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Multilevel Models with Binary/Ordinal Outcomes
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Abstract. In the current article, three multilevel models involving binary or ordinary outcomes were
reviewed. The three models proposed to solve problems related to using dichotomous or ordinal variables
in multilevel models. Reviews on and comparison between the three models were presented in the current
article. The article was then concluded by discussion on the limitation of the three models and future

direction for research.
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Introduction

Multilevel model has become increasingly popular in psychological research. Its popularity is
due to the model capability to estimate not only fixed effects but also random effects. Multilevel
model also takes into account the dependency of observations collected in each cluster at each level.
The model can be employed when the data are hierarchical in nature, including data from
longitudinal studies. In such studies, observations across time, as the first level, are clustered in each
person, as the second level.

Many researchers have developed multilevel models to address some of its limitations. Two of
such limitations are assumptions that outcome variables are continuous and measured without error,
while psychological data are often binary / ordinal in nature and not error-free. Application of regular
multilevel model that ignores the ordinal nature of the data is not appropriate because it may result in
out of bound predicted values and inflated estimates of random slope variances and cross-level
interaction (Bauer & Sterba, 2011). Measurement error that is not accounted for in the model may

make the standard errors of parameters underestimated (Fox, 2007).
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The needs to estimate growth trajectory of psychological constructs, such as cognitive abilities,
across time using different measures may also demand an enhanced multilevel modeling. The use of
different measures is often based on justified rationale, such as age appropriateness and improved test
batteries over time. However, such condition may complicate the efforts to separate differences in
changing scales over time from changes in the constructs over time. Therefore, a model is needed to
relax the requirements of using the same measures over time while the model still enables researchers
to establish a common scale so that changes in the constructs over time can be estimated.

Current paper is focused on three models that may address concerns mentioned above. The
models are presented in a sequential manner; begin with multilevel cumulative probit / logit model,
longitudinal invariant Rasch test, and longitudinal item response theory-distribution parameter
estimation. In the discussion section, comparison of models, including their advantages and
limitations were discussed. Current paper is concluded by proposing several directions for future

studies.

Multilevel Cumulative Probit / Logit Model

Bauer and Sterba (2011) proposed a model called multilevel cumulative probit/logit model to
solve modeling with ordinal nature of the outcome variables. The author use two ways of approaching
the model by: (a) conceiving the ordinal outcomes as a coarse categorization of an underlying
continuous variable, and (b) using a multinomial distribution to specify the conditional distribution of
the ordinal outcome variable.

Let Y;; be the underlying continuous outcome variable for person i in cluster /; By; and By
be, respectively, the intercept and slope parameters, while X;; be the explanatory variable at level 1;
Yoo, Yo1, Wj be the intercept and slope parameters, and explanatory variable of f;, respectively;
Y10, Y11, W; be the intercept and slope parameters, and explanatory variable of f;; and 73j,u, and

Uy j be the error terms. The first approach to the model can be expressed as the following:
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In the model, 7;; can be assumed to follow either the standard normal distribution, N(0,1), that lead

2
to multilevel cumulative probit model, or a logistic distribution, logistic (O, %), that lead to
multilevel logit model. Note that the variance of the model is fixed.

A threshold model was also posited by the authors to link ¥;; to the ordinal outcome variable:

Y;; = 1ify; <v®

v = 2ifv® <v; <v@

Y;j = Cifv€D <y
where Y;; is the observed ordinal outcome variable and v(© is a strictly increasing threshold parameter
(Ge. v < v@ < ... < y(€D) This threshold model shows that if a person’s observed score on the
outcome variable are at ¢ category, his score on ¥;; must have passed the threshold for that category.

A different approach can attain equivalent models by using the generalized linear model

framework. In this framework, Y;; is assumed to follow a multinomial distribution, with parameters

describing the probabilities of the categorical responses. Cumulative coding variables, Yl-S-C), are

defined to capture the ordered nature of the categories of the observed outcome. An amount of € — 1

coding variables are defined such that Yig-c) = 1if ¥;; < c. The coding variables for the last category,

ij =
y©

ij > is omitted since it is always scored 1 for all ¥;;.

The second approach of the model can be expressed as the following
Level 1: n;; = Bo; + 51, X1,
Level 2: By; = o0 + v01Wj + wo;

Bi; = o0+ yuWj 4w 1)

1;j is treated as person’s score on latent-outcome-continuous variable, like ability level in item
response model. The model for observe response is given as the following:
v = g7 v —ny] + 1y @)
where v(© is the threshold parameter for category ¢ that allows for increasing probabilities that is
accumulated across categories, and g~ ![.] is the inverse link function, a function that maps a
continuous range of [V(C) - j] to the bounded zero to one range. We can choose any function that
has zero and one asymptotes to be g~*[.]. Two functions commonly chosen are the standardized
normal CDF and inverse logistic function.

Combining (1) and (2) provides

Level 1: Y\ = ¢! [v(c) — Boj — 51inj} +7ij (3)

©2020 Santoso



39 SANTOSO

If g7*[.] is an inverse logistic function, then

() — B — By: X
Level 1: Y;g") _ GXp(U = BOJ : ﬁlj .lj)_‘ + rij
1+ exp(v© — Bo; — £1;Xi5) (4)

The authors posited two other constraints to the model to make it identified. The first

constraints were related to thresholds and overall model intercepts. Because the thresholds and
intercepts cannot be estimated jointly, one should either set the intercept to be zero to estimate all
thresholds or set the first threshold to be zero and estimate the intercept. The authors chose the latter
constraint because it is the most common practice. The second constraint relates to the coefficients in
level 1, which are set to be the same across all categories.
Two procedures were chosen to estimate the parameters: the penalized quasi-likelihood
(PQL) and maximum likelihood with adaptive quadrature approach (ML). The authors compared the
performance of the two procedures in estimating the parameters. The results showed that although in
many conditions PQL provided negatively biased estimates, the estimates had smaller MSE compared
to the estimates from using ML. The small MSE means that PQL estimates had biases that are
compensated by small variability across samples.
Their study also showed that using the regular multilevel model by assuming continuous
outcome variables provided negatively biased estimates for random effects and their dispersion
estimates. Only when the distribution of the response categories were roughly normal and the number

of categories was seven, the regular model provided a tolerable size of bias.

Longitudinal Invariant Rasch Test

This model is proposed by McArdle, Grimm, Hamagami & Bowles (2009) to address the
need to estimate growth-decline trajectory of intellectual abilities from datasets from three studies.
The datasets were taken from 419 participants measured repeatedly (7=16) starting when they were 2
years old and ended when they were 72 years old. Several tests were employed to match the age of the
participants with the age required by the test. Two objectives were to be attained in this article: testing
the longitudinal measurement invariance / equivalence and estimating growth-decline trajectory.

The longitudinal invariant Rasch test (LIRT) model can be seen as an extension of growth of
factor scores model, in which the measurement level is posited as the first level, while the first and
second level of the longitudinal analysis are posited as the second and third level, respectively. The

model for each level can expressed as the following:
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where Pr[t];, is the probability of answering item i correctly by 7 at time £ g[t],, is the ability level

Measurement Level: In (

of person 7 at time # p; is the difficulty parameter of item 7; gy, is individual’s initial level; g4, is the
individual’s slope of change over time; A[t] is time or shape of change over time; u[t], is time specific
unique score. At level two, Voo and vqq are the intercepts aggregating individuals’ intercepts and
slopes, respectively; vo; and v;q are the slopes representing relationships between observed predictor
X, and the individuals’ intercepts and slopes, respectively; while d, and d4, are the error terms.

In this model, A[t] can be defined in various ways to answer a specific questions posed by
researchers. For example, in this study, because McArdle, et.al (2009) wanted to estimate growth-
decline trajectory, they defined A[t] = exp(—ngAge[t]) — exp(—mgAge(t]), where myis the rate of
growth and 1 is the rate of decline.

The authors conducted two ways of estimating LIRT parameters: (a) two-stages approach,
and (b) simultaneous approach. In the two-stages approach, the ability and difficulty parameters were
estimated for each occasion and then used the ability estimates as the outcome variable in the
longitudinal analysis part. Such approach ignores dependencies of within person ability estimate
across time that may result in biased and inefficient estimates. In the simultaneous approach, the
ability and difficulty parameters and parameters of the longitudinal model are estimated
simultaneously that may provide more efficient estimates and more precise hypothesis tests.

MLE-MAR estimation procedure, with integration method using Gauss-Hermitte
quadrature, were employed for two-stages and simultaneous approach due to incomplete data. The
authors also employed MCMC to estimate simultaneous approach for its computing efficiency. The
MLE-MAR estimation was conducted using NLME package in SAS while MCMC estimation was
conducted using WinBUGS. Several prior distributions used to conduct MCMC were as the

following:

i ~ N(0,107°)
Oupr), ~ ZG(0.001,0.001)
po ~ 0
p ~ N(0,107%)
d ~ IV
T4 ~ N(0,1079)

T, ~ N(0,107°)
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Estimation using MLE-MAR, particularly for simultaneous approach, took a far longer time than
expected in conducting the analysis, while MCMC provided estimation in a more reasonable time
required for conducting the analysis.

Based on the results, the authors compared the two approaches of estimating LIRT

parameters. The comparisons can be seen in Table 1.

Table 1. A Comparison of Two Stage Approach and Simultaneous Estimation

Two Stage Approach Simultaneous Estimation
Advantages
- More practical and intuitive - Taking into account dependency within
- Immediately provide additional person across time
information such as ability plot across time - Unbiased and more efficient estimates

- Evaluation of Item and Person fit-ness can
be conducted
- Odutliers detection of ability estimates

- Computationally efficient

Disadvantages

- Not accounted for dependency within - Computationally cumbersome
person across time
- May result in biased and / or less efficient

estimates

Longitudinal Item Response Theory-Distribution Parameter Estimation

Andrade & Tavares (2005) proposed another approach to estimate parameters in longitudinal
data acquired using different tests without estimating ability parameters of each person. The approach
requires that researchers have known the item parameters beforehand. The authors claimed that their
approach works even without overlapped items across tests across time.

The authors proposed the model as the following:

Item Level: Pj; = P(Ujiy = 1101, G)
Test / Time Level: P(Uji|0;, ¢) = HP Ujitl 01, Gi)

lEIg

Person Level across Test / Time: P( U, \9],5 ¢) = HHP ﬂt\é’t G)

t=1icl;
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where Ujit is binary response by person j on item 7 in test 4 where j = 1,2,..,N, i = 1,2,...,n and
t=12,..,T ; 0 is the ability level of person j measured by test # {; is the matrix of known item
parameters either from one, two or three parameter logistic model in test # Uj; =
(Ujlt, Ujzts - ]ntt) U, = ( i1 Uiz U]-'_T); ¢ = (41,43, -, Cp);l; is a set of items numbers that is
used in test #so that n <n,. = YI_;n,;;and 8 = (64,65, ...,07).

By assuming that 6 follows a multivariate normal distribution with parameters 7, the

unconditional probability of pattern U; can be expressed as the following:

P(U; |0, ¢) = P(U;.10,¢)g(0|n)d6
RT (5)

where g(6|n) is the density function of the multivariate normal distribution. The above probability
depends on the known item parameters and 7, the parameters of 6 distribution.

The likelihood equation is derived from the probability of observing a certain response pattern
U;. given item parameters { and distribution parameters 17, which follows multinomial distribution

given by

PRICn) = 1 ,H ;I
]1] (6)

where 7 is now represents one of the s different response pattern where s < min(N, 2™¢), so that j =
1,2,..,8; R = (r1,13,...,75)" is the (s X 1) vector of frequencies of observing response pattern U; .
Taking the first derivative of the log of (6) provides:
S [ (5 toeatein) oo
=1 IR (7)
where
P(8;.10,¢)g(0|n)
P(U;[¢.m) ®)

The authors implementing the model by using multivariate normal distribution as g(6 vV 1)

g9;(8) =

with different type of covariance structures like diagonal, uniform, banded, heterogenous, and
unstructured covariance matrix. The selection of the types of covariance structure is based on
theoretical consideration as well as information from pilot study. Estimation was then conducted

using MLE with Newton-Rhapson method for numerical analysis.

Discussion and Future Direction

The three models have previously been reviewed independently to show how the model were

defined and estimated. Here, comparison between models is given in Table 2 (see Atzachment 1), to
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show their similarities, relative advantages, and limitations. The differences between the three models
are actually not substantial. One can apply some features of one model to another model. For
example, one can extend LIRT model to incorporate not only binary responses but also ordinal
responses or graded responses. One can also apply different types of covariance structure from LIRT-
DPE model in LIRT or MCPL model. This means that, in the future, one may construct a more
general model that may cover all three models that potentially may offer more useful-features.

For example, the model may also address one limitation that applies to all three models, that is
exclusion of measurement model in explanatory variable. Therefore, in the model, one can extend the
idea of applying IRT not only on outcome variable but also on explanatory variables. The complexity
of the model may also cause problems in terms of computational efficiency. Therefore, in the future,
one can search for either estimation (e.g. GEE) or computational methods (i.e. integration or

numerical analysis) that are more efficient and less burdensome.
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Attachment 1
Table 2. Comparison between model on several issues
Model
MCPL LIRT LIRT-DPE
Penalized quasi-likelihood MLE using Gauss-Hermitte MLE using Newton Rhapson

Maximum likelihood using

quadrature integration,

for numerical analysis

Estimation ) ] )
quadrature integration computationally burdensome Item parameters need to be
MCMC known beforehand
Ordinal and Binary outcome Binary outcome, extendable Binary outcome, extendable
) ) can be addressed to ordinal outcome to ordinal outcome
Ordinal / Binary outcome

One Parameter Logistic /

Probit model (1PL)

1PL, extendable to graded
response and 2 or 3PL

1PL, extendable to 2 or 3 PL.

Measurement error of outcome

Assume no measurement

error

Measurement error is

modeled

Measurement error is

modeled

Ability estimate

Based on observed outcome

Ability estimate can be

obtained

Ability estimate cannot be

obtained
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Growth trajectory

Growth trajectory can be

obtained

Growth and decline
parameters can be obtained
More complex definition of

‘time’

Only mean and covariance
estimate, can be extended to

estimate growth trajectory

Variance-Covariance structure

‘regular’ covariance structure,
fixed variance for first level

residuals

‘regular’ covariance structure

Several types of covariance

structure

Measurement error of explanatory

Assume no measurement

error

Assume no measurement

€rror

No explanatory variable on

second level

Longitudinal measurement

invariance

NA (multilevel model)

Longitudinal measurement
invariance can be tested with

overlapping items

Assume longitudinal
measurement invariance, but
cannot be tested using the

model

Note: MCPL = Multilevel Cumulative Probit/Logit, LIRT = Longitudinal Invariant Rasch Test, LIRT-DPE = Longitudinal Item Reponse Theory-

Distribution Parameter Estimation.
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