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Abstrak— Eksperimen biologis telah menghasilkan sejumlah 

besar data ekspresi gen yang memiliki nilai sangat besar untuk 

diagnosis, pengobatan, dan pencegahan penyakit. Namun, 

kelemahan yang cukup besar memang ada dalam pemanfaatan 

yang tepat dari data ini karena skala yang besar dan 

kerumitannya. Sejumlah algoritma telah dikembangkan untuk 

menginterpretasikan data ini dalam bentuk profil gen untuk 

tujuan diagnosis. Diantaranya K-means, pengelompokan 

hierarkis, pengelompokan berbasis kepadatan, pengelompokan 

subruang, dan peta yang mengatur sendiri. Sayangnya, algoritme 

ini mengabaikan ketergantungan berurutan di antara titik waktu 

yang berurutan, tidak memadai dalam penemuan pola untuk 

mengubah aktivitas selama interval terbatas dari kerangka waktu 

eksperimen, dan tidak mampu membedakan antara pola faktual 

dan acak. Dengan demikian, ada kebutuhan untuk algoritme 

pembuatan profil gen yang mengatasi kekurangan yang dibatasi 

waktu dalam algoritme saat ini dan karenanya memfasilitasi 

pembuatan profil gen yang efisien untuk mendiagnosis kanker 

perut secara dini. Selama bertahun-tahun, eksperimen ekspresi 

gen deret waktu telah banyak digunakan untuk mempelajari 

berbagai proses biologis seperti siklus sel, perkembangan, dan 

respons imun. Dalam makalah ini dikembangkan algoritma profil 

gen berdasarkan deret waktu untuk diagnosis awal kanker 

lambung. Dengan menetapkan gen ke satu set profil model yang 

telah ditentukan sebelumnya yang menangkap pola potensial 

yang berbeda, signifikansi masing-masing profil ini dapat 

ditetapkan. Profil signifikan ini kemudian dapat dianalisis lebih 

lanjut dan digabungkan untuk membentuk cluster yang kemudian 

dapat dimanipulasi oleh algoritma clustering. Idenya adalah 

untuk mengukur aktivitas gen selama rentang waktu yang singkat 

sehingga dapat menghasilkan gambaran universal tentang fungsi 

seluler. Singkatnya, ini termasuk mendeteksi pola berulang dalam 

data biologis. Pola-pola ini kemudian digunakan untuk 

mengungkapkan informasi diagnostik yang mungkin penting bagi 

praktisi medis. Desain penelitian eksperimental digunakan untuk 

mencapai tujuan penelitian. Data yang berkaitan dengan genom 

biologis digunakan untuk pekerjaan penelitian ini. Karena 

perkembangan penyakit kanker saat ini, hasil dari penelitian ini 

diharapkan dapat menjadi signifikan dalam diagnosis dini kanker 

lambung sehingga pengobatan yang tepat dapat diberikan.. 

Kata kunci: Data microarray, respon imun, clustering, profil 

signifikan, diagnosis kanker. 

Abstract— Biological experiments have produced enormous 

amount of gene expression data that possess enormous value for 

the diagnosis, treatment, and prevention of diseases. However, 

considerable drawbacks do exist in the appropriate utilization 

of this data due to its massive scale and intricacy. A number of 

algorithms have been developed to interpret this data in form of 

gene profiling for diagnosis purposes. They include K-means, 

hierarchical clustering, density-based clustering, subspace 

clustering, and self-organizing maps. Unfortunately, these 

algorithms ignore the sequential dependency among successive 

time points, are inadequate in the discovery of patterns for 

changing activity over a restricted interval of an experiment’s 

time frame, and are incapable of discriminating between factual 

and random patterns. As such, there is a need for a gene 

profiling algorithm that addresses the time-constrained 

shortcomings in the current algorithms and hence facilitating 

efficient profiling of genes for early stomach cancer diagnosis. 

Over the years, time series gene expression experiments have 

been widely used to study a range of biological processes such as 

the cell cycle, development, and immune response. In this paper 

a gene profiling algorithm based on time series for early 

stomach cancer diagnosis is developed. By assigning genes to a 

predefined set of model profiles that capture the potential 

distinct patterns, the significance of each of these profiles can be 

established. These significant profiles can then be analyzed 

further and combined to form clusters that can then be 

manipulated by clustering algorithms. The idea is to measure 

the genes’ activities over a short period span so as to come up 

with a universal depiction of the cellular functionality. In a 

nutshell, this includes detecting recurring patterns in biological 

data. These patterns are then employed to reveal diagnostic 

information that may be important for the medical 

practitioners. An experimental research design was utilized to 

achieve the study objectives. Data pertaining to biological 

genomes was employed for this research work. Due to the 

upsurge of cancer in the current times, the outcomes of this 

research work is anticipated to be significant in the early 

diagnosis of stomach cancer so that appropriate medication can 

be administered. 

 

Keywords: Microarray data, immune response, clustering, 

significant profiles, cancer diagnosis. 

I. INTRODUCTION  

Functional genomics is the discipline in which genes are 
utilized in the determination of their function whereas gene 



 

64 | Vol.3 No.2, July 2022 

 

expression is an approach employed to examine the 
functional changes in these genes. According to [1], the 
expression level for a given gene across different 
experimental conditions are collectively referred to as the 
gene expression profile and the expression levels for all the 
genes under an experimental condition are jointly referred to 
as the sample expression profile. 

One of the goals in microarray data analysis is the 
identification of genes for which the expression level is 
significantly changed under different experimental 
conditions. Another objective is to cluster the expressed 
genes or samples having similar expression profiles to make 
a meaningful biological inference from the set of genes or 
samples (Martin et.al., 2016). 

The field of bioinformatics essentially deals with biological 
information processing. One of the requirements for effective 
bioinformatics is an extensive range of computational models 
that helps in representation and computation of massive 
biological data. As [2] point out, biological experiments and 
processes analysis require too much effort. Additionally, this 
process can prove to be very slow. This can be attributed to 
the ever-growing intricacy of the processes and fiery growth 
of biological data emerging from laboratories universally. 
The recent drawback, as [3] noted, is on how to convert this 
enormous data repository into knowledge that can facilitate 
understanding of biological processes and experiments 
pertaining to both health and diseases. According to [4] time-
series gene expression analysis allows for principled 
estimation of unobserved time-points, clustering, and dataset 
alignment. In this technique, every expression profile is 
modeled as a piecewise polynomial which is estimated from 
the observed data and every time point sways the overall 
smooth expression curve. Gene expression experiments 
carried out using time series show that unobserved time-
points can be reconstructed with 10-15% less error when 
compared to other profiling methods. The time series-based 
clustering algorithm operates directly on the continuous 
representations of gene expression profiles. This is 
particularly effective when applied to non-uniformly sampled 
data. 

Stomach Cancer (SC) is the fourth most frequently diagnosed 
malignancy and the second leading cause of cancer death 
worldwide (Yang et.al.,2018). Although the incidence of SC 
has declined for decades, the prognosis of SC remains very 
poor, especially in China. At present, the pathogenesis of SC 
is unclear, thereby necessitating effective biomarkers and 
targeted therapeutics. Traditionally, clinic pathological 
parameters were used in risk stratification of SC outcomes. 
However, a number of advanced SC patients remained stable 
for a couple of years, whereas some early-stage patients 
progressed rapidly [5]. Therefore, reliable biomarkers or 
stratification systems that can be used for more accurate 
prediction are highly essential [6]. 

The greatest challenge in cancer diagnosis is the 
identification of a subset of genes with crucial roles in diverse 
stages of these diseases’ progression from early stages of 
carcinogenesis to its final stage of metastasis. As [7] explains, 
reliable identification of molecular determinants of clinical 
outcomes can facilitate the discovery of functional 
biomarkers predictive of therapy response or disease 
progression. In addition, this can provide insights into new 
therapeutic targets in this aggressive disease. [8] further point 

out that the complexity of genomic networks and the vast 
volume of genes present increase the challenges of 
understanding and interpreting the resulting mass of data. The 
problem is compounded by the vagueness, imprecision, and 
noise present in this data. According to [9], the current 
algorithms such as Hierarchical gene profiling algorithm, 
Self-Organizing Maps (SoM), Support Vector Machines 
(SVM) and K-means algorithm, can only detect relationships 
where there is sufficient variability in gene expressions and 
as such, functional interactions are only detectable if they 
induce changes in transcriptional state that persist over a 
reasonable timescale. To address this problem, algorithms for 
visualizing high-throughput single-cell datasets and 
identifying putative functional relationships between genes 
are required [10]. 

Due to the potential of time series to unravel biological 
processes that take place over short time duration, this 
research work employed this nonconventional data type to 
come up with a gene profiling algorithm that is instrumental 
in disease diagnosis in human beings. In this paper, a time 
series - based gene profiling algorithm for early stomach 
cancer diagnosis was developed. Early and accurate diagnosis 
of stomach cancer can significantly improve the design of 
personalized therapy and enhance the success of therapeutic 
interventions. Since time series has the potential of 
identifying significant chronological expression profiles and 
the genes associated with this profile, it can enable the 
comparison of cancer infected genes behavior across multiple 
conditions over short time duration. Specifically, the 
response of gastric epithelial cells infected with the vacA-
mutant strain of the pathogen Helicobacter pylori was 
investigated [11]. 

The contributions of this paper include the derivation of 
mathematical parameters that were shown to help in the 
generations of gene profiles over a limited duration of time.  
The rest of this paper is organized as follows. Section 2 
presents the related work while section 3discusses gene 
profiles derivation. Section 4 gives a presentation of results 
and discussion while part 5 concludes the paper. 

II. METHOD 

This paper adopted an experimental research design to 

develop an algorithm that aided in the derivation of gene 

profiles. The approach involved the derivation of gene 

profiling parameters which were then employed to develop a 

time-series based algorithm. This algorithm was then 

experimented on sample genomic data described in section A 

below, to provide the required gene profiles visualization in 

the form of graphs. This visualization provided a straight 

forward means of establishing the sequential dependency 

among successive time point. In addition, the visualization 

facilitated the discovery of patterns for changing activity over 

a restricted interval of an experiment’s time frame. 

 

3.1 Data Set 

The genomics data employed in this paper were from two 

experiments measuring the response of gastric epithelial cells 

infected with the vacA-mutant strain of the pathogen 

Helicobacter pylori. The data is sampled at five time points 0 

h, .5 h, 3 h, 6 h, and 12 h. A sample of these data is shown in 

Figure 1 for G27 TC1 trial 4. 
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Figure 1. Sample G27 TC1 Trial 4 Data 

This Figure 1 shows TC1 gastric epithelial (AGS) cells 

infected with wild type H. pylori (G27) and isogenic mutants 

in cagA and vacA for 0, 0.5, 3, 6, and 12 hours. Figure 2.0 

shows the G27 TC1 trial 5 data. 

 

 

 

Figure 2. Sample G27 TC1 Trial 5 Data 

 

In these data samples, hybridizations of G27 (trial 4) and cag 

A- (trial 3) time-courses are accomplished in parallel. A 

technical replicate of the G27 time course (trial 5) and 

hybridization of vacA- (trial 3) time course is also 

accomplished in parallel. The cag A 6- and 12-hour time 

points technically replicated (trial 4) (the cag A 6-hour 

sample of trial 3 are lost). 

 

3.2 Gene Profiling Modeling Process 

This research dealt with the profiling, comparing and 

visualizing gene expression data from short time series of two 

experiments measuring the response of gastric epithelial cells 

infected with the vacA-mutant strain of the pathogen 

Helicobacter pylori. The gene expression profiling comprised 

of four major steps as shown in Figure 3. As show in this 

figure, the steps included the generation and normalization of 

expression signals, testing each probe for its differential or 

association with the phenotype, the application of proper 

statistical significance criteria to identify the gene expression 

profile, and the investigation of the functions and pathways 

of the genes in the expression profile. 

 

 

 

 

 

 

Figure 3. Gene Profiling Steps 

 

Thereafter, a number of statistical significance criteria such 

as Pearson correlation, P-value, Euclidean distance, Logistic 

regression, Bonferroni correction, False discovery rate and 

Time Points Permutation were applied to help identify 

specific list of genes differentially expressed or associated 

with the phenotype. 

Although mutual information (MI) measure is superior over 

simpler measures such as Pearson correlation as it is capable 

of capturing complex non-linear and non-monotonic 

dependencies. In addition, it can reflect the dynamics 

between pairs or groups of genes, computing MI involves 

estimating pair-wise joint probability distributions which 

requires density estimation or data discretization, with the 

accuracy of these estimates depending on sample sizes. As 

this measure was not deployed in this research study. Table 2 

gives a summary for the deployment of the various 

performance metrics. 

 

Table 2 Performance Metrics Deployment 

 

SNO Statistical 

Measure 

Deployment 

1. Pearson 

correlation 

Weighted Relation 

between all genes 

2. P-value Significance of gene co-

expressions 

3. Euclidean 

distance 

Correlation distance 

between gene profiles 

4. Logistic 

regression 

Estimate of cancerous 

probability 

5. Bonferroni 

correction 

Adjustment to the 

confidence levels 

6. False discovery 

rate 

Adjustment to the 

confidence levels 

7. Time Points 

Permutation 

Optimize the number of 

required profiles  

 

 

3.3 The Algorithm of modeling gene profiles 

The first step was the commencement of the algorithm while 

the second step in the processing activities was the input of 

the genomics data as shown in Figure 4.0. in the next page. 

In step three, validation is done against empty genomic file 

upload such that if this field is empty, then an error message 

is generated for this effect in the fourth step. During the fifth 

step, the validation against spot IDs not included is done such 
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that if these IDs are not included, then they are computed in 

the sixth step. The value of the spot ID is initialized to 1 

which are thereafter incremented by one until the value of 

24192 is reached, which is equivalent to the number of genes 

in the file that were investigated. Whereas spot IDs were 

unique for each gene entry, the same gene symbol may appear 

multiple times in the data file corresponding to the same gene 

appearing on multiple spots. 

 

The seventh step was the computation of the average value 

for the expression values for the same gene. This was 

accomplished using the median before further analysis on the 

data was carried out. The eighth step was that option of 

filtering some specific genes using P-value metric. In 

situations where a gene was filtered, then it was excluded 

from further analysis. Gene filtering was accomplished for 

those genes that did not show a sufficient response to 

experimental conditions, those genes that had too many 

missing values, or the gene expression pattern over repeats 

was too inconsistent as dictated by the minimum correlation 

between repeats. The ninth step was the usage of additional 

parameters namely the maximum Pearson correlation and 

maximum number of candidate model profiles to dictate the 

selection of model profiles along with the maximum number 

of model profiles and maximum unit change in model profiles 

between time points as shown in Figure 5.0. In this algorithm, 

the candidate model profiles were designed to be non-

constant profiles which started at zero and increased or 

decreased an integral number of units that was less than or 

equal to the value of the maximum unit change in model 

profiles between time points. 

 

The logic here was that when the number of candidate 

model profiles exceeded the p-value of seeing t more genes 

in the intersection, then instead of explicitly generating all 

candidate model profiles, a subset of candidate model profiles 

of this size was randomly selected. In the tenth step, the 

number of permutations per gene parameter was employed to 

specify the number of permutations of time points that were 

randomly selected for each gene when computing the 

expected number of genes assigned to each of the model 

profiles. 

 

 

Figure.4. Gene Profiling Algorithm Pseudo-Code 

 

When this parameter was set to zero, all permutations were 

used. In the eleventh step, the P-value based significance 

level was utilized to set the connotation level at which the 

number of genes assigned to a model profile as compared to 

the expected number of genes assigned was regarded as 

significant. During the twelfth step, the permutation test was 

set to permute all time points including time point zero when 

computing the expected number of genes assigned to a 

profile.   

 

In this case, the developed algorithm located profiles with 

significantly more genes assigned than expected on condition 

that all the input columns had been randomly reordered. On 

the other hand, during the thirteenth step, the permutation test 

was configured not to permute at time point zero and as such, 

the algorithm found profiles with more genes assigned than 

expected on condition that all the columns except for the first 

column had been randomly reordered. In the developed 

algorithm, permuting time point zero was preferred since it 

was the only test that took into account the significant 

changes that took place between time point zero and the 

immediate next time point (0.5 h).  

 

In the fourteenth step, the correction method was utilized to 

adjust the significance level since this algorithm was meant 

to test multiple profiles for significance. Two types of 

corrections were utilized in this algorithm. The first one was 

the Bonferroni correction while the second one was the 

conservative false discovery rate (FDR) control. In the third 

scenario, no correction was made for the multiple 

significance tests.   
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Figure 5. Modeling Gene Profiling Process 

 

In the fifteenth step, two parameters namely the minimum 

correlation and the minimum correlation percentile were 

utilized to control the grouping of significant model profiles 

into clusters. In so doing, these parameters served to control 

how similar two model profiles had to be if they were grouped 

together. For the case of the minimum correlation, any two 

model profiles assigned to the same cluster of profiles had to 

have a correlation above this parameter's value.  On its part, 

the minimum correlation percentile was employed in cases 

there were repeat data from different time periods. It was used 

to specify that any two model profiles assigned to the same 

cluster of profiles had to have a correlation in their expression 

greater than the correlation of this percentile in the 

distribution of gene expression correlations between the 

repeats. The last step was the display of the gene profiles 

based on the Euclidean distance after which the algorithm 

halted in the seventeenth step.  Figure 6 gives a diagrammatic 

representation of the gene profile derivation process. As this 

figure shows, the process gene profile derivation process 

involves the input of the genomic data containing the gene 

expressions to be profiled.  

 

These data items are analyzed using parameters such as P-

value, Pearson correlations, permutations, logistic regression 

and median to yield probable profiles as already discussed 

above. Correction methods are then employed to adjust the 

significance level to permit the testing of multiple profiles for 

significance. 

 

 

 

Figure 6. Schematic Gene Derivation Process 

 

The output gene groupings are then clustered using minimum 

correlation and minimum correlation percentile before 

Euclidean distance is applied to them to distinguish the 

various gene profiles. The final outputs are the gene profiles 

in form of graphs. 

 

III.RESULTS AND DISCUSSION 

In this section a time series-based gene profiling algorithm is 

developed. To test the derived parameters and their gene 

profiling abilities, the algorithms and statistical computations 

were put into use to achieve some functionality as shown in 

Table 3. The genomics data from two experiments measuring 

the response of gastric epithelial cells infected with the vac 

A- mutant strain of the pathogen Helicobacter pylori were 

then fed as input to this algorithm. 

 

 

Table 3. Gene Derivation Process 

 

The minimum absolute expression change was any value 

more than -0.05. As an illustration, using the maximum 

number of missing values to be 2, the minimum correlation 

between repeats to be 0, and the minimum absolute 

expression change to be 0.05 yielded the information in Table 

4.0 for the sample filtered genes. 

Table 4. Sample Filtered Genes 

 

The genes that were devoid of these three characteristics were 

regarded as standard genes and were the ones that took part 

in further analysis. Table 5 gives information on the sample 

genes that passed the classification criteria. 

Table 5. Sample Genes Passing Classification Criteria 

 

 

Step Parameter Activity 

1 n/a -Commence gene derivation process 

2 n/a -Input genomic data 

3 n/a -Validation is done against empty genomic file upload 

4 n/a -Prompt genomic data input error 

5 n/a -Validation against spot IDs 

6 n/a -If not included in file compute spot IDs 

7 Median -Computation of the average value for the expression values for the 

same gene 

8 P-value -Filtering specific genes 

9 Pearson correlation, p-value -Model profiles selections. 

10 Permutation -Computation of  the expected number of genes assigned to each of the 

model profiles 

11 P-value, Logistic regression 

 

-Setting the connotation level at which the number of genes are assigned 

to a model profile 

12 Permutation -Compute the expected number of genes assigned to a specific profile 

13 Permutation -Configure  permutation test not to permute at time point zero 

14 Bonferroni, FDR -Adjust the significance level to test multiple profiles for significance 

15 Minimum correlation, minimum correlation 

percentile 

-Control grouping of significant model profiles into clusters 

16 Euclidean distance -Display generated gene profiles 

17 n/a -Halt gene derivation process 
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Afterwards, eight parameters were utilized for the 

computational derivation of gene profiles from this set of 

data: maximum correlation, maximum number of candidate 

model profiles, maximum number of model profiles and 

maximum unit change in model profiles between time points, 

number of permutations per gene, significance level, and 

correction method as shown in Table 6 below. 

Table 6. Gene Profiles Evaluation Metrics 

 

Based on the evaluation metrics of Table 6.0, the algorithm 

was run to yield the proposed gene profiles. 

3.1 Time Series-Based Gene Profiling. 

In this profiling, the maximum correlation specified the value 

that the maximum correlation between any two model 

profiles had to be below, and was therefore employed to 

guarantee that two very similar profiles were not selected. 

The maximum value for this parameter was set to 1 in order 

to prevent two perfectly correlated model profiles from being 

selected. It was observed that lowering this parameter led to 

the number of model profiles selected being less than the 

maximum number of model profiles even in situations where 

more candidate model profiles were available. 

 

On the other hand, the maximum number of candidate model 

profiles represented  non-constant profiles which commenced  

at 0 and increased or decreased an integral number of units 

that was less than or equal to the value of the maximum unit 

change in model profiles between time points. The number of 

permutations per gene parameter specified the number of 

permutations of time points that were randomly selected for 

each gene when computing the expected number of genes 

assigned to each of the model profiles.  

 

When this parameter was set to 0, all permutations were used. 

It was also important to set permutation test to permute time 

point 0 or not. When computing the expected number of 

genes assigned to a profile, if the permutation test for time 

point 0 was set, the permutation test permuted all time points 

including time point 0. It was observed that doing this led to 

profiles with significantly more genes being assigned than 

expected if all the input columns had been randomly 

reordered. On the contrary, if the permutation test was not set 

for 0, the permutation test permuted all time points except for 

time point 0. In this scenario, profiles with more genes were 

assigned than expected if all the columns except for the first 

column had been randomly reordered.  

 

Permuting time point 0 was preferred since only this test took 

into account significant changes that occurred between time 

point 0 and the immediate next time point. However in some 

cases based on experimental design a gene's expression value 

before transformation at time point 0 was expected to be 

known more accurately than the other time points, and 

because of this asymmetry, not permuting time point 0 was 

also be useful. 

 

It was observed that increasing the maximum number of 

model profiles increased the number of candidate models as 

shown in Table 7. 

 

Table 7. Maximum Number of Gene Model Profiles Viz. 

Significant Gene Models 

 
Based on the values in Table 7, a graph was plotted for 

maximum number of model profiles against the resulting 

significant number of gene models as shown in Figure 7. 

 

 
 

Figure 7. Maximum No. of model profiles Viz. Resulting 

Significant. No. of Gene Models 

 

The graph of Figure 7.0 shows that the resulting significant 

number of gene models increase nearly exponentially as the 

maximum number of model profiles was increased. 

Consequently, to get fine grained gene model profiles, the 

maximum number of model profiles had to be increased and 

vice versa. Table 8.0 gives the shift in the resulting significant 

number of gene profiles as the maximum unit change in 

model profiles between time points was adjusted. 

 

Table 8. Maximum Unit Change in Model Profiles Viz. 

Significant Gene Models 

 

Gene Profiling Option Value 

Maximum correlation 1 

Maximum number of candidate model profiles 1,000,000 

Number of permutations per gene(0 for all permutations) 0 

P-value significance level 0.05 

Maximum Number of model profiles 50 

Maximum unit change in model profiles between time points 2 

Correction method None 

Minimum Correlation 0.7 

 

Maximum Number of Model Profiles Resulting Sig. Number of Gene Models 

50 14 

60 16 

70 18 

80 20 

100 21 

120 23 

140 24 

 

Maximum Unit Change in  Model Profiles Resulting Sig. Number of Gene Models 

1 13 

2 14 

3 15 

4 13 

5 14 

6 15 

7 15 

8 16 

9 16 

10 15 
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As shown in this table, generally as the maximum unit change 

in model profiles is increased, the resulting significant 

number of gene models is increased. This is due to the 

pronounced Euclidean distances between the gene models. 

Regarding maximum correlation, the value of minimum 

correlation was set to zero (0) and the value of maximum 

correlation was slowly reduced from 1 to zero. The results 

obtained are shown in Table 9 are observed. 

 

Table 9. Maximum Correlations Viz. Significant Gene  

Models 

 
Generally, as the value of maximum correlation is reduced 

from one to zero, the number of resulting significant number 

of gene models reduced to unity (1) while the number of 

genes assigned to these gene models increased from 1005 to 

a maximum value of 1275. This implies that when the 

correlation value is small, gene models are basically 

indistinguishable hence at correlation zero, there is only one 

resulting significant model. On the other hand, at maximum 

correlation, the genes can be clearly distinguished and hence 

the resulting significant gene models are many.  

 

Concerning the number of genes assigned to models, at low 

correlation coefficients, genes profiles are indistinguishable 

and hence a large number of genes are assigned to the few 

available models. However, as the correlation coefficients are 

increased, the gene profiles become increasing disparate and 

few genes are assigned to each of the many models now 

available as the rest are discriminated due to their large p-

values. 

 

3.2 Prediction Power of the Developed Algorithm 

In the developed algorithm, sequences of gene expressions 

were listed in order of occurrence, starting at time point 0h to 

12h. The aim was to collect and investigate precedent 

observations of gene expressions at various time points in 

order to come up with ideal models to express the intrinsic 

structure of the underlying genomic data. Based on these 

models, it was possible to predict future gene expressions. To 

put this into perspective, profile ID 17 was considered whose 

gene expressions are shown in Figure 8. 

 

 

Figure 8. Gene Expressions for Profile ID 17 

 

A total of 54 genes were assigned to this model profile whose 

individual expressions are shown in Figure 8. By sketching a 

line of best fit through these gene expressions and performing 

some extrapolations, the future expressions beyond the 12h 

time point can be obtained as shown in Figure 9 below. 

 
Figure 9. Gene Profile Prediction 

 

The white thick line through the gene expressions is the line 

of best fit while the thick red line represents the extrapolated 

gene expressions for the 54 genes assigned to profile ID 17 

for the future 18h and 30h time points. Suppose that the 

stomach cancer patient gene expressions are as shown in 

Figure 10 below. 

 

 
Figure 10. Stomach Cancer Patient Gene Expressions over 

30h Duration 

 

Comparing the hypothesized gene expressions over the 30h 

duration and the gene models in Figure 11.0 below, then 

considering the first few gene expressions, model profile IDs 

13, 14,15,16,17 and 18 are candidates’ models that the 

stomach cancer patient gene expressions can fit in. However, 

taking into account the preceding time points eliminates 

model profiles 14(experiences near exponential growth 

followed by plateau), 15(experiences linear growth followed 

by plateau), 16 (portrays linear growth, linear decay and 

plateau), and 18 (presents linear growth followed by plateau). 

This leaves profile ID 13 and 17 as the most probable model 

profiles. By drawing a horizontal line through these two 

profiles as shown in Figure 11, it is possible to discern which 

of them perfectly fits the patient gene expressions. 

 

 

Maximum Correlation Resulting Sig. Number of Gene Models Number of Genes Assigned 

1 12 1005 

0.9 12 1005 

0.8 9 993 

0.7 6 1185 

0.6 4 1216 

0.5 3 1243 

0.4 3 1348 

0.3 3 1348 

0.2 3 1470 

0.1 3 1470 

0 1 1275 
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Figure 11. Gene Model Fitting 

 

Based on this line and considering time-points at which 

troughs and crests appear, it is clear that model profile ID 17 

perfectly fits the patient gene expressions for a duration of 

30h time points. As such, it can be implied that the developed 

algorithm led to accurate diagnosis of stomach cancer 

patients within 12h time points since the commencement of 

the cancerous gene expressions. In the next section, this 

algorithm is validated against some well-known gene 

profiling algorithms. 

 

3.3 Validation of the Developed Algorithm 

In this section, the time series-based algorithm that was 

developed is validated against other gene profiling algorithms 

such as Hierarchical gene profiling algorithm, Support 

Vector Machine, Self-organizing maps, and K-means 

algorithm. In Hierarchical gene profiling algorithm, genes 

with related expression patterns are grouped together and 

connected by a series of branches to form a dendrogram. 

Unfortunately, this algorithm considers each gene as an 

individual cluster and genes that are similar to each other 

form nested clusters based on the pair-wise distances.  

 

On the other hand, the time series-based algorithm developed 

in this research study considered a group of genes with 

similar expressions as profile clusters. For instance, in Figure 

6.6, a total of 155 genes were represented by a single model 

profile with ID 40 and 90 genes were represented by model 

profile ID 37. These two model profiles formed a cluster with 

a total of 245 genes. As such, the developed algorithm is 

operationally faster during gene profiling compared to 

Hierarchical gene profiling algorithm, rendering it ideal for 

large genomic data set. The genomic data that was utilized in 

this research consisted of 24192 gene symbols observed 

under 5 time points, making the total gene expressions 

120960, a very big data set for the rather slow Hierarchical 

gene profiling algorithm. 

 

To effectively apply the Support Vector Machine gene 

profiling algorithm, it requires training using the same 

members of each model profile that have to be identified. 

This training takes time and hence compared to the developed 

algorithm, it is slow and hence inefficient for large data sets 

such as the 120960 gene expressions that were under 

investigation in this research.  

 

Although Self-organizing maps algorithm has been employed 

to group 1,036 genes into 24 categories, this algorithm is slow 

in training, hard to train against slowly evolving data and are 

not so intuitive since neurons close on the map (topological 

proximity) may be far away in feature space. Additionally, 

these maps do not behave so gently when using categorical 

data, or mixed data. Comparing the 1036 genes that Self-

organizing maps algorithm profiled into 24 categories with 

the 24192 genes that were profiled using the developed time 

series-based algorithm, it is clear that the proposed algorithm 

is efficient. 

 

Regarding SVM algorithm, this algorithm has been used for 

cancer classification with microarray data where it served as 

a powerful classifier together with four effective feature 

reduction methods namely principal components analysis 

(PCA), class-separability measure, Fisher ratio and t-test to 

the problem of cancer classification based on gene expression 

data. Although it very high classification accuracies, it 

requires feature reduction methods which renders it 

structurally complex compared to the time series-based 

algorithm implemented in this research. 

 

On its part, the K-means algorithm operates on a series of 

microarray experiments measuring the expression of a set of 

genes at regular time intervals in a common cell line. It 

requires that data be normalized to permit for comparisons 

across these microarrays. The output produced is in form of 

clusters of genes which vary in similar ways over time and 

hence it is possible to infer that genes which vary in the same 

way may be co-regulated and or participate in the same 

pathway. Unfortunately, the numbers of clusters need to be 

specified which may be unknown in some instances, and 

figuring out the right number of clusters that represent the 

true number of clusters in the population is quite subjective. 

As such, the profiles obtained using K-means can vary greatly 

depending on the location of the observations that are 

randomly chosen as initial centroids. However, the developed 

time series-based algorithm employs statistical metrics such 

as p-value, Pearson correlation, logistics regression and 

Euclidean distance whose significance levels are well known.   

 

The K-means clustering algorithm assumes that the 

underlying clusters in the population are spherical, distinct, 

and are of approximately equal size and hence tends to 

identify clusters with these characteristics. Therefore, this 

algorithm is incapable of yielding good results when clusters 

are elongated or not equal in size like the genomic data used 

in this research where some gene expressions were negative, 

zero and others positive. The K- algorithm is also sensitive to 

initial conditions, implying that different initial conditions 

produce varying result of gene profiles. It is also possible for 

a very far data from the centroid to pull the centroid away 

from the real one as shown in Figure 12. below. Here, 5 genes 

are assigned to cluster ID 55 and it is clear from the gene. 

 

 
 

Figure 12. K-Means Based Profiling 

 

Expressions that the profiling is not such accurate especially 

after the 0.5h time point. Whereas 4 gene expressions have 

negative gradients, one of them has a positive gradient. 

During the 3h time-point, some gene profiles are at the rough, 

others are at the crest, plateau while others are still on their 

descent. The same is observed during the 6h time point. These 
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varying result of gene profiles give contradicting depiction of 

gene activities and hence may lead to inaccurate stomach 

cancer diagnosis. 

 

IV.CONCLUSION 

The aim of this paper was to develop a gene profiling 
algorithm based on time series to help in early stomach cancer 
diagnosis. Based on a number of derived gene profiling 
parameters, an algorithm was developed that was then 
experimented on sample genomic data. The results of this 
paper included a number of gene profiles that obtained from 
the underlying pathogen Helicobacter pylori data. The 
significance of this research lies on the fact that it helped 
generate gene profiles using very short time points. This 
feature is very critical in early stomach cancer diagnosis as it 
facilitates necessary preventive measures that curtail the 
cancerous cells advancement to other fatal phases. Since this 
research was purely based on stomach cancer, future work in 
this area lies on the implementation of this algorithm for other 
types of cancer or diseases. 
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