanet 2, 2000. "Users Manual" Versi Bahasa Indonesia
- Fachruddin Mokoginta, 2014. "Perencanaan Sistem Penyediaan Air Bersih Desa Lobong, Desa Muntoi, dan Desa Inuai Kecamatan Passi Barat Kabupaten Bolaang Mongondow"
- Harry Maryanto, 2013."Perencanaan Teknis Pembangunan Jaringan Distribusi Air Bersih Daerah Perangat Selatan, Kabupaten Kutai Kertanegara. Samarinda"
- Hesti Kalensun, 2016. "Perencanaan Sistem Jaringan Distribusi Air Bersih Di Kelurahan Pangolombian Kecamatan Tomohon Selatan"
- Keputusan Menteri Kesehatan Republik Indonesia no.907/MENKES/SK/VII/2002
- La Ode Muhammad Asgar, 2016. "Perencanaan Sistem Distribusi Air Bersih Desa Gunung Jaya Kecamatan Siotapina Kabupaten Buton"
- Petunjuk Teknik dan Manual, 2003. "Bagian 5 Volume 1 : Air Minum Pedesaan"
- Prasetijo Hari, 2002. Diktat Materi Kuliah Sistem dan Operasi Pemeliharaan
- *Irigasi*. Malang: Jurusan Pengairan Fakultas Teknik Universitas Brawijaya
- Sari Amalia Intan, 2013."Perencanaan Peningakatan Sistem Distribusi Air Minum Wilayah waru Kabupaten sidoarjo".

 Jurnal.(http://jurnal teknik pomits vol.2.no.1.pdf)
- Sutrisno, 2002."Teknologi Penyediaan Air Bersih". Jakarta: PT.Rineka Cipta
- Syahrul, 2013. "Analisis Rencana Kebutuhan Air Bersih Di Desa Bakealu Kecamatan Wakorumba Selatan Kabupaten Muna". Program studi D-III Teknik Sipil Fakultas Teknik Universitas Halu Oleo.